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Abstract: For any pair of probability measures defined on a common space, their relative information
spectra—specifically, the distribution functions of the loglikelihood ratio under either probability
measure—fully encapsulate all that is relevant for distinguishing them. This paper explores the
properties of the relative information spectra and their connections to various measures of discrepancy
including total variation distance, relative entropy, Rényi divergence, and general f-divergences. A
simple definition of sufficient statistics, termed I-sufficiency, is introduced and shown to coincide with
longstanding notions under the assumptions that the data model is dominated and the observation
space is standard. Additionally, a new measure of discrepancy between probability measures, the Np-
divergence, is proposed and shown to determine the area of the error probability pairs achieved by
the Neyman-Pearson binary hypothesis tests. For independent identically distributed data models, that
area is shown to approach 1 at a rate governed by the Bhattacharyya distance.
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1. Introduction

Shortly after the advent of information theory [1], Kullback and Leibler [2] introduced relative
entropy (or Kullback-Leibler divergence) as a means of generalizing to arbitrary alphabets Shannon’s
foundational information measures—entropy, differential entropy, and mutual information. They
recognized that relative entropy could play a pivotal role, not in Shannon’s data compression and
transmission problems, but in statistical inference, in particular, in the theory of sufficient statistics,
which had recently been put on a sound mathematical footing by Halmos and Savage [3]. The
application of information theory to statistical inference, initiated in [2], continued with Fano’s
inequality [4]—a lower bound on error probability in Bayesian M-ary hypothesis testing based
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on conditional entropy. Lindley [5] suggested using mutual information to explore sufficiency.
Chernoff [6] found an asymptotic operational role for relative entropy in another fundamental pillar
of statistical inference, the theory of hypothesis testing pioneered by Neyman and Pearson in [7].
Soon after, Sanov [8] showed that relative entropy plays a pivotal role in the theory of large deviations
pioneered two decades earlier by Cramér in [9]. For the purpose of statistical modeling, Jaynes [10,11]
and Kullback [12] advocated the maximization of entropy and the minimization of relative entropy with
a fixed nominal reference measure, respectively.

Other information theoretic measures would prove useful in statistical inference.  Rényi
divergence [13] and Chernoff information [14] emerged as key tools in the asymptotic analysis of non-
Bayesian and Bayesian hypothesis testing, respectively. Csiszér [15] showed that the role of relative
entropy in sufficient statistics, found by Kullback and Leibler, could be extended to f-divergences, a
much wider collection of discrepancy measures that obey the data processing principle (no processing
can increase them). Among the many f-divergences that have found widespread applications in
statistical inference are total variation distance, y*-divergence [16], Hellinger distance [17], Hellinger
divergence [14], Vincze-Le Cam divergence [18, 19], and de Groot statistical information [20].

Moving forward to the last decade of the XXth century, [21] started a new direction in information
theory: The information spectrum approach, whose original goal was to generalize the flagship
asymptotic results in information theory without assumptions of discreteness, memorylessness,
ergodicity, or even stationarity. Working with very little structure has the benefit of bringing out the
essential aspects that allow Shannon’s results [1] to transcend their original habitat. A price to be
paid for the generality of those results is that entropy, relative entropy, and mutual information are
no longer sufficient to express the asymptotic fundamental limits. Those information measures are
expectations of random variables whose distributions, dubbed information spectra in [21], emerge as
the crucial ingredients in the solution. Han’s monograph [22] provides a comprehensive overview of
the application of the information spectrum method to the asymptotic fundamental limits in various
domains, including lossless and lossy data compression, data transmission, hypothesis testing, channel
resolvability, and random number generation. Started in [23], another trend in information theory seeks
to determine non-asymptotic fundamental limits, e.g., what is the transmission rate compatible with a
blocklength of 1000 and a probability of decoding error of 1072? Approximate answers to this type of
questions can be obtained through upper and lower bounds that depend on the information spectra.

Entropy is a special case of mutual information, which in turn is a special case of relative entropy.
The relative entropy, D(Py || Py), of probability measures Py and Py defined on the same space is the
expectation of the random variable iyy(X), where ixy(x) stands for the relative information defined
as the logarithm of the Radon-Nikodym derivative g%(x), or more generally, log C%f(x) - log GL%(x),
where p dominates both probability measures. The key objects of interest in this paper are the relative
information spectra, namely, the cumulative distribution functions of y;y(X) and ixy(Y). In addition
to a number of properties satisfied by the relative information spectra, we show new results in both
sufficient statistics and binary hypothesis testing through the application of those properties.

To enhance readability and ease of reference, the rest of this work is organized in one hundred items
grouped into eight sections, plus an appendix.

Section 2 contains most of the terminology and notation used throughout the paper, as well as
several auxiliary results used in the sequel. As no restrictions (including absolute continuity) are placed
on the pairs of probability measures under purview, the notions of relative support and coefficient of
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absolute discontinuity prove to be of central importance in the subsequent development.

Section 3 deals with the fundamental properties of the relative information, including the change
of measure formulas without requiring absolute continuity. It also explores properties of Rényi
divergence and information density—a special case of relative information whose expectation is the
mutual information, and which proves useful in Section 7.

Section 4 focuses on the interplay of the distributions of the random variables iyy(X) and 1xy(Y).
The key notion of equivalent pairs of probability measures, proposed recently in [24] in the special
case of absolutely continuous probability measures, is given here in full generality, along with several
necessary and sufficient conditions involving Rényi divergence and f-divergences.

Section 5 shows various ways to express and bound fotal variation distance as a function of the
relative information spectra, a problem initially undertaken by Le Cam [19].

A new measure of discrepancy between probability measures, dubbed the np-divergence, is
introduced in Section 6. Although it satisfies the data processing principle, Np-divergence is not an
f-divergence. Its main operational role, which justifies its name, is revealed in Section 8.

Section 7 presents a new notion of sufficient statistics, I-sufficiency, based on equivalent pairs. To
put this notion in perspective, Section 7 also includes a discussion of the leading existing definitions of
sufficient statistics, such as classical (Fisher) sufficiency, Blackwell sufficiency, and Bayes sufficiency.
I-sufficiency is a natural bridge between those notions and criteria based on the equality of the
data processing inequality for f-divergence. All those notions turn out to be equivalent under the
assumption that the data model is dominated and defined on a standard space.

Section 8 gives a self-contained solution to the non-asymptotic fundamental tradeoff region
consisting of the set of achievable conditional error probabilities in non-Bayesian binary hypothesis
testing, at a level of detail apparently not available elsewhere. A scalar proxy is often sought to
quantify how well probability measures can be distinguished. In non-Bayesian hypothesis testing,
the area of the tradeoff region is arguably the most natural scalar measure. Section 8 demonstrates that
this area equals one-half of the Np-divergence. This establishes an interesting relationship between the
hypothesis testing problems

Heo: y ~ P, He: (v1,y2) ~ Py ® P1,
Hi: y ~ Py, Hr: (v1,)2) ~ P1 ® Py.

The area of the fundamental tradeoff region for {Hg, H;} is shown to equal 1 — 2€,;,(H;, Hg), where
€min(Hz, Hg) is the minimum (Bayesian) error probability when {H;, Hg} are equally likely. A new
asymptotic operational role is found for the Bhattacharyya distance in the setting of independent
identically distributed data.

Section 9 gives a recap of the main new results found in the paper.

2. Preliminaries

This section introduces basic terminology and notation, along with supporting results used in the
remainder of the paper.

1. Z4 denotes the set of probability measures defined on the measurable space (A, 7).
2. For P € 4, X ~ P means that P[X € E] = P(E) forall E € .%.
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3. A random transformation
Pyx: (A,.F) = (B,9) 2.1)

is a collection {Pyyx-, € Pg, a € A} of probability measures defined on the measurable
space (8B,%), such that for every B € ¥, fg: A — [0,1] given by fg(a) = Pyjx=«(B) is a
Borel .%#-measurable function. In the literature, random transformations are also referred to
as Markov kernels. The sets A and B are known as the input and output alphabets of the
random transformation, respectively. Note that a joint probability measure Pxy need not be
defined notwithstanding the notation in (2.1). If in addition to the random transformation (2.1), a
probability measure Py € “ is defined, then the input/output joint probability measure Pyy on
(AX B, F ®%Y)is given by

ny(A X B) = fPYIX:a(B) dPX(a), AXBe FQY. (22)
A

The marginal output probability measure, Py, also known as the response of Pyx to Py, is denoted
by

PX—>Py|X—>Py. (23)

4. If (P,Q) € 2, P < Q means that Q dominates P, or alternatively, P is absolutely continuous
with respect to Q, i.e., P(A) = 0 for any A € .% such that Q(A) = 0. More generally, a collection
P C Yy is said to be dominated by Q if P < Q forall P € 2. If Q dominates & and Q(F) = 0
whenever E € .% is such that P(E) = 0 for all P € &2, Q is said to be equivalent to 2. The same
terminology applies to general measures on (A, #).

5. If (P, Q) € 32&,2( and P < Q < P, then we write P <> (Q and P and Q are said to be mutually
absolutely continuous or equivalent.

6. Lemma 1. [3, Lemma 7] Assume that there exists a o-finite measure on (A, %) that dominates
the collection & C H5. Then, there exists a probability measure in P that is equivalent to the
collection . In fact, there exists a finite or countably infinite collection {P; € &, i € I}, such
that ;.7 m;P; is equivalent to & for every probability mass function n on I with ©; > 0 for all
iel.

In light of Lemma 1, we frequently refer to a collection of probability measures as being
dominated, without specifying the dominating measure, which is understood to be either a
probability measure, or not more generally, a o-finite measure. Non-o-finite measures are of
no interest in this paper. Any finite or countably infinite collection of probability measures is
dominated. Examples of undominated collections of probability measures on (R, %) are:

e {0y, 0 € [0, 1]}, with §, the point mass on (R, #) that assigns probability one to {6}.

e {P: P(B) = PQw: —w € B}), forall B € #4}.
Despite a contrary claim in [25], undominated collections are more often the exception than the
rule in most applications commonly encountered in statistical inference and information theory.

7. If (P, Q) € &2, P and Q are said to be mutually singular or orthogonal, P L Q, if there exists an
event F € .% with P(F) = 0and Q(F) = 1.
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8. If (P, Q) € Z2, the coefficient of absolute discontinuity of P relative to Q is defined as

II(P|| Q) = min P(A). 2.4)
AeF:
0A) =1
Note that
P<x(Q <= II(P|Q =1, (2.5)
P10 < IIPI|QO=0 < IIQ|P)=0. (2.6)

9. If P € Y5 and Q € F (the set of probability measures defined on the measurable space (8,9)),
then P® Q denotes the product measure on the measurable space (AX B,.# ®¥¢). The coeflicient
of absolute discontinuity for product probability measures is

II(P, ® Q11| Py ® Q) = min [P1® 01](A) (2.7)
Ae FQRY:
[P ® Qpl(A) =1
< min P.(F) min 0.(G) (2.8)
FeZ: Ge¥Y:
Po(F) =1 0(G) =1
= II(P || Q1) - TI(Pg || Qp). (2.9)

In fact, equality holds in (2.8) since we can lower bound the left side replacing [P; ® Q1] (A) by
[P1® Q1] (F xG)forany F X G C A.

10. If (P, Q) € 9@2[ and P < Q, then the Radon-Nikodym derivative (or density) of P with respect to
Q is the Borel .7 -measurable nonnegative function
:—g: A — [0, 0) (2.10)
such that any nonnegative Borel .% -measurable function f: A — [0, co) satisfies the change of
measure formula

dpP
E[f(X)] = E[@(Y)f(Y)], X~P Y~OQ. (2.11)

11. If (P, Q) € £?2, define —up to an event of zero P + Q—the support of P relative to Q as
dP
SPIIQ = {a € A: @(G) > O} € 40/\, (212)

where W is any measure that dominates {P, Q}, such as P + Q.

Lemma 2. For any (P, Q) € &2,

P(Spio) =1, (2.13)

O (Spig) = Q(Spig N Sgip) = min  O(A) = TI(Q | P). (2.14)
Ae F:
P(A) = 1
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Proof. To verify (2.13), simply note that P(S;”Q) = f Ha ¢ Spo} %(a) du(a) = 0 for any
pw > {P,Q}. To justify (2.14), we need to show that if A € % with Q(A) < O(Spjp), then
P(A) < 1. If G € .% is such that G C Spjp and Q(G) > 0, then

P(G) = f d—P(a) du(a) > 0, (2.15)
¢ du
because wW(G) > 0 and 3—ﬁ(a) > 0ifa € G. Since Q(Spjp NA°) > O(Spjp) — O(A) > 0, we obtain

0< P(SPHQ NAS) = P(A°). O

12. Apart from their essential contribution in our framework, the concepts in Items 8 and 11 merit
broader popularity in probability theory. For example, they lead to an elementary constructive
proof (cf. the standard proof in [26, p. 135]) of the Lebesgue decomposition theorem: If (P, Q) €
l@;, there exist probability measures (P, Py) € @; such that P; <« Q, Py L Q, and P is the
mixture

P=AP, +(1=2)P,, (2.16)

for some A € [0, 1]. First, observe that the constructions for the cases P << Q and P L Q are
trivial: If P <« Q, then (P1,1) = (P, 1); if P L Q, then (Pg, 1) = (P,0). In the nontrivial case
P <« Qand P L Q, we have

0 <II(PIlQ) = P(Spjo) < 1, (2.17)
and the law of total probability yields, for any A € .7,
P(A) = P(A | Sqip) P(Sqip) + P (A | Siyp) P(Syp)- (2.18)

Soin (2.16), we have A = II(P|| Q), P1 = P(- | Sgip) < Q, and Py = P(- | S“Q”P) 1 0.
13. The moment generating function and cumulant generating function of a [—oo, +00)-valued random
variable U are defined, respectively, by

My(r) = E[e']. (2.19)
Ay(t) = log, My(2). (2.20)
Note that lim, ;o Ay/(?) is either infinite or equal to log P[U > —oo]. If there exists 7y > 0 such that
Ay(t) = Ay(t) < oo for t € (0,1)), then U and V have identical distributions (e.g., [27, p. 337]).
Since Ay(—t) = A_y(¢), U and V have identical distributions if Ay () = Ay (7)) < oo fort € (—ty, 0).

3. Relative information

14. If (P, Q) € 3292[ and P < Q, then the relative information of P with respect to Q is the Borel
% -measurable function

dP
tpjo(a) = log @(d) € [~00, ). (3.1)
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More generally, without requiring P < Q, if p is a probability (or o-finite) measure which

dominates {P, Q}, and the respective densities are denoted by p = g—’; and g = %, then the
(generalized) relative information is defined as
pla
lp||Q(a) = lOg m = lpHp(Cl) - lQ||p(Cl) eR, ace SPIIQ N SQIIP; (32)
—00, aec Si’HQ N SQHP'

If a ¢ Spjp U Sgyp, it is immaterial how to define 1pp(a). Therefore, any identity involving
relative informations (or densities) is to be understood almost surely with respect to any measure
dominating both probability measures. It follows from (3.2) that relative information satisfies the
skew-symmetry property

tpip(a) = —igip(a), acA. (3.3)
In the discrete case, i.e., A is finite or countably infinite, if P(a) + Q(a) > 0, then

tpjo(a) = 19(a) — 1p(a), (3.4

where the (absolute) information is 1p(a) = log ﬁ. The base of the logarithms in (3.1) and (3.2)
determines the units of the relative information. Unless specifically indicated, it can be chosen
by the reader. If the chosen base is b > 1, then exp(r) = b’. If b = e [resp., 2], the unit is
called nat [resp., bit]. By convention, exp(—co) = 0 and log0 = —oco. The generalized relative
information in bits is equal to 1pg(a) = v(ipjr(a)) where R = %P + %Q, tpir(a) 1s also in bits, and
v: [—oo, 1] = [—co, +o0] is v(?) = t — log,(2 — 2).

15. Ifae A, (P,O,R) € @;( and R dominates {P, Q}, then (3.2) implies the chain rule

tpyr(@) — 1gr(a) = tpjo(a). (3.5)

16. Often (recall Item 2) we denote X ~ Px and Y ~ Py, in which case we abbreviate 1p,p, as
ixjy- The same convention applies to the coefficient of absolute discontinuity in Item 8 and the
relative support in Item 11, as well as to relative entropy and other information measures (except
total variation distance) considered in the remainder of the paper. This notational convention was
popularized by [28] in the context of the entropy function.

17. It follows from (2.13), (2.14), and (3.2) that

Plixy(X) = +00] = Px(Sxy N Syx) = 1 — IX|IY), (3.6)
Plix)y(X) = —oo] = Px(Syyx N S§(||y) =0, 3.7)
Plixy(Y) = +00] = Py(Sxyy N Syx) = 0, (3.8)
Plixy(Y) = —oo] = Py(Syjx N Syyy) = 1 = II(Y]1X). (3.9)

18. Change of measure. Without the assumption of absolute continuity, the basic change of measure
formula (2.11) needs to be modified as follows.
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Lemma 3. For any nonnegative Borel measurable f: A — [0, 00),

E[f(Y) exp(ixy(Y))] = E[f(X) Huxr(X) € R}] (3.10)
= E[f(X) Hixp(X) < oo}] (3.11)

=E[f(X)], if Px < Py; (3.12)

E[f(X) exp(-uxqy(X)] = E[f(¥) Hixr(Y) € R}] (3.13)
=E[f(Y) Hixy(Y) > —o0}] (3.14)

=E[f(")], if Py < Py, (3.15)

regardless of whether the expectations are finite or +oo. More generally, if f: A — R, the
random variable on the left side of (3.10) [resp., (3.13)] is integrable if and only if so is the
random variable on the right side, in which case (3.10) [resp., (3.13)] holds.

Proof. Identities (3.11) and (3.14) follow from (3.7) and (3.8), respectively. Suppose that p
dominates {Pyx, Py} and the respective densities are denoted by px and py. The random variable
in the expectation on the left side of (3.10) is equal to zero if ¥ ¢ Syy N Syjx. Therefore, the left
side of (3.10) equals

E[f(Y) exp(ixy(Y)) HY € Sxyy N Syyx}]
[ 7w 2 ) dow) = B[ 10 € RY], (3.16)
SxwnSyx - PY (w)

where we have used (3.2). If Px < Py, then Pliyy(X) € R] = 1, yielding (3.12). Alternatively,
we can prove it directly from the change of measure formula (2.11). To show the claimed result
for f: A — R, we decompose f = [f]"—[—f]", and the desired result follows from the definition
of expectation E[f(V)] = E[f*(V)] — E[f~(V)] for any V once we apply (3.10) to both [f]* and

[-f1". Swapping X < Y and recalling (3.3) results in (3.13)—(3.15). |
Corollary 1. For any 8 > 0, and nonnegative measurable function g: A — [0, c0),

BE[g(M)1xy(Y) > log 8] < E[g(X)1{log 8 < yr(X) < oo}, (3.17)

E [¢O)Huxy(X) < logB}] < BE[g(Y)1{—00 < 1xyr(Y) < logB}]. (3.18)

Proof.

e (3.17) < (3.10) with f(a) = g(a) l{log B < ixy(a)}.
e (3.18) & (3.10) with f(a) = g(a) l{—co < 1xy(a) < logf}.

19. Invariance to labeling.

Lemma 4. Fix measurable spaces (A, F) and (B,9), and let the (¥ ,9)-measurable function
f: A — B be injective. Then,

Lol (f(@) = ixy(a), aeA. (3.19)

Conversely, if the (% ,%)-measurable function g: A — B is such that ixy(a) depends on a € A
only through g(a), then

1x)y (@) = Lox)er)(8(a))- (3.20)
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Proof. Suppose that P, dominates {Py, Py}. Then,

Px(A) = PLA(X) € f(A)] (3.21)
= E[l{f(2) € f(A}e(2)] (3.22)
= E[1{Z € A}o(2)], (3.23)

where

e (3.21) and (3.23) & l{a € A} = 1{f(a) € f(A)} forany A € .F < f is injective.
L (322) <= Lemma 3 with Q(a) = exp(lf(x)”f(z)(f(a))).

Therefore, o(a) = %(a). In particular, Sxjz = {a € A: f(a) € Sy} If Px < Py, we are

done since we can just let P; = Py. Otherwise, we can follow the same reasoning with X « Y,
and (3.19) follows from (3.2). To show the converse part, assume for now that Py < Py. Suppose
that %(a) = ¥(g(a)). Then, again invoking Lemma 3, we get

Pyx)(B) = E[1{g(X) € B}] = E[1{g(Y) € B}y(g(Y))], B€ Y, (3.24)
and, consequently, 3?“?;; (t) = Y(r), which implies (3.20). Without assuming Py < Py, note that
txy(a) = oo implies a € S5, € g7 (8% y,.x,) and (3.24) continues to hold if B € Syyyje. O

20. Relative information of relative informations.

Lemma 5. Let (Pyx, Py) € t@;(. Define the extended-valued random variables W = 1xy(X) and
Z = ixyy(Y). Then, using the same units for all three relative informations,

twz(x) = x, x € [—00,00]. (3.25)

Proof. Since the relative information need not be an injective function, we cannot invoke
Lemma 4. The probability of a Borel set A € %4, A C R can be expressed as

Pw(A) =P [lxny(X) (S A] (326)
= E[H{uxv(Y) € A} exp(ixyv(Y))] (3.27)
—E[1{Z € A}exp(Z)], (3.28)

where (3.27) follows from (3.10). Hence, we are free to choose ‘i%”(a) = exp(a) for all a € R. If
II(X||Y) = 1 = II(Y||X), i.e., Px <> Py, then Syz U Szw = R and it is immaterial how to define

tw)z(00) and 1y z(—o0). If II(X||Y) < 1 = II(Y]|X), then Item 17 implies
P[W = oco] > 0 =P[Y = o0], (3.29)
P[W = —00] =0 =P[Y = —o0], (3.30)

SO 1y z(00) = oo and it is immaterial how to define iy)z(—c0). The same reasoning shows that
if II(X||Y) = 1 > II(Y||X), then 1yz(—0c0) = —oco and it is immaterial how to define tyz(c0). If
I(X]|Y) < 1 and I1(Y||X) < 1, then Item 17 gives

P[W = oo] > 0 =P[Y = o0], (3.31)
P[W = —00] =0 < P[Y = —o0], (3.32)
which implies that 1yz(c0) = oo and 1yyz(—00) = —oco. m]
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21. If (P,Q) € 222, D(P|| Q) stands for the relative entropy (or Kullback-Leibler divergence [2]),
which, with the convention in Item 16, satisfies

Eluxy(X)] = DX ), (3.33)
E[lXHY(Y)] =-D(Y || X). (3.34)
The binary relative entropy function is the continuous extension to the domain [0, 1]> of the
function d(p||q) = plog§ + (1 = p)log i%f;. The data processing lemma for relative entropy
implies
D(P||Q) > maxd (P(A)||Q(A)) > max d(|[QA)) =log ———. (3.35)
i Ae *TIQIP)
PA) =1
22. If Py < Py, the change of measure formula (2.11) implies

E [exp(zX”Y(Y))] =1. (336)

Without assuming Py < Py, we have
E [exp(uxy(Y))] = TI(X]|Y), (3.37)
E [exp(—ixy(X))] = TI(Y|X). (3.38)

To verify (3.37) we let f(a) = 1in (3.11) and recall (3.6). Swapping X < Y in (3.37) yields (3.38)
in light of (3.3). The y?-divergence introduced by Pearson in [16] is

X (X|1Y) = Var [exp(ixy(Y)] (3.39)
= E [exp (ixy(X))] — 1, (3.40)

where (3.40) holds if Py < Py; otherwise, y*(X || Y) = oo.
23. For (Px, Py) € W; and a € (0, 1) U (1, 00), the a-order Rényi divergence [13] is

D (X||Y) =

1
7 logE [exp (@ = 1) 1xy(X))] (3.41)

1
= 1 log E [exp (CZ lX||y(Y))] , (342)

where (3.42) holds for @ € (0,1). Equivalently, if Z ~ R, with R a probability measure that
dominates {P, Q}, then

Dy (P| Q) =

1
7_1 IOgE [exp (CY lp||R(Z) +(1- CY) lQ”R(Z))] , (343)

which, using the generalized relative information (3.2), also holds without requiring that R >
{P, Q}. In addition, define

Di(X||Y) = DX Y), (3.44)
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Do(X||Y) = inf{v € R: Pliygy(X) <v] = 1} = lim D,(X|| V).

(3.45)

Along with (3.10) specialized to f(a) = exp((@ — l)iyy(a)), the skew-symmetry of relative

information (3.3) results in the skew-symmetry of Rényi divergence

(1 =a)Do(X[|Y) = a DY X), a€(0,1).

(3.46)

The coefficients of absolute discontinuity can be obtained from the Rényi divergence by means of

limD,(X||Y) =1 ,
im XIIY) OgH(Y”X)

lima D, ,(X||Y) =1 :
lim a D, XI|IY) OgH(XHY)

where (3.48) follows from (3.46) and (3.47). To show (3.47), note that

explaz—20 < -a)exp(-2) +a, (a,z)€[0,1] X (=00, +0c0],

so the dominated convergence theorem implies that
limE [exp (& = Duyr(X))] = E [exp (=1 (X))]

which is equivalent to (3.47) in view of (3.38) and (3.41).
24. Section 8 shows a new operational role for the Bhattacharyya distance [29],

1
B(P||Q) = 3Dy(P|| Q) = log W,

where p = g—ﬁ, q= % and {P, 0} < .

25. A couple of properties of Rényi divergence used in the sequel are (e.g., [30]):

(a) If @ > 1, then

P £ Q= Du(P||Q) = co.
(b) The following circular implications hold:

Jag € (0, 1) s.t. Dy (P]| Q) = 0
U
PLO

U
Do(P|| Q) = o, a € (0, c0].

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

26. Given Py € & and a random transformation Py : (A,.#) — (B,%9), the following special case

of relative information is known as the information density,

1x.y(X;y) = lnyllPX®Py(x’ y) = le‘X:xlle(y),

(3.55)
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where Py — Pyx — Py. We use the same notation in non-Bayesian settings in which Px need not
be defined and Py € 9% on the rightmost term in (3.55) is an arbitrary unconditional probability
measure. For future use, we observe that information density satisfies the chain rule

ixz:y(a, c; b) = 1x.y(a; b) + 1y.zx(b; c| a). (3.56)

Note that mutual information is [(X;Y) = Elix.y(X; Y)], with (X, Y) ~ PxPyx.
27. Following [31], whenever Pxy < Px® Py, the dependence between X and Y is said to be regular.
The following result gives sufficient conditions for regularity.

Lemma 6. Fix Py € &% and a random transformation Pyy: (A, ) — (B,9).
With Px — Pyx — Py, the following hold.

PXY<<PX®PY

n (3.57)
dAy € F: Px(Ao) = 1 and {Pyx=y, x € Ao} is dominated by Py
n (3.58)

{Pyix=x, X € A} is dominated.

Proof. To show (3.57) by contraposition, let D € .% ® ¢ be such that

(PX ® Py)(D) =0< ny(D), (359)

and denote
fxy) = H(x,y) € D}, (3.60)
D.,={yeB: (x,y)eD}e¥9. (3.61)

The function Pyx-.(D,) = E[f(X, Y)|X = x] is Borel .#-measurable with mean

f Pyxer(Dy) dPy(x) = Pyy(D) > 0. (3.62)

Therefore, there exists A; € .# with Px(A;) > 0 and Pyx-.(D,) > 0 for all x € A,. Likewise, the
expectation of the Borel .% -measurable Py(D,) = E[f(x, Y)], with Y ~ Py is simply

f Py(D,)dPx(x) = (Px ® Py)(D) = 0. (3.63)

Consequently, there exists A, € .% with Px(A,) = 1 and Py(D,) = 0 for all x € A,. We conclude
that Py(D,) = 0 < Pyx=(D,) and, thus, Pyx-, ¥« Py, forall x € A N A, and Px(A; N Ay) > 0.
To show (3.58), we assume without loss of generality that {Pyx—, x € A} U {Py} is dominated by
Qy € 5. Denote by pyjx=, and py the corresponding densities of Pyy-, and Py with respect
to Qy, and define the Borel (. ® ¢)-measurable function f(x,y) = l{py(y) = 0} pyx=x(y). If
(X,Y,Y) ~ Pxy ® Qy, then

0 =P[py(¥) = 0] = E[f(X,Y)] (3.64)

=E[A(X)], (3.65)

where fi(x) = E[f(x, ?)] = f Hpy(y) = 0} dPyx=,(y) and (3.65) follows from Fubini’s theorem.
The proof of (3.58) is complete since f(x) = 0 if and only if Pyjx-, < Py. O
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4. Relative information spectra

In Items 21 and 22, we saw that the expectations of the random variables ixy(X) and 1xy(Y), as well
as their exponentials, are well-known quantities in probability theory. We now consider the cumulative
distribution functions of those [—oo, +o0]-valued random variables, which, unlike relative entropy, Y-
divergence, or total variation distance, capture everything that serves to distinguish the probability
measures Py and Py.

28. Definition 1. The relative information spectra of probability measures (Px, Py) € 3@% are the
cumulative distribution functions of the relative information evaluated at X and Y, respectively,

IF)(”y(CY) =P [lX”y(X) < a] , a€R, (41)
Fxy(@) = Plixp(Y) <a], a€eR. (4.2)

The arguments of Fxy and Fy;y have units inherited by the units of the relative information.
In [22], the relative information spectra are referred to as divergence spectra.

29. If X and Y are discrete random variables, so are ixy(X) and 1xy(Y). If X and Y are absolutely
continuous random variables with probability density functions fy and fy, then

Fyy(a) =P [fx(X) < exp(a) fr(X)], (4.3)
Fyyy(@) = P[fx(Y) < exp(e) fr(Y)], (4.4)
which need not be continuous.
30. Due to (3.6)—(3.9),

lim Fyy(@) = X[ Y), (4.5)

lim Fyy(@) =0, (4.6)

lim Fyy (@) = 1, (4.7)

lim Fyy(@) =1 -TI(Y[| X). (4.8)

Although (4.5) is less than 1 if Py < Py and (4.8) is positive if Py <« Py, the relative information
spectra are monotonically increasing and right-continuous.
31. As aresult of the skew-symmetry (3.3) of the relative information,

FY”)((—Q’) =1- liTl’(l;l Fxny(X) =P [lx||Y(Y) > a] , Qaec R, (49)

Fynx(—a’) =1- I;Tl’(l;l Fxny(X) =P [lx||y(X) > a] . a € R. (410)

32. If Py = Py, then Fyjy(@) = Fxyy(e) = 1{e > 0}.
If Px L Py, then ]quy(a’) =0 and Fxny(a’) =1 forall @ € R.

Lemma 7. Let (Px, Py) € &5. Then,
((1) PX * PY — IFX”y(O) < 1.
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(b) If. in addition, Py < Py, then Py # Py & Fxy(0) < 1.

Proof.

(@ Fxy(0)=1 = 0=E[lixy(X)]"] > DX||Y) = Px = Py.
(b) For any a > 0,

1 = Fyy(0) = P[1yx(Y) < 0] 4.11)
= E[H{zyx(X) < 0} exp(ryx(X))] (4.12)
> E[l{—a < tyx(X) < 0} exp(iyx(X))] (4.13)
> exp(—a) P [-a < 1yx(X) < 0] (4.14)
= exp(-a) P[0 < 1yy(X) < a], (4.15)

where

e (411) = (4.10)with X & Y.

o (4.12) & (3.12) with f(a) = l{iyx(a) < 0} exp(—ixy(a)).

e (4.15) < (3.3).
On account of (a), (2.5), and (4.5), lim,_. Fxy(y) = 1 > Fyy(0). Therefore, there must
exist @ > 0 such that P[0 < ixy(X) < @] > 0.

An example of Py # Py with Fyy(0) = 1is Py = [ 11, Py =[1 0]. O
33. Example: If X ~ N(,u,crz), Y ~ N(O, 0'2), and Q(¢) = ftw \%ﬂe‘xz/zdx, then, with « in nats,
ao = ao
Fyr(@ = Q2= - 27 and Fypy(a) = Q[-L - L7). (4.16)
20 U 20 U
34. Example: Let é = Llog, &, with 0% > 03 > 0, X ~ N(0,02), and ¥ ~ N(0,02). If @ > &,
Y
then
202+ &)
Fxp@) =1-2Q| 1\ [———=| (4.17)
Ox — 0y
_ 20(a+ &)
Fxpr(@) =1-2Q| 1 [——=| (4.18)
O'X - O'Y

while Fyy(@) = Fyy(@) = 0if a < —£.
35. Exampie.' [24] Suppose that V is standard Cauchy, o4, # 0, X; = 4,V + uy, and Xy = AoV + pp.
Then, IFXIHXO(CY) =1- IFXIHXO(—CY) and

1 §+ VE-1<B;
Fyix,(log ) = {3 + 3 aresin ~= A (TVE-1<B<ln /2T (4.19)
0, 0<ﬁs{—\/§2—1,
2 2 N2
with ¢ = AP A W m o)y (4.20)

2| h
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36. Example: Suppose that U is uniform on [0, 1]. Define the probability measures on (R, %),

Py =16+1Pyy, and Py =361+ 162 + 1 P3yar. 4.21)

N I—
0| —

Then, II(P, || Py) = 3, TI(Ps || P1) = 3, and

3, a>2logi; I, a>2log3;
Fpyp(@) =13, log3 <a<2log?; Fpp@) =15 log?<a<2log?; (4.22)
0, ax<10g%, g, a/<10g%.

37. A key aspect of the relative information spectra is that Fp p, and Fp p, determine each other
through the following result.

Theorem 1. Fix arbitrary (Px, Py) € 2.
(a) Forall g > 0,

Fxy(logB) = 1 - fo : (]wa (10g %) — Fxyy (10&3)) dr. (4.23)

(b) Forall B> 0,
Fyy(log ) = fo " (Fxyv(log ) — Fyyy(log 1)) dr. (4.24)

(¢) Forall B> 0,
P [1xy(X) = logB] = BP [1xy(Y) = logf] . (4.25)

(d) 1xy(X) € (=00, +00] is discrete if and only if ixy(Y) € [—o0,+00) is discrete. 1xy(X) is
absolutely continuous, except for a possible mass at +oo, if and only if 1xy(Y) is absolutely
continuous, except for a possible mass at —oco. Then, the density functions fyy(x) =

LTy (x) and fyyy(x) = LTy (x) satisfy

fay(logt) =t fxy(logt), t> 0. (4.26)
(e)

TI(Y||IX) = Pligy(Y) > —o0] 4.27)
= E [exp(—ixy(X))] (4.28)

o0 1
_ f Fyy (log -) a5 (4.29)

0 B
_ f exp(=1) dF (1) (4.30)
HX|Y) = lim Fyy(a) (4.31)
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= E [exp(ixyr (V)] 432)
- [ (1-Fustoep) a6 (433)
= I : exp(t) dIF xy (7). (4.34)
(f) If §: R — [0, o), then

[ s expw b = [ gwarauo, (435)
[ : 2(t) exp(=1) dF (1) = f : 2(0) dFy (). (436)

(g) The cumulant generating functions of ty(X) and 1y (Y) (nats) satisfy

teR, Py < Py < Py;

Ay = MA@+ D, (=1,e0), Py <Py & Px; (4.37)

t € (-00,0), Px <« Py < Py;
te€(-1,0), Px <« Py <« Py,
and A, x)(=1) = log, II(Y||IX) and A,y (1) = log, II(X]|Y).

Proof.
(a) Fix a € R and let P; dominate {Pyx, Py}. Then,

E [exp (—uxy(X)) Ha < 1qp(X)}]
= E [exp (—1xy(X)) 1{e < ixy(X) < oo}] (4.38)
-E [e (Z:ZEX;) {@ < 1xgr(X) < oo} (4.39)
= E[exp (iyz(2)) 1 {a < ixy(Z) < oo}] (4.40)
=Pla <xp(¥) < o] (4.41)
=1 - Fypy(a), (4.42)

where
o (4.38) <= exp(—o0) =
e (4.39) &< (3.2) and the random variable in the expectation in the left side can be positive
only ifX e SXIlY N SYIlX-
e (4.40) and (4.41) <= change of measure (2.11).
o (4.42) < (3.8).
Then, we have

Fyy(e) + exp(@) (1 - Fyyr(@)) = E [exp (~[1gp(X) — a1%)] (4.43)

1
= f P [exp (~[ixy(X) — a]*) > 7] dr (4.44)
0
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: 1
= f Fxy (af + log —) dr, (4.45)
0 T

where
o (4.43) & (4.38)—(4.42).
o (444) =E[T]| = [ P[T > 7]drif T € [0, 1].
Rearranging the outer terms in (4.43)—(4.45) with @ = logg and changing the integration
variable to = é yields (4.23).
(b) Denote V = exp(ixy(Y)). By change of measure on Sy N Sy;x, we obtain

Fyyy(logB) = E[1 {exp(ixy(X) < B} 1{X € Sxyy N Syx}] (4.46)
=E[V1{0<V <pB]] (4.47)

00

P[1{0<V<B}V>1]dr (4.48)

Il
S—

Plt<V <p]dr (4.49)

[
Il

(Fxyy(logB) — Fyy(log 1)) dr. (4.50)

(¢) &= (3.10) with f(a) = Hixy(a) = logS}.

(d) Lemma 5 implies that, when restricted to R, the probability measures of W and Z are mutually
absolutely continuous; therefore, one is discrete [resp., absolutely continuous] if and only if
the other one is discrete [resp., absolutely continuous]. Differentiating (4.23) with respect
to ¢t yields (4.26).

(e) e (4.27)and (4.31) are (3.9) and (3.6), respectively.

e (4.28) and (4.32) are (3.38) and (3.37), respectively.

o (4.29) & (4.8) and (4.23).

e (4.33) &< (4.5) and (4.24).

e (4.30) and (4.34) are (4.28) and (4.32), respectively, since those expectations are
unchanged when restricted to 1xy(X) € R and 1xy(¥Y) € R.

(f) & Lemma 3 with f(a) = g (ixy(a)).

Note that the left sides of (3.10) and (3.13) are unchanged if the random variables inside the
expectations are multiplied by 1{ix;y(¥) € R} and 1{ixy(X) € R}, respectively.

(g) The formulas for A, x)(—1) and A, , (1) follow from (4.28) and (4.32), respectively. In
addition to A, x)(0) = 0 = A,,1)(0), the following expressions (oo - 0 = 0) for the moment
generating functions at ¢ ¢ {0, —1} yield (4.37):

M,y 0(0) = f (p "(‘“))dPx(w +oo- 1{Py 4 Py} 1{t > 0}, @51)
SxiyNSyx\ P v(w)
My, (@+1) = f (pX(w))dPX(U)) +oo- I{Py & Px}- l{r < -1} (4.52)
SxiyNSyx pY(w)
O
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38. In this item and the next, we upper bound Iy in terms of Fy;y.

Lemma 8. For > 0,

Fyy(logB) < min{l, S}, (4.53)
Fxjy(log) < inf (Px(B) + 5 Py(B)). (4.54)
2Fxy(logB) < BF xy(logp) + 1, (4.55)
Fxr(logB) < BFxy(logB) + BTI(Y(IX) - B, (4.56)
Fxy(logB) < BFxy(logB) + I(X||Y) - B, (4.57)
Fyy(logB) < Fyyy(log) +e77 — 1+ TI(Y || X). (4.58)

Proof. Let Lg = {a € A: 1xy(a) < logpB}.

e (4.53) & (3.11) with f(a) = l{a € Lg}.

e (4.54)1s Lemma 4.1.2 in [22]. Px(Lg) < Px(B°) + Px(Lg N B) < Px(B) + 8 Py(B), where the
second inequality follows from (3.18) with g(a) = 1{a € B}.

e (4.55) < (4.54) with the suboptimal choice B = L.

e (4.56) & (4.24) and for 1 > 0, Fyy(logt) > lim,_ Fxy(log7) = 1 — II(Y||X).

e (4.53) & max{Fxy(log ), [I(Y||X)} < 1.

e (4.57) & (3.6), (4.25), and (3.17) with g(a) < 1.

e (4.58) < (1 - é) Fyyy(ogp) < 1 - 1L < ¢ and upper bound éIFX”y(logﬁ) by means

B
of (4.56).
O
39. The following bound is instrumental in hypothesis testing (Section 8).

Lemma 9. Let (Py, Py) € W;. For any B > 0, and measurable function g: A — [0, 1],

Fxy(logB) ~ E[¢(X)] < BExy(logB) — BE[g(Y)]. (4.59)
Proof. For all a € A, g > 0, and measurable function g: A — [0, 1],

(B — exp(ixr(a)) (Hixy(a) < logB} — g(a)) > 0, (4.60)

because when the first factor is positive [resp., negative], then the second factor is 1 — g(a)
[resp., —g(a)]. Averaging (4.60) with respect to a < Y, we obtain (4.59) invoking (3.10) twice
with f(a) < l{ixy(a) < logp} and f(a) < g(a), respectively, where in the second case the
nonnegativity of g yields E[g(X)1{wxy(X) € R}] < E[g(X)]. |

40. Definition 2. (P1,Py) € &7 and (Q1,Qs) € Z are said to be equivalent pairs, denoted as
(Pl’P@) = (Ql’ Q@)’ l.f

Fpjpy(@) = Foyg,(@),  a €R, (4.61)

ie., %(Xl) and %(Yl) are identically distributed when X, ~ Py and Y, ~ Q.
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A word of caution is that a different notion of equivalence for pairs of real-valued random
variables (not pairs of probability measures) was proposed by Halmos and Savage in [3]: Suppose
(X1,Y1,X,,Y,) are real-valued random variables such that P[X; = Y¥; = 0] = 0, i = 1,2; then
(X1, Y1) and (X», Y>) are equivalent in the sense of [3], if there is a fifth random variable such that
P[F=0]=0and P[(X;,Y)) =(F- X5, F-Yy)] = 1.

41. Definition 2 and Theorem 1 result in

{Fpps(@) = Fo,g,(a), @ € R}
) (4.62)
(P1, Py) = (Q1, Op)
) (4.63)

{I_E‘Plllpﬁ(al) = FQl”Q@(a’/)7 @ € R} .

The remainder of the section is devoted to finding necessary and sufficient conditions for the
equivalence of pairs. The relevance of such conditions will be apparent in Section 7.

42. In view of (4.9) and the fact that the relative information spectra are right-continuous, (4.62)—
(4.63) imply

(P1,Pg) = (01,Qy) = (Pg,P1) =(Qy, 01). (4.64)

However, (P1, Py) = (Py, P1) is more the exception than the rule. In addition to R"-valued random
variables that differ by a constant, one of the most notable cases satisfying this property is the
Cauchy case described in Item 35.

43. Theorem 2. For (P, Py) € @;( and (Q1, Qg) € P2, the following circular implications hold:

Jag > 05.2. {Do(P1 || Pg) = Do(Q1 1| Qo). @ € (0, o)}
i) (4.65)
(P1, Py) = (01, Qo)
i) (4.66)
Do(P1 | Po) = Do(Q1 11 Qs), @ € (0, 00].

Proof. If Do(P1|| Py) = Do(Q1 || Qp) = oo for some a < 1, then (4.65) follows from Item 25-(b)
since P; L Py and Q; L Qg implies (P, Py) = (Q1, Q). If Do(P1 ]| Po) = Do(Q1 ]| Qp) < o0
for 0 < @ < a; < 1, recall from (3.42) that (@ — 1)D(X||Y) = A, (@) (assuming nats for
convenience). Then, Item 13 implies that the values of D,(X]||Y) in a neighborhood of the origin
determine the function x|v; therefore, (4.63) yields (4.65). On account of (3.41), we have

0 logp '
fo ]FP'Q(a = 1) dg, a € (0,1);

© logpB
L (I—Fp||Q(a_1)) dg, a>1,
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which shows (4.66) for @ € (0, 1) U (1, 00). For @ = 1, we recall the definition of relative entropy,
or, equivalently,

D(P|| Q) = f (1{x > 0} = Fpo(x)) dx. (4.68)

For a = oo, note that according to (3.45), Do(P|| Q) = inf{v € R: I'pjp(v) = 1}. O

44. The following concentration bound for the relative information spectrum holds as a function of
the Rényi divergence of order @ > 1: If 6 > 0, then

EFpjo (Do (P11 Q) +6) 2 TI(P || Q) — exp (1 — @)d). (4.69)
To verify (4.69), let Lg = {a € A: 1pjp(a) < logB}, and X ~ P. Then,

II(P|| Q) — Fpyp (log B)

= P[logﬁ < lp||Q(X) < 00| (470)
= fl{logﬁ < lp||Q(Cl) < OO} exXp ((1 - a’)lp”Q(Cl) + (a - l)lp”Q(a)) dP(a) (471)
<exp((1-a)(logB - Du(P|l D)), (4.72)

on account of (3.43). Letting log 8 = 6 + D,(P|| Q) yields (4.69).

45. Let F be the collection of convex functions f: (0,c0) — R. For f € F, the f-divergence,
introduced and shown to satisfy the data processing principle in [15, 32, 33], can be expressed
in terms of the relative information spectrum as

Dy(P[ Q) = f [ (exp(®) dFpyo(r) + (1 =TI(Q | P)) £(0) + (1 = TI(P | Q) f7(0), (4.73)

where f(0) = lim,o f(#) and f 7(0) = lim, wtf (%) Other integral representations of f-divergence
as a function of the relative information spectrum, the deGroot statistical information (Item 48),
and the E,-divergence (Item 49), can be found in [34], [35], and [36], respectively.

46. Lemmas 10 and 11 are used in Section 6 to show that the Np-divergence is not an f-divergence.

Lemma 10. /37, (9.4)] Suppose that the convex functions f: (0,00) — R and g: (0,00) — R are
such that D¢(P|| Q) = Dy(P|| Q) for all (P, Q) € P2, where |A| = 2. Then, f(f)—g(t) = at—a
for some a € R.

Csiszar showed in [38, Theorem 1] that a discrepancy measure that satisfies the data processing
inequality and the property in Lemma 11 must be an f-divergence.

Lemma 11. Whenever (P, Py, Q1, Q) € @; are such that there exists an event Ay € F such
that Qy(Ap) = 1 = Py(Ap) and Q1(Ag) = 0 = P1(Ap),

Dy(AP + (1 = D)Py[[1 Q1 + (1 = D)Qs) = AD¢(P1]| Q1) + (1 = YD¢(Py || Qo). (4.74)

forall 1 € [0,1] and f € F.
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Proof. Denoting the corresponding densities with respect to a common dominating o-finite
measure [L by pg, P1, gs, and g1, we have pg(x) = go(x) = 0 if x ¢ Ay and p1(x) = g1(x) = 0 if
x € Ay. Furthermore, we can express the densities of the mixtures by p, = A p; + (1 — 1) pg, and
g, = A1q1 + (1 — A)qs, respectively. Then, with the usual conventions O - f (%) =pfi)if p >0,
and f(0)-0= f7(0)-0=0,

Dy(AP; + (1 = DPy[[A10:1 + (1 = D)Qs)

Ay qa A qa

—(1-0) qaf(@)dwﬂf qlf(ﬂ)du (4.76)
Ay de A q:
= (1 =D)Ds(Py|l Qo) + ADs(P1 || Q1). 4.77)
O
47. The convex functions
fuly =1 4.78)
a-—1

result in an important special case of f-divergence known as the Hellinger divergence of order
a € (0,1) U (1, c0),

1
Ha(PI1Q) =Dy (Pl Q) = — (E [exp (@ 1pr(2) + (1 — )igr(2))] = 1) (4.79)

1
~55lo- [
-

which use the same notation as in (3.2) and (3.43). Furthermore, we let J7{(P|| Q) = D(P|| Q).
The squared Hellinger distance is

HAPNQ) = 3(PIIQ) = 1 —exp(=B(PI| Q)) = DA(PI| Q) < 1, (4.81)

with B(P|| Q) defined in Item 24, and f(t) = 1 — Vtor f(¢) = %(l — )
Theorem 3. For (P1, Py) € 2} and (Q1, Qs) € P}, the following circular implications hold:

Jag > 0 5.1 {F(P1 1| Po) = H5(01 1| Qo). @ € (0, )}
U (4.82)
(P1, Py) = (Q1, Qo)
U (4.83)
Dy(P1||Po) = Dp(Q111Qo), forall f €F.
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Proof.

o (4.82) &= (4.65) because although Rényi divergence is not an f-divergence, it can be put in
a one-to-one correspondence with J7,(P || Q) by means of

Dy (P| Q) =

log(1 + (@ - DAPIQ)), (4.84)

a-—1

in light of (3.43) and (4.79).
o (4.83) & (4.73).

48. For p € (0, 1), the deGroot statistical information [20] is defined as the ¢,-divergence

1,(Pl1Q) = Dy, (P Q). (4.85)

with the convex function ¢, : (0,00) — (=1,1),

min{p, 1 — p} — pt, 0<tr<i—1,;
¢,(1) = min{p, 1 — p} —min{pt,1 — p} = . L7 (4.86)
—[1-2p]", t>;—1.
Theorem 4. For (P1, Py) € 3 and (Q1, Qy) € F2,
(P1,Pg) = (01,Q0) = {I,(P1llPg) =1,(Q11Qs), p € (0, 1)) (4.87)

Proof. = follows from (4.83). To show <=, we use the fact that as long as f is convex and
twice differentiable, the f-divergence can be expressed as [34,39-41]

! 1 . (1-
Df(P”Q):f Ip(PIIQ)-—3-f(—p) dp. (4.88)
0 P P

Therefore, {Z,(Py [| Po) = Z,(Q111 Qo). p € (0, 1)} = Dy(P; || Py) = D(Q: 1| Q). Since (4.78)
is convex and twice differentiable, < in (4.87) follows from (4.82). Alternatively, we can invoke
the representation of the relative information spectrum in [34, Theorem 4]:

L PIO - =PI, PIO+1, pe(,5);
Fpo(logL) =4 " 7 U2 (4.89)
—1,(PI1Q) - —-p)I,(PIQ), pez D,
and ]FPHQ(O) = limaw ]FPHQ(CY). O
49. For y > 1, denote g,(f) = [t — y]", and define the E, divergence as the g,-divergence
E\ (P Q) = D, (Pl Q). (4.90)

Theorem 5. For (P1, Py) € 3 and (Q1, Qy) € F2,

(P1, Py) = (01, Qo)
3 4.91)
{Ey(P1|| Py) = Ex(Q1l Qy) and E,(Ps||P1) = Ey(QsllQ1), ¥ =1}
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Proof.
U We can invoke (4.64) and either (4.83) or the representation in [34, (112)],

= | — Fpo(log )
E/(PIQ) =7y f e dg.
y B
f We can rely on Theorem 4 and
PEL(PIQ), p€(0,31;

I,(PIlO) =
' {(1 -PE2@IP.  peliD.

Alternatively, we can capitalize on Theorem 3 of [34], namely,

1-E,(PIIQ)+VE,(PIQ), y>1;
Fpo(logy) = { ~ImEs(QII P), =1L

Eq(QII Py, 0<y<l.

(4.92)

(4.93)

(4.94)

O

50. The fact (stated in Item 45) that no random transformation can increase the f-divergence between
a pair of input probability measures suggests the possibility that the input relative information

may stochastically dominate the output relative information. In other words, is it true that

Fppy(x) < Foygy(x),  x€R,

(4.95)

for all Pyyx: A — Band (Py, Py) € P2, with Py — Pyx — Qg and P, — Pyx — Q;? There
are indeed cases in which (4.95) not only holds but holds with strict inequality on an interval of
the real line. For example, if Y is independent of the input, then IFy,o,(x) = 1{x > O} while
Fppe(x) = H{x > 1bit}if P, = [0 1], Py = [% %]. However, as long as Py < P4, it is impossible

for (4.95) to hold and be strict in any interval because that would mean

1= H(P®||P1)

0 1

= f IFP1||P@ (log —) dt
0 t
a 1

< f ]FQIHQ@ (log _) dr
0 t

= H(Q(\) ||Q1),

(4.96)

(4.97)

(4.98)

(4.99)

where (4.97) and (4.99) follow from (4.33). Therefore, we reach the contradiction that a

coeflicient of absolute discontinuity is strictly greater than 1.

5. Total variation distance

In this section we turn our attention to the interplay between the relative information spectra and

total variation distance

P = Q| = 2max |[P(4) - Q(A).

(5.1)
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51. Theorem 6. The total variation distance between (Px, Py) € f@j can be expressed in terms of the

relative information spectra through
3 1Px = Pyl = Fxp(0) = Fxy(0)

1
Zf(; Fxny(logﬂ)dﬁ

! 1
=1 —f(; Fx”y (loglg) d,B

= 1=+ [ (1= Fanlogh) 4o
0

= 1 -T(Y||X) + f (1 - exp(t)) dFx (1)

=1-TIX||Y) - fo (1 —exp() dF (1)
- _%H(X||Y)—%H(Y||X)+%f |1 = exp(n)| dF ()
=1 - Xy - inyx + 1 f |1 = exp(=0)| dF ()

=1-IIX|Y) + f (1 —exp(-1)) dFxy (1)
0

0
=1-TI(Y || X) - f (1 —exp(—1)) dFxy(?)

o 1
=1-TI(Y || X) + f Fxyy (log 5) dg
1

=E Htanh (%lxny(W))” , W~ %PX + %PY»

where the relative information in (5.13) is in nats and tanh(xco) = +1.

Proof.

e 5.2)LetA, ={ace ﬂ:_lXHY(a) > 0}. Then,
a) Px(A,) — Py(A,) = Fxy(0) — Fxyy(0);

b) the absolute value in (5.1) is superfluous <= Px(A) — Py(A) = Py(A°) — Px(A°);

¢) A, achieves the maximum in (5.1) because for any E € .7,

Px(A,) — Px(E) = Px(A, — E) — Px(E — A,)
> Py(A, —E)— Py(E-HA,)
= Py(A,) — Py(E).

e (5.3) = 4.24) withp = 1.
e (54) = (4.23)withg=1.
e (5.5) < itsright side is the right side of (5.3) < (4.33).

(5.2)

(5.3)

(5.4)

(5.5

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
(5.15)
(5.16)
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e (5.6) Let u dominate {Py, Py} and let py = % and py = dd%y. Then,
e =Pl = [ 1pr-pad" au (5.17)
= f [py — px]" du+ f [y — px]" dp (5.18)
SrxnNSg,y SyxNSxjy
= Py(Syjx N Syy) + E | Higr(Y) € R} [1 = exp(Y)]*| (5.19)
0
=1-TI(Y||X) + f (1 —exp(®)) dFyy (), (5.20)
where we have used (3.9).
e (5.7) Swapping X & Y in (5.17),
1Py — Pyl = f[PX—PYr dp (5.21)
= f [px = pr]” du+ f [px = pr]” dp (5.22)
Sxy NSy SxyNSyjx
= Px(Sxiy N Syy) + E [Huxy(Y) € R} [exp(uxy(Y)) — 1]°] (5.23)
=1-TIX||Y) + f (exp(r) — 1) dI_FXHy(t), (5.24)
0

where we have used (3.6).
o (5.8) &= its right side is the arithmetic mean of the right sides of (5.6) and (5.7).
e (59— X & Yin(5.8) and (3.3).
e (5.10) &= X & Y in (5.6) and (3.3).
e (5.11) = X & Yin (5.7) and (3.3).
o (5.12) = its right side is the right side of (5.4) < (4.29).
e (5.13) & choose u = %PX + %PY in |Px — Py| = flpx — py| du and note that

tanh (% log, p—X)
Dy

_ lpx — pyl if (pyx, py) € [0, 00)2 — {(0, 0)}. (5.25)
Px + py

O

52. Under the assumption Py < Py, several of the representations in Theorem 6 can be found
in [36, Theorem 12] and earlier in [42]. In addition, [36, Theorem 15] gives upper bounds on
total variation distance as a function of the relative information spectrum if Py < Py. Since
those results are based on (5.3)—(5.4), which continue to hold in general, they too hold without
restrictions on absolute continuity. In particular, the monotonicity of the relative information
spectra and (5.3)—(5.4) result in

31Px = Pyl < inf {(1 —exp(=0)) Fxyr(0) + exp(=6) Fxin(-9)} (5.26)
2Py — Pyl <1- sup {(1 — exp(=0)) Fxy(0) + exp(=9) Fxy(6)}, (5.27)
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which coincide with Le Cam’s upper bounds in [19, p. 51], except that he weakens (5.27) by
forbidding 6 > log2. As noted in [36], further strengthening of (5.26) [resp., (5.27)] is possible
if Fxy(=A)] = 0 [resp., Fx;y(A)] = 0] for some A > 0.

53. We can also lower bound total variation distance using Theorem 6 and the monotonicity of the
relative information spectra. The following result supersedes Le Cam’s lower bound in [19, p.
50], as well as the lower bounds in [36, Lemmas 17 and 18] claimed under Py < Py.

Theorem 7. For arbitrary (Px, Py) € f@; and § > 0,

21Px — Pyl > exp(—=6) (1 = II(X || Y)) + (1 — exp(=6)) Plixyy(X) > 61, (5.28)
HPx = Pyl > 1 =TI(Y | X) + (exp(8) — 1) Fxy(-0), (5.29)
1IPx = Pyl > 1 =TI(X || Y) + (exp(8) — 1) Plixyy(Y) > 61, (5.30)
L1Py — Pyl > exp(=6) (1 = TI(Y || X)) + (1 — exp(=6)) Fyy(-5). (5.31)

Proof.

o (5.28) &= (5.4) and Fyy(r) < TIX||Y) 1{r > 6} + (1 — Pliyyy(X) > 6]) 1{t < 6}
o (5.29) &= (5.12) and Fyyy(t) > Fxy(—6) 1{t > —6}.

e (530) & X & Yin (5.29) and (4.9).

e (531) & X © Yin (5.28) and (4.10).

O

54. Even if Px, € %5 and Py, € P4 are close in total variation distance, their relative informations
with respect to a third probability measure may behave quite differently.
Example. [19, p. 50]. Let A = [0, o), and suppose that Py,, Px,, and Py are uniform on [0, n?],
[1,7?%], and [0, 1], respectively. Then, for all & € R,

Fyv(@) = l{a > —logn?}, (5.32)

Fryr(e) =1, (5.33)

P, = Pyl = =, (5.34)

Pl y(Y) = txyv(Y) = o0] = 1. (5.35)

6. NP-divergence

55. The Np-divergence between (P, Q) € & is defined as
S(PIQ)=P®Q-0®P| (6.1)

The terminology is motivated by an important operational role for S (P || Q) shown in Section 8
in the context of non-Bayesian hypothesis testing. For now, we point out that np-divergence
satisfies a simple Bayesian hypothesis testing operational role. Recall that the minimum average
probability of error is equal to % — iIP — Q)| for equally likely P and Q. Now, suppose that we
obtain a pair of observations one drawn from P and the other from Q, but we do not know the
order of the pair and have no reason to favor one ordering over the other. Therefore, we have the
equally likely hypotheses
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He: (v1,y2) ~ Pg® Py
Hr: (v1,¥2) ~ P1® Py
1

and the minimum probability of erroneous ordering is 5 — ;S (P Q).

56. Blind wine tasting. Offered a glass of 1982 Chateau Pétrus and a glass of 1990 Chateau Margaux,
we are asked to identify which one is which. Suppose that for a given set of environmental
conditions (temperature, lighting, etc.), P and Q stand for the probability measures of the
respective wines on the space of visual, olfactory, and gustatory sensations. The probability of
error is equal to %— iS (Pl Q) since, a priori, the contents of the glasses are equally likely. Wanting
to show off, a confident wine connoisseur makes a decision on the basis of tasting only one of the
glasses. Then, the probability of error is % - iIP— Q|. Indeed, as shown below, |[P— Q| < S(P|| Q).
If we do not condition on a given set of environmental conditions, the tasting sensations of both
wines are dependent mainly because of their dependence on temperature. In that case, S (P|| Q)
is generalized to |Pxy — Pyx|, which can be applied whenever X and Y are defined on the same
space. The potential utility of such measure of asymmetry of joint probability measures is yet to
be explored.

57. Example. If P=[p 1 —=plandQ=[q 1 —¢g],thenS (P||Q)=|P-Q0|=2|p—q|.
58. Example. If P =1 10]and Q= [0 1] then|P - Q| = 1 while S(P|| Q) = 3.
59. Example. S (N(,ul,az) ||N(u0,0'2)) =2- 4Q("‘\‘f;2’;°|) = |N(u1, %2) — N(,uo, %2)

60. The np-divergence satisfies the following properties.

Theorem 8. Let (P, Q) € ;. Then,
(a) S(PI1Q)=S(QIlP).

(b)
0<S(P|Q) <2, (6.2)

with equality on the left if and only if P = Q, and equality on the right if and only if P L Q.
(c) S(P|| Q) does not satisfy the triangle inequality.
(d)

S(Px, ®:--® Py, [|Qx, ® - ®0x,) < ZS(Pi” Q). (6.3)

i=1
(e) If P # Q, then
SS(PE1 Q%) = 1 —exp(=2n B(P|| Q) + o(n)) , (6.4)

where B(P||Q) is the Bhattacharyya distance in Item 24.
(f) If |A| =2, then S(P|| Q) = |P — Q|. In general,

P~ Ql<S(PIQ)<2|P-Ql-;IP- 0P (6.5)

(g)
SPIQ) =1 -TI(P|| Q) - TI(Q|| P). (6.6)
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(h) Data processing inequality. If Px, — Pyx — Py, and Px, — Pyx — Py,, for some random
transformation Pyx: A — B, then

SY111Ye) < S(X1 1] Xo). (6.7)

(i) No convex f: (0,00) — R exists so that D¢(P|| Q) = S(P|| Q) for all (P, Q) € 9;.
(j) With (X,Y) ~ Px ® Py,

1IPx ® Py — Py ® Px| = Pliyy(X) > 1y (Y)] — Pligyy(X) < (V)] (6.8)

(k)
(P1, Py) = (01, Q¢) = S(P1llPg) = S(Q1l Qo) (6.9)

Proof.
(@) =I|P-0|l=10-Pl

(b) The inequalities follow because S (P||Q) is a total variation distance. Moreover,

S(P||0)=0 < P®Q=0Q®P < P=0, (6.10)
S(P||Q)=2 & PRQLQ®P < P 1 0. 6.11)

(©) P=|110].0=[141] R=[0}1] Then S(PIQ)+S(QIR) < S(PIR), since
S(PIIQ) = S(QIR) =3, and S(PIR) = 3. (6.12)

(d) Total variation distance satisfies the tensorization bound
m
Py, & ®Py, — Oy, ®+-® Qx| < > IPx, — Oxl. (6.13)
i=1

Letting (Px,, Ox,) < (Px, ® QOx,, Ox, ® Pyx,) yields (6.3).
(e) The proof consists of three building blocks:

1. As shown by Chernoff [14], if P # Q,
PP = 0% =1 —exp(-nC(P|| Q) + o(n)), (6.14)

where the Chernoff information is defined as

C(PIO) = Sg)pl)(l — a)Do (P Q). (6.15)
ii. By relabeling of indices,
S(P Q™) = IP*" ® 0" = Q™" ® P"| = |(P® O)*" — (Q ® P)™"|. (6.16)
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1il.

CP®Q||Q®P)= sup (1 —a)D,(P® Q| Q®P) (6.17)
ae(0,1)

= Sg)pl){(l — @)D (P Q) + (1 — a)Do(Q1| P)} (6.18)

> lD%(PII 0)+ %D%(QIIP) (6.19)

=2B(P| Q), (6.20)

according to (3.51). To show that equality holds in (6.19), note that the function of «
within {} is concave (e.g., [30]) with derivative

F(o) groztan [(2)'ploxsan

J(E) aan J(3) pau

d
11~ O Du(P1Q) + Do(QI P)) = . (6.21)

which equals 0 at @ = 1.

(f) For any joint probability measures Pxy and Qxy on the same product space,
|Pxy — Oxy| = max{|Px — Oxl,|Py — Qyl}. (6.22)
Letting Pxy = P® Q and Qyy = Q ® P yields S(P|| Q) > |P — Q|. As we saw in Item 57,
equality holds for binary A. The right inequality in (6.5) is a special case of

|Pe ® P1 — Qg ® Q1] = [Py — Qg| + |P1 — Q1] — 3Py — Qo - |P1 — Q1l, (6.23)
proved in [43] in the discrete case by means of the Strassen-Dobrushin coupling
representation of total variation [44,45], which requires that (Py, Qg) be probability measures
on a measurable space (Ayg, -%y) such that {(a,a): a € Ay} € Fy ® %y, and analogously for
(P1, Q1). This is satisfied by any Polish Ay endowed with its Borel field.

(g) Use the fact that S(P|| Q) = Dy(P® Q|| Q® P) with f(f) = |1 —¢|, and dropping the first term
on the right side of (4.73), we obtain
SPIQ)22-TI(PRQIIQ®P)-TI(QOQP|P® Q) (6.24)
=2-2IIP|Q) - IO P), (6.25)
where (6.25) follows from Item 9.
(h) Given Pyx: (A, .F#) — (B,%9), construct the random transformation
PYI YalX1 X, - (ﬂz, yQ) g (BZ’gZ) defined by
Pyrixix:(G1 X Galar, a2) = Pyx(Gr1an)Pyx(Galaa), (G, Ga,a1,a0) € F2 X A,
Note that
Px, ® Px, = Pyyx,x, = Py, ® Py,
and
Px, ® Px; = Pyyyx,x, = Py, ® Py,.
Applying the data processing inequality for total variation distance to Py,y,x,x, With inputs
Px, ® Py, and Px, ® Pyx,, we obtain

S (X1l Xo) = |Px, ® Px, — Px, ® Px,| > |Py, ® Py, — Py, ® Py,| = S(Y1 || Yp). (6.26)
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(1) Let’s proceed by contradiction and assume that there exists a convex f: (0,c0) such that
S(PIQ) = D(P|| Q) for all (P,Q) € W;. Since S(P|| Q) = |P — Q] in the special case
Al = 2, Lemma 10 implies that there exists @ € R such that f(t) = |l —¢| + at — «, i.e.,
S(P|| Q) = |P— Q| which contradicts the examples in Items 58 and 59. An alternative route is
to verify that Np-divergence fails to satisfy Lemma 11 by considering the special case A = %,
Pr=0;1=[;300],Py=[0033],0=[0037]

(j) With the notation used in the proof of Theorem 6,

Plixy(X) > ixy(Y)] = ff px(a) py(b) I{px(a) py(b) > px(b) py(a)} dudpu, (6.27)
Plaxy(X) < ixqy(Y)] = ff px(a) py(D) I{px(a) py(b) < px(b) py(a)} dudu
= ff px(D) py(a) {px(b) py(a) < px(a) py(b)} du du. (6.28)

Then, (6.8) follows from (5.17) and (6.1).

(k) The terms in the right side of (6.8) are determined by the relative information spectra:

Plaxy(X) > txy(V)] = 1 = E[Fxy (xr (V)] (6.29)
Plixy(X) < ()] = 1 = B[ Fxyy (g (X)) (6.30)
O

Any pair such that (P, Q) # (Q, P) provides a counterexample to <= in (6.9).

61. While not an f-divergence, Theorem 8—(f) implies that Np-divergence is a g-divergence [46].
Several properties for the measure of dependence infy,cz, S (Pxy || Px ® Qy) can be obtained by
specializing [46, Theorem 8§].

62. It may be useful to generalize the np-divergence by replacing the total variation distance by any
other f-divergence, i.e., define

Si(PIlQ)=D(PeQ|Q®P), (6.31)

which satisfies S ((P|| Q) = S ((Q|| P) even if Dy is not symmetric.
7. Sufficient statistics

Since its inception by Ronald Fisher in [47], the concept of sufficient statistics has played a
fundamental role in mathematical statistics. This section offers a brief review of the various notions
of sufficient statistics proposed in the literature, as well as their interrelationships emphasizing the
connections with information theory. Moreover, we propose a new notion of sufficient statistics
building upon the notion of equivalent pairs.

63. The basic setup in this section has the following ingredients:

e measurable spaces (Y, .%) and (Z,9);
e a parameter set O;
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¢ a data model (collection of distributions on (Y, .#)): & = {Pyy-g € H,0 € O};
e arandom transformation: Pzy: (Y,.%) — (Z,9).

An inference on the unknown parameter # € ® is made on the basis of the output of the
random transformation P,y when its input is distributed according to Py;y-¢. Recall from Item 3
that no joint distribution Pyy is assumed to exist. In fact, the setting is non-Bayesian: No
distribution is assumed on the set of parameters ©, i.e., Py need not be defined. The question
to be formalized is: Under what conditions does the random transformation Py preserve all
the information in Y that is relevant for inferring the parameter? Before proceeding, note that
most of the statistical literature restricts attention to deterministic transformations, i.e., Z = f(Y)
for a (#,%)-measurable f: Y — Z. Allowing random transformations (as in [15, 48, 49]) is
practically useful, since sometimes the data is observed through an inherently random mechanism
which, nevertheless, does not spoil the relevant information. For example, if Y = $”, and under
each 0 € O, Pyy—y = Py® --- ® Py with Py € H, then a random interleaver Pyy: 8" — 8"
preserves all the information in the observed n-tuple relevant to the inference of 8 € ® because
{Pyveg € Py, 0 € O} = {Pzy_g € Fy, 0 € O}). At any rate, allowing random transformations
is really a matter of mathematical convenience/elegance; in fact it does not widen the scope
since the randomness can be incorporated into the data model: Letting Pyjy-y < PzyPyy-¢ and
f(z,y) = z subsumes the notion of random transformations as sufficient statistics into the classical
deterministic transformations.

64. Fisher’s notion [47] states that Z is a sufficient statistic of Y for the collection &7 = {Pyy—y, 0 € O}
if

Py|z,v=¢ does not depend on 6,

where, given that the unknown parameter is V = 6, the joint probability measure of Y and Z
18 Pyzy=9 = Pyyv=¢Pzy. Following [50], when distinguishing from other notions of sufficient
statistics, the sufficiency in the sense of this item is referred to as classical sufficiency.

65. Although Pyzy -4 is always well defined, we have to face the unfortunate fact that the conditional
probability measure Pyzy-¢ need not exist when Y is uncountable. The existence of such a
conditional probability measure requires that for every B € .%, there exist a ¢¥-measurable
¢p: Z — [0, 1] such that for all (6, By) € ® X ¥4,

Pyziv-¢(B X By) = E[¢p(Z){Z € Bo}|V = 6], (7.1)

and ¢.(z) € H for z € Zy, with Pzy_4(Zy) = 1 for all 6 € O. To guarantee that this is the case,
it is customary to abide by the restriction that (Y, .%#) is a standard measurable space (i.e., it is
isomorphic to (E, %) for some Borel subset of the real line E € #4). Without such a restriction,
Dieudonné [51] showed a counterexample where the required conditional probability does not
exist, in which case the notion of sufficient statistics in the classical sense is vacuous. Whenever
classical sufficiency is considered, it is typically assumed that the observation space is standard,
even if this is not explicitly stated. As we see in Item 66, we need to place another restriction on
the data model to make the notion of classical sufficiency well-behaved.

66. Bahadur [49] introduced the slightly more succinct notion of a sufficient o--field Z C .F, meaning
that for every B € .% there exists a .% -measurable ¢p: Y — [0, 1], such that for all (8, B)) €
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Pyv=(B N By) = E[pp(Y){Y € Bo}|V = 6]. (7.2)

Then, a measurable function f: Y — X is sufficient if and only if the o-field it induces is
sufficient. Curiously, the sufficiency of Z does not guarantee the sufficiency of every o-field G
such that # c % c F [25]. Indeed, there may exist f(y) = h(g(y)) that is sufficient even though
g is not sufficient. Fortunately, if the data model & is dominated, not only is that anomalous
behavior impossible [49], but the notions of sufficient random transformation and sufficient o-
field are equivalent [52] (see also [37, (6.38)]).

67. Due to Halmos and Savage [3, Corollary 1], formalizing earlier ideas of Fisher [47, p. 331] and
Neyman [53, Theorem II] in restricted settings, the following result is known as the factorization
theorem.

Theorem 9. Suppose that (Y,.%) is standard, &’ is dominated, and Pzy is a deterministic
transformation, i.e., Py, = 0y, for a (#,%9)-measurable f: Y — Z. Then, Z is a classically
sufficient statistic of Y for &2 if and only if there exist Borel-measurable w: Y — [—co, 00) and
v: @ X Z — [—00,00) such that, for all 0 € ®, v(0, -) is Borel-measurable and

lv;y(e; Y) = V(Q, f(Y)) + W(Y), as. Y ~ PY|V:97 (73)

where the information density is non-Bayesian (Item 26) with an arbitrary reference measure
dominating 2.

Since the second term on the right side of (7.3) reflects the choice of the dominating measure,
alternatively, we can express the condition for classical sufficiency in Theorem 9 as the existence

of a dominating measure . such that 4Pv=s i measurable with respect to the o-field generated by

dp
f,forall 6 € ©®.

68. An important application of the factorization theorem is the following corollary to Corollary 3
in [3].

Theorem 10. [f |®| = 2 and (Y, .F) is standard, then 1p,p,(Y) is a sufficient statistic of Y for
P = {Pyy=9, 0 € O} = {Py, P1}.

Proof. Define the function g: (0, 1) X ® X [—o0, +0c0] — (0, o0],

1 —p+ pexp(2), 0=0,z€cR;
p+(1—-p)exp(-z), 6=1,z€R;

g(P’ 07 Z) =4q1- P, (9’ Z) = (®’ _00)9 (74)
P (6,2) = (1, 00);
0o, (6,2) = (1, —c0) or (6, 2) = (0, o).

We can easily verify that with P = 1Py + 1Py,

tpop(Y) = — 10g8(%, 0, lP1||P®(Y)) , a8. Y ~ Py, (7.5)
tpyp(Y) = —log g (4. L1pp,(Y)), a5. Y ~ Py. (7.6)
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Consequently, letting v(8,z) = —log g(%, 6,z) and w(y) = 1pr(y), (7.3) holds if the non-Bayesian
information density on the left side is defined with reference measure R that dominates both Py
and P;. O

69. Theorem 11. Let &7 = {Pyy-y, 6 € O} = {Py, P1} be such that D(P, || Py) < co. Fix Pzy and
denote Py — Pzy — Q¢ and Py — Pzy — Q1. A necessary and sufficient condition for Z to be a
classically sufficient statistic of Y for & is

D(P, || Py) = D(Ql I Q@)- (7.7)

Introducing relative entropy in [2], Kullback and Leibler identified Theorem 11 as its most
important property. However, they gave the result without the condition D(P; || Py) < oo, in
which case it need not hold.

70. The following generalization of Theorem 11 is due to Csiszar [15,32].

Theorem 12. Let &7 = {(Pyy=p, 0 € O} = {Py, P1} be such that Dy(P||Py) < oo, where
f:(0,00) — Ris strictly convex. Fix Pzy and denote Py — Pzy — Qg and Py — Pzy — Q1. A
necessary and sufficient condition for Z to be a classically sufficient statistic of Y for & is

Dy(P1 || Py) = Dp(Q1 | Qo)- (7.8)

71. Since Theorems 11 and 12 exclude pairs such that D (P, || Py) = oo, it is interesting to see if there
are any f-divergences such that f: (0, c0) — R is strictly convex and D /(P || Pg) is bounded for
any pair (P, Py) € @; The answer is affirmative: In view of (4.80), any order-a& Hellinger
divergence with @ € (0, 1) (including the squared Hellinger distance (4.81)) is finite regardless
of the pair of probability measures. Even though unbounded, the Bhattacharyya distance also
qualifies since it is in one-to-one correspondence with the squared Hellinger distance. Also fitting
the bill is the f-divergence with f(r) = D’ known as the Vincze-LeCam divergence [18, 19],

t+1

AP(|Q) = Dp(Pl|Q) < |P- QI <2. (7.9)

Although outside of the scope of Theorem 12, could the simpler total variation distance serve the
same purpose? The answer is negative as we verify with a simple counterexample in Item 84.

72. The binary case in Items 68-70 is particularly important: Z is said to be a pairwise sufficient
statistic of Y for & = {Pyy-e, 0 € O} if it is a sufficient statistic for {Pyy—g, Pyjy=s}, for all § #
? € O. Every sufficient statistic is pairwise sufficient. The converse holds if & is dominated [3,
37,52,54]. Therefore, as long as the data model is dominated, we need not wander beyond binary
models to deal with classically sufficient statistics.

73. Introduced by Kolmogorov [55], Z is said to be a Bayes sufficient statistic of Y for &7 if for all
Py € P, V and Y are conditionally independent given Z. While in Items 64-66 we did not
impose the condition that the collection &2 = {Pyy-g € 4,0 € O} be a random transformation
(Item 3), in this case we are indeed imposing the corresponding measurability requirement for
which a o-field 7 of the subsets of ® is also specified. Therefore, in this setting we have the
Markov chain

Py — Pyy — Pzy — Py. (7.10)
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Classical sufficiency (Item 64) implies Bayes sufficiency, because once a probability measure is
defined on V, Pyyz = PyzPyzv = PyzPy; if the classical criterion (7.1) is satisfied; therefore,
V and Y are conditionally independent given Z. Conversely, if the collection & is dominated,
then [3, 50] shows that pairwise Bayes sufficiency implies pairwise sufficiency, which in turn
implies classical sufficiency as we saw in Item 72.

74. Theorem 13. Suppose that P = {Pyy-g € Hy,0 € O} is dominated. Then, Z is a Bayes sufficient
statistic of Y for & if for all Py € P,

vy (V. Y) =1yvz(V;Z), a.s. (V,Y,Z) ~ PyPyyPyy. (7.11)

Proof. Fix Py € Y. We need to show that (7.11) is equivalent to the conditional independence
of V and Y given Z. Particularizing the chain rule in (3.56),

wv.y(a; b) = 1y.yz(a; b, ¢) = 1yz(a; ¢) + ty.yiz(a; blc). (7.12)

According to Lemma 6, Pyy < Py®Py; therefore, P[1y.y(V;Y) € R] = 1. We conclude that (7.11)
is equivalent to 1y.y;z(V; Y|Z) = 0 a.s. O

75. In the binary case, Theorem 13 simplifies as follows.
Theorem 14. Let &7 = {Py, P1}. Denote Py — Pzy — Qg and Py — Pzy — Q1 for a fixed Pyy.
Then, Z is a Bayes sufficient statistic of Y for & if and only if
lp1||p®(Y) = lQ1||Q0(Z)’ a.s. fOT’ bOﬂ’l (Y, Z) ~ P1P2|Y and (Y, Z) ~ PQPZ|Y- (713)

Proof. For Py = [0 1] or [1 0], both sides of (7.11) are 0. Fix Py(1) = p € (0, 1), and denote
by p; and pg the densities of P; and Pg, respectively, with respect to the dominating measure
p P1 + (1 — p)Py. Analogously, denote by ¢g; and gq the densities of Q; and Qy, respectively, with
respect to the dominating measure p Q; + (1 — p)Qy. It readily follows that, with the notation

in (7.4),
» 1 and  pe(y) ey (7.14)
p = p = > Y , .
' g(p. L,1p,p () ’ g (P, 0,1p,p, ()
1 1
q1(z) = and qe(2) = , z€Z. (7.15)
' 8 (P, 1,10,10,(2)) ’ 8 (P, 0,10,105(2))
The condition in (7.11) is equivalent to
p1(Y1) = q1(Zy), a.s.(Y1,7,) ~ P1PZ|Y, (7.16)
Pe(Yo) = qo(Zs), a.s.(Yy,Zy) ~ PePyy, (7.17)

which in turn is equivalent to (7.13) in view of (7.14)—(7.15) and the strict monotonicity of the
function g (p, 6, -) for all (p, ) € (0,1) x {0, 1}. |
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76. Theorem 15. Suppose that &7 = {Pyy-g € H,0 € O} is dominated. Then, Z is a Bayes sufficient
statistic of Y for & if and only if (V;Y) = I(V;Z) for all those Py supported on two elements
of ©.

Proof. Because of the domination assumption, Bayes sufficiency is equivalent to pairwise Bayes
sufficiency (Item 73). Therefore, we can restrict attention to those Py supported on two elements
of ®. Note that /(V;Y) < 1 bit with those input distributions. Since I(V;Y) is finite and
I(V;Z|Y) = 0, the chain rule of mutual information

IV;Y,2)=1(V;2) + I(V; Y|2) = I(V; Y) + I(V; Z]Y) (7.18)

implies that I(V;Y) = I(V;Z) is equivalent to I(V;Y|Z) = 0, which, in turn, is equivalent to
conditional independence of V and Y given Z. O

Without imposing the domination assumption, a related claim can be found in [56, p. 36].
However, note that if I(V;Y) = I(V;Z) = oo, (7.18) does not guarantee I(V; Y|Z) = 0. Apparently
unaware of the notion of Bayes sufficiency, Lindley [5] had proposed I(V;Y) = I(V; Z) for all Py
as a criterion for sufficiency, which he noticed to be implied by classical sufficiency.

77. Following [37,52,57,58], Py is called Blackwell sufficient for &7 = {Pyy—y, 0 € ®} (sometimes
also called exhaustive [59]) if there exists Pyy: (Z,9) — (Y,.%) (dependent on Py and £2)
such that for all 9 € O,

Py|v:9 - PZIY - Py|z - Py|v:a- (7.19)

Therefore, Py acts as an “inverse random transformation” as long as the input to Pzy is drawn
from 2. As shown in [60,61], (see also [52] and [37, (6.51)]), for dominated collections defined
on standard spaces, classical sufficiency is the same as Blackwell sufficiency.

78. Let &7 stand for the collection of probability measures defined on (Z,%¥). In the terminology
introduced by Blackwell [48, 57], {Pyy-s € H,0 € O} is at least as informative as {Pzy-y €
Pz,0 € O} if there exists a random transformation Pyy: (Y, .#) — (Z,%¥) such that

Pyy-g = Pzy = Pzy-, 0€0O. (7.20)

So, Pzy is Blackwell sufficient if and only if {Pzy-¢,6 € O} and {Pyy=,0 € O} are equally
informative.

79. Taking stock of the various notions of sufficient statistics reviewed so far in this section, the notion
of Bayes sufficiency is, in principle, easier to apply than the classical notion in Item 64 and does
not require the topological assumption of a standard space. On the other hand, the factorization
theorem (Theorem 9) typically provides a convenient method for verifying the sufficiency of
deterministic transformations. Although the Blackwell criterion (Item 77) is intuitively appealing,
identifying the required inverse random transformation (or showing that none exists) is not always
straightforward. Building on Definition 2, next we introduce a new notion of sufficient statistic
that is both easy to verify and equivalent to the foregoing notions for dominated models in
standard spaces.
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Definition 3. Fix {Py, P1} and Py, and denote Py — Pzy — Qg and Py — Pzy — Q1. Then, Z
is an I-sufficient statistic of Y for {Pg, P} if

(Pg, P1) = (Qo, Q1) (7.21)

More generally, Z is an I-sufficient statistic of Y for {Pyy-g, 0 € O} if it is I-sufficient for every
pair (6,9), 0 # % € O.

80. Example. For any (Pg, Py) € 22, 1p,p,(Y) 18 an I-sufficient statistic of Y for {Py, P;} because in
view of Lemma 5,

10,1100 P11y (Y1) = 1pype (Y1) as. Y1 ~ Py. (7.22)

81. Example. Suppose that ® = R, Y = R"and Y = (Y1,...,Y,) = (0 + X;,...,0 + X,), with
(X1, ...,X,) independent geometrically distributed with known parameter ¢ € (0, 1). To verify

that
Z= _Irllin Y; (7.23)
is an I-sufficient statistic of (Y1, ..., Y,) for this undominated data model, first note that Pyy-g.+¢ L

Py\v=g and Pzy-g+¢ L Pzy-g, unless ¢ is an integer. With £ € {1, 2, ...}, we obtain

1
{’nlog1 , teld+¢,0+€+1,...};
—-q

Leay-anllPav=o (1) = —co, telf,....0+¢-1} (7.24)
arbitrary, otherwise.
Moreover, we can easily check that ip,, ., 11Pyy_s V15 - - > Yn) = 1Py Py (MING=1 5 Vi)

82. Theorem 16. Assume that the data model & = {Pyy -, 0 € O} is dominated and fix Pyy.

(a) If Z is a Bayes sufficient statistic of Y for &2, then Z is an I-sufficient statistic of Y for 2.
(b) Assume that the observation space (M, F) is standard. If Z is an I-sufficient statistic of Y for
P, then Z is a classically sufficient statistic of Y for <.

Proof. In view of Items 72 and 73, the domination assumption allows us to restrict attention to
the |®| = 2 case.

(a) If Z is a Bayes sufficient statistic of Y for &, then Theorem 14 implies that the random
variables 1p,p, (Y1) and 19,j0,(Z1) with Y; ~ Py and Z; ~ Q; must have identical cumulative
distribution functions. Therefore, (P1, Pg) and (Q1, Qp) are equivalent pairs.

(b) If Z is an I-sufficient statistic of ¥ for &7, then Theorem 3 implies that D /(P || Py) =
D¢(Q1 1| Q) for all convex f: (0,00) — R. In particular, this encompasses the functions
allowed in Theorem 12, and, consequently, Z is a classically sufficient statistic of Y for Z.
Recall from Item 71 that the set of functions allowed in Theorem 12 is nonempty regardless
of (P1, Py) € 7.

O
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83. The notions in Items 40 and 78 are related as follows.

Theorem 17. Suppose that (M,.%) and (Z,%9) are standard spaces. For any (Py, Pg) € 3@2 and
(01, Q) € 73,

(P1, Py) = (Q1, Qo)
g (7.25)

{P1, Py} and {Q1, Qp} are equally informative models.

Proof.

Tt {P1, Po} and {Q1, Qp} are equally informative = there exists Pzy: (Y, .#) — (Z,¥) which
is Blackwell sufficient for {P;, Py}, and P; — Pzy — Q1, Py — Pzy — Q. Since the
model is dominated and lives in a standard space, Item 77 and Theorem 16 imply that Py is
[-sufficient; therefore, (P, Py) = (Q1, Qp).

U As we saw in Theorem 10, the deterministic transformation Pyy that outputs X = 1p,;p,(¥) 1s
a classically sufficient statistic for { P1, Py}, and, analogously, the deterministic transformation
Pxz that outputs X = 10,10,(Z) is a classically sufficient statistic for {Q1, Og}. Because the
spaces are standard and the models are dominated, those statistics are Blackwell sufficient;
therefore, there exist Pyjx and Pyx such that

Py — Pxyy = Pyx = Py (7.26)
Py = Pxyy = Pyx — Py (7.27)
01— Pyiz = Pzx > Qs (7.28)
Qs — Pxiz = Pyz — Q. (7.29)

Now by definition of (P, Py) = (Q1,0s), the response of Pyy to P; is the same as the
response of Px; to Oy, and the response of Pxy to Pg is the same as the response of Pg; to
Qy. Therefore,

0, > Pgz — Pyx — Py (7.30)
Q¢ = Pgiz = Pyx — Py (7.31)

which implies that {Qg, Q;} is at least as informative as { Py, P1}. Reversing the roles (P, Py)
and (Q1, Qp), we conclude that {Py, P} is at least as informative as {Qgy, Q1}.

O

84. Example. Let 8 = {-,0,+}, C = {—,+}, and the random transformation Pyy_o(+) = %,
Pzy-+(+) = Pzy-_(-) = 1. Furthermore, consider {Pyjy-g, 0 € O} = {P;, Py} with

P1:[%§0]—>PZ|Y—>Q1=[% %], (7.32)

PQZ[O%%]_)PZW_)Q@:[% %] (7.33)

Then, |P; — Py| = |Q1 — Qg = % Although Py preserves total variation distance, Z is not a

sufficient statistic of Y because (P1, Py) # (Q1, Op).
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85. Summarizing the various results in this section as well as the necessary and sufficient conditions
for equivalent pairs in Section 4, we have the following result.

Theorem 18. Suppose that the data model & = {Pyy-¢ € %, 0 € O} is dominated and (Y, F)
is a standard space. Fix any random transformation: Pzy: (Y,.%) — (Z,¥), and denote
Py = Pzy — Q¢ and Py — Pzy — Q; for (Py, P) € P2, The following are equivalent.

(a) Z is a classically sufficient statistic of Y for 2.

(b) Z is a Bayes sufficient statistic of Y for <.

(c) Z is a Blackwell sufficient statistic of Y for &.

(d) Z is an I-sufficient statistic of Y for &.

(e) For all Py € P,

vy(VyY) =1y (Vi Z), a.s. (V,Y,Z) ~ PyPyyPyy. (7.34)

(f) I(V;Y) =I(V;Z) for all those Py € Pg supported on two elements of ©.
(g) For all (Pg, P,) € Z? and a € (0, o),

D(x(Pl ” P@) = D(y(Ql ” Q@) (735)

(h) For all (Pg, P1) € 2* and convex functions f: (0,00) — R,

Dy(P1 1| Po) = Dy(Q11l Qo). (7.36)

(i) For all (Py, P;) € P2,
S Py Po) = (01 1| Q). (1.37)

(j) For all (Py, P,) € 972,
B(P1 || Pg) = B(Q1 1| Qo). (7.38)

(k) For all (Pg, Py) € 22,
A(P1 ] Pg) = A(Q1 | Qo). (7.39)

(1) For all (Py, Py) € 2% and p € (0,1),
1 5(P111Pe) = 1 ,(Q111 Qo). (7.40)
(m) For all (Py, Py) € 2% and y > 1,
E,(P1||Py) = E)(Q11| Qo) and E,(Ps || P1) = E\(Qoll Q1) (7.41)
(n) For all (Py, P,) € 2%,
S(P1IPo) = S(Q11l Qo). (7.42)

See Item 100 for the justification of Theorem 18-(n).
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86. When compelled to choose among various non-sufficient statistics, it is helpful to assign a figure
of merit to every random transformation Py providing an indication of how close it is to being
sufficient. Motivated by Theorem 18-(i), a couple of possibilities are

%”Z(Q@IIQ1)<1 and Al Q1) _

<1 <1, 743
rozhie %Py | Py) riries A(Pol|P) e

where the inequalities follow from the fact that the both the squared Hellinger distance and the
Vincze-Le Cam divergence are f-divergences and equality occurs if and only if Py is a sufficient
statistic. Alternatively, Theorem 18-(d) suggests using

sup  K(Ip,jpy» I 9,105)» (7.44)
Py#P1€Z
where K(IF,G) = sup,|F(x) — G(x)| is the Kolmogorov-Smirnov distance between the

cumulative distribution functions I and G. Then, Py is a sufficient statistic if and only if (7.44)
is zero. Naturally, in (7.44) we can substitute K(IFp p,, IFo,0,) bY |P -P | or any other
measure of distance between probability measures.

IPq||Pgy 101110¢

8. Hypothesis testing

The information spectra of the absolute information 1x(X) and of the information density 1x.y(X; Y)
prove to be instrumental in determining the fundamental limits of lossless and lossy compression,
respectively, as well as data transmission, in the latter case. Unfortunately, explicit solutions are
not feasible and we must be contented with bounds, which become tight under stationary/ergodic
assumptions in the limit of long data blocks. In contrast, the relative information spectra determine
exactly the non-asymptotic fundamental tradeoff in hypothesis testing. This section gives a full detailed
solution of that tradeoff in non-Bayesian hypothesis testing including an operational role for the np-
divergence. No restrictions are placed on the pair of probability measures that govern the observation
under the respective hypotheses:

He: y ~ Py,
Hi: y~ Py.

Since we place no restrictions on Py and P, this “single-shot” setting encompasses the popular special
case in which the observations are n independent drawings from a given distribution, Py = P§" and
Pl = P®n‘

1

87. Let (P, Py) € 3@2 A (randomized) hypothesis test is a deterministic measurable function
¢: Y — [0,1], such that ¢(y) is the probability of guessing P; if y € VY is observed. A test
¢ is said to be deterministic if its range is {0, 1}, i.e., ¢(y) = 1{y € A} for some measurable subset
A C Y. The performance of test ¢ is determined by the conditional probabilities of error,

mo1 = P[test decides Hg |H1] = 1 = E[¢(Y1)], Y1 ~ Py, (8.1)
T = P[test decides H1 | H@] = E[¢(Y@)], Y@ ~ P@. (82)
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88. The hypothesis testing fundamental tradeoff region consists of the set of achievable error
probability pairs,

C(Py, Py) = U {(El¢(Ye)]l, 1 —E[p(YDD}, Yo~ Py, Y1~ P1. (8.3)
¢: Y—[0,1]

In other words, (w9, 1) € C(P1,Pg) if there is a hypothesis test for (P;, Py) achieving
conditional error probabilities (my,Tg1). Elementary properties of the fundamental tradeoff
region include:

Theorem 19.

(a) C(P1, Py) is a convex set.

(b) C(P1, Py) is a closed set.

(c) (a,b) € C(P1,Py) = (1 —a,1 —b) € C(Py, Py).
(d) (a,b) € C(Py, Py) & (b,a) € C(Py, Py).

Proof.

(a) If ¢¢ and ¢; attain (ay, by) € C(P1, Py) and (ay, by) € C(P1, Py), respectively, and a € (0, 1),
then the test (1 — @)@y + a ¢; attains (1 — a)(ag, by) + a (ay, by).

(b) The mapping ¢ — (E[¢(Ys)], 1 — E[¢(Y1)]) is linear.

(c) The test 1 — ¢ achieves (1 — myg, 1 — mg1) if ¢ achieves (ry9, 77g)1)-

(d) Interchanging ¢ <> 1 — ¢ and Py < P; in (8.3).

O
89. In view of Theorem 19-(c), the set of points in C(P1, Pg) above the (0, 1)—(1,0) diagonal is

redundant. The set of Pareto optimal error probability pairs is the lower boundary of C(P;, Py)
below the diagonal, which we refer to as the fundamental tradeoff function {«, € [0, 1],v € [0, 1]}

defined by
@,(P1, Py) = min{y € [0, 1]: (v,y) € C(P1, Py)} (8.4)
= min mgy =1—- max E[¢(Y)]. (8.5)
¢ <y ¢: Blp(Yp)l<v

As a consequence of Theorem 19-(a), a,(P1, Py) is convex on [0, 1]. Although the fundamental
tradeoff region C(P;, Py) and the fundamental tradeoff function «,(P1, Py) determine each other,
it is advantageous to work with both simultaneously, as we see below.

90. The diagonal connecting (0, 1)—(1, 0) belongs to the fundamental tradeoff region
{(p’l _p)e [O, 1]2: pe [0’ 1]} CC(PI’P®), (86)

since (p, 1 — p) is attained by the blind test ¢(y) = p, y € Y. If P; = Pg, then blind tests are
optimal and equality holds in (8.6). Note that in this case the area of the fundamental tradeoff

region satisfies |[C(Py, P1)| = 0, and the fundamental tradeoft function is a,(P1,P;) = 1 — v,
v € [0, 1].
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91. At the other extreme, if P; L Py, then C(P1, Py) = [0, 1]%, ,(P1, Py) = 0, v € [0, 1], and the area
of the fundamental tradeoff region satisfies |C(Py, Py)| = 1. To see this, recall (Item 7) that there
exists an event F' € .% such that P(F) = 1 and Py(F) = 0. The deterministic test ¢(y) = 1{y € F}
achieves the point (0, 0), while the test ¢(y) = 1{y ¢ F} achieves the point (1, 1). All other points
in the square are achievable because of (8.6) and Theorem 19-(a).

92. Inspired by radar, the function v — 1 — «, (P, Py) is frequently (e.g., [62]) referred to as the
receiver operating characteristic, or roc. In the radar application, Py is the distribution of the
observations under the absence of target return. In fact, this terminology is applied not just to the
best possible curve but to the tradeoff between my); and 739 achieved by any particular family of
tests. The so-called area under the (rRoc) curve, commonly abbreviated as Auc,

1
f (1 - a(Py, Py)) dv = 1 + LC(Py, Po)l € [1, 11, (8.7)
0

is frequently used as a scalar proxy to evaluate the degree to which Py and P; can be distinguished.
It ranges from % if P = Pytolif Py L P;.

93. Data processing theorem for the fundamental tradeoff region. 1If Py — Pzy — Pz and Qy —
PZlY — Qz, then

a,(Py, Qy) < ay(Pz,07), vel[0,1], (8.8)
C(Pz, Qz) C C(Py, Oy), (8.9)

since we always have the option of incorporating Py as a front end of the hypothesis test.
Equality holds in (8.8)—(8.9) if Z is a Blackwell sufficient statistic of Y for (Py, Qy), because
from Z (along, with possibly additional randomness) we can synthesize data whose conditional
distributions are Py and Qy. Feeding that data to ¢ results in the same (1), o)1) as feeding the
original Y to ¢.

94. The minimal error probabilities compatible with zero error probability of the other kind are
denoted by r,, and 7., i.€., they are defined by

0|1 —1)0°
o (m

Zi)9° 0) € C(P17P®) bUt (7T1|®, 0) ¢ C(PI’PQ) lf 7T1|® < E”@;

* (0,7g,) € C(P1, Py) but (0, 7)1) & C(P1, Po) if 71 < 7y,

By definition,
aO(PlaPQ) = E@u’ (810)
a,(P1,Py) =0 & ve [7_rl|®, 1]. (8.11)
Theorem 20. For any (P1, Py) € 22,
(a) Tyg = II(Pg || P1), achieved by the test ¢(y) = 1{y € Sp,p,};
(b) Moy = I1(P1 || Py), achieved by the test ¢(y) = 1{y & Spyp, }-
Proof. For any test ¢ achieving error probabilities (g, 7g|1),
=0 = Py '1)=1, (8.12)
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and

e = Po(¢7' (1)) (8.13)
> Po(Spyipy)s (8.14)

where (8.14) holds if mg; = 0 because of (2.4) and (8.12). Furthermore, as we saw in (2.14), if
#(y) = 1{y € Sp,p,}. then the right side of (8.12) is satisfied and (8.13)—(8.14) become identities.
Recalling (2.14) completes the proof of (a). The proof of (b) is identical. O

95. Introduced in [7], for (y, A) € R X [0, 1], a Neyman-Pearson test between P; and Py is

1’ lP1||P®(y) >
Dy 2(0) =44, 1pp (V) = Vs (8.15)
0, 1pp,(Y) <.

The tests ¢, and ¢, are known as deterministic Neyman-Pearson tests. The limiting Neyman-
Pearson tests are the deterministic tests

yh_{{)lo &y a(y) = Uy & Spyip, ) (8.16)

Him_ ¢y, = 1y € Spyr, ) (8.17)

96. With Yy ~ Py and Y; ~ P;, the Neyman-Pearson test (8.15) achieves the conditional error
probabilities

mou(y, ) = 1 =E[¢ya(YD)] = Fpp,(¥) = AP [1p,p, (Y1) = ¥], (8.18)

(Y, A) = E[¢,(Ye)] = 1 - I_FP1||P@()’) + AP [1p,py(Yo) = ] . (8.19)

The randomization serves to obtain convex combinations of the performances obtained by
deterministic Neyman-Pearson tests,

7T®|1()’, /l) = Aﬂ@ll(’y’ 1) + (1 - /l) 7T®|1(7, O)’ (820)
mye(y, A) = Amye(y, 1) + (1 — ) mye(y, 0), (8.21)
where
o1 (¥, 0) = Fpyype (), (8.22)
w10y, 0) = 1= Fpyp, (), (8.23)
mou(y, 1) = liglﬂsu(a, 0) = 1;%1 Fp,jpy (@), (8.24)
ey, 1) = li?;ﬂu@(a, 0)=1- ligl FPlllP@(a')- (8.25)

97. The following venerable result states that the non-limiting Neyman-Pearson tests are Pareto-
optimal.
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Lemma 12. Neyman-Pearson [7]. Let Yy ~ Py and Y, ~ Py. For any A € [0,1], ¥ € R, and
measurable function ¢: Y — [0, 1],

E[p(YD] > El¢ya(YD] = E[¢(Yo)] > E[¢y1(Yo)]. (8.26)

Proof. Invoking (8.18)—(8.19), (4.25), and Lemma 9 with g(a) = 1 — ¢(a), we obtain

El¢(Yo)] - Elya(Ye)] = exp(=y) (ELp(Y1)] - Elpya(Y1)]). (8.27)
O

98. In addition to giving the fundamental tradeoff in terms of the relative information spectra, the
following result finds an operational role for the np-divergence.

Theorem 21. Let (Py, Py) € &, such that Py [ Py

(a) The limiting Neyman-Pearson tests ¢(y) = 1{y € Sp,p,} and ¢(y) = 1{y & Sp,p,} achieve the
Pareto-optimal points (Eu@’ 0) € C(Py, Py) and (0, 7_T®|1) € C(Py, Py), respectively.

(b) The (limiting and nonlimiting) Neyman-Pearson tests achieve P, the set of Pareto-optimal
points of C(Py, Py). P is the convex closure of

Co = |{(1 = Frips@), Fryr, )} (8.28)

veR

Therefore, the intersection of C(P1, Py) and the triangle below the diagonal (0,1)—(1,0) is
the convex hull of P U (0, 1) U (1, 0).
(c) Forv € (0, 7_rl|®), the Neyman-Pearson test that achieves a,(P1, Py) is ¢y« 1« given by:

o if]?‘;}llpg(l —v) # @, then * = 0 and y* is any solution to

1—v=Fpyp, (7" (8.29)

in which case,
a,(P1, Py) = Fpp, (v), (8.30)

o if F;I” po(1 = V) = @, then y* is the unique scalar such that
)16#1;1} FP1||P@(X) <l-v< I_FPllng(y*), (8.31)
and
F -1+
o TenOD Yy (8.32)
Ep ey (%) = limygye Fpjpy (1)

in which case,

@,(Py, Pg) = A* }C%IYI} Fpyipe(x) + (1 = ) Fpyp (¥) (8.33)

= Fp,p,(¥") + exp(y™) (1 -v- I_FP1||P@(7*)) : (8.34)
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Forv € (0, M) the fundamental tradeoff function satisfies

a(Py, Py) = max {Fryip, (v) = exp) (v = 1+ Fpyr, )} (8.35)
where the maximum is achieved by y*.
(d)
(P1, Pg) = (Q1,00) & C(P1, Pg) = C(Q1, Qo). (8.36)
(e)
IC(P1, Pg)l = 3 S (P1 ]| Po). (8.37)
(f) If P # Q, then
IC(P®", Q%) = 1 —exp (—2n B(P|| Q) + o(n)) . (8.38)
Proof.
(a) < Theorem 20, (8.16)—(8.17), and the fact that (Eu@’ 0) and (O, E@u) are Pareto optimal by
definition.

(b) From (8.22)—(8.23) observe that the elements in C, are the conditional error probability pairs
achieved by the deterministic Neyman-Pearson tests ¢, o. The error probability pairs achieved
by deterministic Neyman-Pearson tests ¢, ; belong to the closure of Cy in view of (8.24)-
(8.25). The error probability pairs achieved by the randomized tests ¢, ;, with A4 € (0, 1) are
the convex combinations of the pairs achieved by deterministic tests, as we saw in (8.20)—
(8.21). Moreover, Theorem 20, (4.5), and (4.8) indicate that the closure of Cy includes

(730, 0) = yl_i}}lw (1 ~Fpyp, ), IFPll\PQ()’)) ) (8.39)
0, 7y,) = lim (1= Fpyip ). Fryip, (). (8.40)

We conclude that the set of points achieved by the (limiting and nonlimiting) Neyman-
Pearson tests is equal to the convex closure of Cy. According to Lemma 12, the nonlimiting
Neyman-Pearson tests achieve Pareto-optimal points of C(P;, Py). But since the convex
closure of Cy connects the Pareto-optimal points (rr, 5, 0) and (0, 77, ) without any gaps there
can be no Pareto-optimal points of C(Py, Py) other than the convex closure of Cj.

(c) (8.29)—(8.30) follow from (8.22)—(8.23). Observe that whenever Fplupg (y)isequalto 1 —v
on an interval, then I'p p,(y) is also constant on that interval in view of Theorem 1—(b).
Therefore, there is no ambiguity in (8.30). Plugging (8.32) into (8.20)—(8.21), we verify that
¢y~ 1+ achieves mye(y*, 1*) = v and me1 (y*, 4*) given by (8.33)—(8.34). With the aid of (4.24)
we can express the function within {} in (8.35) as

AP = Fpyn, ) +exp) (1= v = Fp,p, (7)) (8.41)
Y

1 _
= (1 - v)exp(y) - Toge f exp(®) Fyy (1) dr. (8.42)
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Its right- and left-derivatives at y € R are

f‘v+(,y) = lim fv(7 6) fv(Y) (1 Y- FXIIY(V)) exp(y)’ (843)
€l0 € g €
fv_(’)/) — lgljl})l fv('}’) - ?(7 - — (1 o, llm ]FX”Y(X)) eXP()’) (844)

respectively. Consequently,
i. £f(y)>0and f;(y) > 0 at those ¥ € R such that Fxy(y) < 1 - v;
ii. f,7(y) <0and f,(y) <0 at those y € R such that lim, Fyy(x) > 1 —v;
iii. If pip, (1= V) # @, then f}(y*) = £, (y*) = 0 at any solution of (8.29).
iv. If I, 1”P (1-v) = @, then at the unique y* that satisfies (8.31), £, (y*) > O and f,f(y*) < 0.

Therefore, we have shown that the non-concave function to be maximized satisfies f,(y) <
f,(y*) for any 7y that does not satisfy either (8.29) or (8.31). The fact that f,(y*) = a,(P1, Py)
follows from (8.29)—(8.30) if ]FI‘,}”P@(I —v) # @, and (8.34) otherwise.

(d) Recalling Item 41,

(P1, Pg) = (01, Q) = {]FP1||P@ = Fo, 0, and Fp,p, = Fglngo} (8.45)
= C(P1, Py) = C(Q1, Qv), (8.46)

where (8.46) follows from (c). To prove the reverse implication, we must show that the
function a,(P;, Pg) determines Fp p, and Fpp,. The explicit dependence is given in
Theorem 22 in the Appendix.

(e) Recalling the symmetry property in Theorem 19-(c),

IC(Py. Py)| = 1 -2 f (P Py) dv. (8.47)
0

Because of the convexity of «, (Item 89), its derivative is a non-decreasing function which
may have at most a countable number of discontinuities on the interval [0, 7, ;]. We partition
the integral in (8.47) as the finite or countably infinite sum of subintegrals of differentiable
sections, distinguishing between the sections in which @, is a straight line (corresponding
to jumps in the relative information spectra) and those in which it is not. Recall that the
non-straight-line sections are due to portions of the relative information spectra that are
strictly monotonically increasing. Flat portions in the spectra only affect the kinks—points of
discontinuous derivative—in «,, which do not contribute to its integral. Therefore, we have

7110 v (y) Vitl
f a,dv = Z f a, dv + Z f a, dv, (8.48)
0 yel YV ) iel

where I is the finite, or countably infinite, set of abscissas at which the jumps in the relative
information spectra occur, @, is a straight line on the intervals [v™(y),v*(y)], and «, is
differentiable but not a straight line on the intervals [v;, v;;1].
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1. We saw in (d) that each y € I contributes a straight line in the_ fundamental tradeoff
function o£ slope —exp(y) between the abscissas v (y) = 1 — Fpp,(y) and v*(y) =
1 = limyqy, I'p p, (x). In view of (8.33), observe that

- = Fpyipe (¥), (8.49)
Ay-(y) — Wy = Plapypg (Y1) = 71 (8.50)
Therefore, the trapezoidal area is
v (y)
f L@ dv = (@) + @) () = v () (8.51)
v (y
= (FP1||P@(7) - %P[lmnP@(Yl) = )’]) Plip,py(Ye) = 71 (8.52)

Then, the sum of the subintegrals (8.52) due to the straight-line segments equals

v (y)
Z f @, dv = Z I p,11pe (¥) Plipy iy (Yo) = ¥]

yell ~) yell

— 5 Plipyipy (Y1) = 1,12, (o), (8.53)

where Yy and Y; are independent.
i1. For a section between v, and v; on which a, is differentiable and not a straight line, the
parametric solution in (8.18)—(8.19) reduces to

a, = Fplup@(’y), (854)
1—v=TFpyp,(), (8.55)

whose definite integral can be written as the Lebesgue-Stieltjes integral

Vi F;i”},@(l—vo) _
f deV:f Fp1||p®(f)de1||p®(l). (8.56)

v o pg (17v1)

Summing (8.53) and all subintegrals of the non-straight-line portions in (8.56) yields

7110 0 —
[ aPipadr = [ Frin 0 - Eling, ) = a0l (857)
0 —00

= Plip,1p, (Y1) < 1pype(Yo)] = 3PL1pypy (Y1) = 1pyp,(Yo)1. (8.58)
Plugging (8.58) into (8.47) yields

IC(P1, Pg)| = Plip,py(Yo) < 1pypy(Y1)] — Plp,pe (Y1) < 1py1pe (Yo)] (8.59)
= 1|P1® Py — Py ® P4, (8.60)

in light of Theorem 8-(1).
(f) &= (6.4) and (8.38).

O
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99. A folk theorem (e.g., [63,64]) is that the area under the curve (Item 92) is the “probability that the
classifier will rank a randomly chosen positive instance higher than a randomly chosen negative
instance”. The ambiguity in whether “higher” means > or > is inconsequential if the relative
information spectra are continuous. Otherwise, we must split the difference as (8.7) together with
Theorem 21-(f) yields, with (Yg, Y1) ~ Py ® P4,

i
f (1 = a,(P1, Py)) dv = Plipp, (Y1) > 1pp,(Ye)] + 3 Plipypy (Y1) = 1pyp, (Ye)]. (8.61)
0

100. A corollary to a result by Pfanzagl [61] is that C(P1, Pg) = C(Qi,Qs) (in the notation of
Theorems 11 and 12) is a sufficient condition for Z to be a sufficient statistic of Y for {Pg, P;}.
In fact, Theorems 16 and 21-(e) imply that the preservation of the fundamental tradeoff region in
hypothesis testing is an equivalent criterion for pairwise sufficiency. Therefore, Theorem 18-(n)
will follow from

C(P1’P®) = C(Qh Q@)
() (8.62)

[C(Py, Po)l = IC(Q1, Qo)
) (8.63)

S (P, Py) = S(Ql’ Q@)-

To justify (8.62), recall from Item 93 that C(Q;, Qy) C C(Pi1, Py). Therefore, |C(P1, Py)| >
|C(Q1, Qp)| unless C(P1, Py) = C(Q1, Qg). Theorem 21-(f) implies (8.63).

9. Conclusions

One of the defining features of information theory is the study of random variables such as
1x(X) = log #(X), 1x)y(X) and 1xy(Y), where the probability mass function of X is evaluated at X and
the log density function of Py with respect to Py is evaluated at X or Y, respectively. The averages of
those random variables, entropy and relative entropy, are the pillars that sustain the asymptotics of the
fundamental limits in data compression, hypothesis testing, and data transmission in stationary ergodic
models. Beyond averages, the study of the distributions of those random variables, also known as
information spectra and relative information spectra, is the key to non-asymptotic fundamental limits.

This paper has studied the relative information spectra for arbitrary pairs of probability measures
defined on the same measurable space. To that end, the formalization of the concepts of relative
support and coefficient of absolute discontinuity has proven valuable. Particular emphasis has been
placed on the interplay of the distributions of 1xy(X) and i1x;y(Y), which determine each other, as well
as their relationships with measures of discrepancy such as total variation distance, relative entropy,
Rényi divergence and f-divergences. Equivalent pairs of probability measures (possibly belonging to
different measurable spaces) are those with identically-distributed relative informations.

The exposition of the applications to statistical inference has emphasized their connections to
the literature. Based on equivalent pairs, we have introduced the conceptually simple notion of /-
sufficiency, which can be checked easily even without the usual assumptions of deterministic statistics
and dominated collections on standard spaces. When those assumptions are satisfied, the necessary
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and sufficient condition given by the Halmos-Savage factorization necessary and sufficient condition
(Theorem 9) remains the gold standard for verifying the sufficiency of deterministic transformations.

The non-asymptotic (Neyman-Pearson) fundamental tradeoff region of conditional error
probabilities in binary hypothesis testing is a major application of the relative information spectra.
We have given a detailed description of the region without any assumptions of absolute continuity. The
area of the Neyman-Pearson tradeoff region is a normalized measure of the discrepancy between the
probability measures, equal to zero [resp., one] for identical [resp., orthogonal] probability measures,
which is popular in applications in a slightly modified form referred to as the area under the curve
(auc). We have shown that the area of the Neyman-Pearson tradeoff region is equal to (one-half) the
Np-divergence, |Py ® P; — P1 ® Pg|, a new discrepancy measure between probability measures Py and
P;. Along with Chernoff information, it appears to be one of the most interesting divergences among
those that satisfy the data processing inequality but are not f-divergences. We have shown that the
preservation of the Np-divergence is a necessary and sufficient condition for the statistic to be sufficient.
An immediate operational role is inherited from total variation distance, as the np-divergence governs
the error probability of the Bayesian test that identifies the order of a pair of observations, one drawn
from Pg and the other from P;. A new asymptotic operational role for the Bhattachrayya distance
has been shown for independent identically distributed observations: The rate of approach to 1 of
the area of the fundamental non-Bayesian tradeoff region decays exponentially in twice the number of
observations times the Bhattachrayya distance. In contrast, as shown in [14] in the Bayesian setting, the
exponential decay of the minimum error probability is governed by the Chernoff information regardless
of the values of the nonzero a priori probabilities.

A. Appendix 1: Relative information spectra from fundamental tradeoff function

On account of the convexity of «,, its derivative on (0, 7_rl|®) is negative monotonic non-decreasing
with a finite, or countably infinite, number of discontinuities. Those discontinuities determine the
locations of the jumps of IFp p,, Which are the same as those of ]Fplnp@. For v € (0,7,,), denote the
left/right derivatives by

& = lim 227 < lim
€l0 € €l0 €

Drre 7B _ 4 <0, (A.1)

Naturally, we drop the superscript whenever &, = &,

*. The following result gives Fp p, and Fp,p, as
a function of {a,,v € [0, ”1|®)}’ with Mg = max{v € [0,1]: @, = 0}, as per (8.11). The fact that the
relative information spectrum and the fundamental tradeoff region determine each other validates the

opening sentence in the abstract.

Theorem 22.
1. 1im,_ e FPlHP@(t) = E@Il = Q.
2. lim,,_o Fplnpg(l') =1- USTY
3. Fixy € R. To determine I p p,(y) and F'p,p,(y), there are two possibilities.

(a) There is a unique v, € (0, gm) such that

.

Vy

< —exp(y) < dj,. (A2)
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Then, Fp,py(y) = a5, and Fpyp,(y) =1 - 2
(b) Let (v; , v; ) C [0, Elm] be the largest open interval such that

&, = —exp(y), forv € (v, v)). (A.3)

Then, Fpyp,(y) = a,; and Fplnpg(’y) = 1 —v,. Furthermore, Fp,p, experiences a jump aty

of height a,; — a3, while the jump at qup@ (y) has height v —v;.
Proof.

1) <= (8.10) and (8.39).

2) & (8.40).

3) As we saw in Theorem 21-(d), Fp s, and I p,p, experience a jump at y if and only if the function
a, has a straight line such that case 3b) holds.

3a) Since IFp,p, and IFpp, are continuous at y, Theorem 21-(d) gives

@, = Fp,p,(¥), (A.4)
1=v=Fpyn»). (A.5)

At those v € (0, g”@) such that &, = &, we can differentiate (A.4) and (A.5) with respect to
v and v, respectively, to conclude, with the aid of (4.26), that

&, = —exp(y). (A.6)

If &, < &, the discontinuity in the derivative is caused by the fact that there is an interval
of values of y on which both Fp,p,(y) and Fp,p,(y) are constant; therefore, according to
(A.4)-(A.5), those values of y result in a single Pareto-optimal point (v, @y, ). The interval
of values of  is indeed (A.2) since any slope strictly lower than &;, , or strictly higher than
c‘v;y, corresponds to Pareto-optimal points other than (v,, @3,).

3b) Since IFpp, and F p,|IP, €Xperience a jump at y, «, has a straight line with slope
_Plipyp (Y1) =71
P [ip,1p,(Yo) = 7]

according to (8.33)—(8.32) and (4.25). The range of abscissas v of that straight line is given
by (8.31), thereby indicating that

= —exp(y), (A7)

v, =1=Fpyp®), (A.8)
t=1- 13%1 I p,1p, (%) (A.9)

Again, according to (8.33)—(8.32), the corresponding ordinates of those points are

ay; = Fpyp, (¥), (A.10)

CZV; = ll%n FlePQ(X). (All)
xTy

O
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