Research article

Explicit solutions of nonlocal reverse-time Hirota-Maxwell-Bloch system

  • Received: 01 July 2024 Revised: 26 November 2024 Accepted: 29 November 2024 Published: 16 December 2024
  • MSC : 35B06, 35C08

  • In this paper, we investigate the nonlocal reverse-time Hirota-Maxwell-Bloch system, focusing on its soliton solutions using the Darboux transformation method. By deriving the Darboux transformation for this system, we obtained explicit expressions for the new potentials $ q', p' $, and $ \eta' $ in both the defocusing ($ \kappa = 1 $) and focusing ($ \kappa = -1 $) cases. Our analysis reveals significant differences in soliton behavior depending on the value of $ \kappa $, with the defocusing case producing wide, smooth solitons and the focusing case yielding narrow, highly localized solitons. These results provide a deeper understanding of soliton dynamics in nonlocal integrable systems and lay the groundwork for future studies on the influence of nonlocality in integrable models.

    Citation: Zh. Myrzakulova, Z. Zakariyeva, K. Suleimenov, U. Uralbekova, K. Yesmakhanova. Explicit solutions of nonlocal reverse-time Hirota-Maxwell-Bloch system[J]. AIMS Mathematics, 2024, 9(12): 35004-35015. doi: 10.3934/math.20241666

    Related Papers:

  • In this paper, we investigate the nonlocal reverse-time Hirota-Maxwell-Bloch system, focusing on its soliton solutions using the Darboux transformation method. By deriving the Darboux transformation for this system, we obtained explicit expressions for the new potentials $ q', p' $, and $ \eta' $ in both the defocusing ($ \kappa = 1 $) and focusing ($ \kappa = -1 $) cases. Our analysis reveals significant differences in soliton behavior depending on the value of $ \kappa $, with the defocusing case producing wide, smooth solitons and the focusing case yielding narrow, highly localized solitons. These results provide a deeper understanding of soliton dynamics in nonlocal integrable systems and lay the groundwork for future studies on the influence of nonlocality in integrable models.



    加载中


    [1] M. J. Ablowitz, J. B. Been, L. D. Carr, Fractional integrable nonlinear soliton equations, Phys. Rev. Lett., 128 (2022), 184101. http://dx.doi.org/10.1103/PhysRevLett.128.184101 doi: 10.1103/PhysRevLett.128.184101
    [2] N. J. Zabusky, M. A. Porter, Soliton, Scholarpedia, 5 (2010), 2068. http://dx.doi.org/10.4249/scholarpedia.2068
    [3] L. D. Faddeev, L. A. Takhtajan, Hamiltonian methods in the theory of solitons, Berlin, Heidelberg: Springer, 2007. https://doi.org/10.1007/978-3-540-69969-9
    [4] R. Hirota, The direct method in soliton theory, Cambridge University Press, 2004. http://dx.doi.org/10.1017/CBO9780511543043
    [5] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21 (1968), 467–490. http://dx.doi.org/10.1002/cpa.3160210503 doi: 10.1002/cpa.3160210503
    [6] G. Biondini, I. Gabitov, G. Kovačič, S. Li, Inverse scattering transform for two-level systems with nonzero background, J. Math. Phys., 60 (2019), 073510. http://dx.doi.org/10.1063/1.5084720 doi: 10.1063/1.5084720
    [7] B. F. Feng, X. D. Luo, M. J. Ablowitz, Z. H. Musslimani, General soliton solution to a nonlocal nonlinear Schr$\ddot{o}$dinger equation with zero and nonzero boundary conditions, Nonlinearity, 31 (2018), 5385. http://dx.doi.org/10.1088/1361-6544/aae031 doi: 10.1088/1361-6544/aae031
    [8] J. Cen, F. Correa, A. Fring, Integrable nonlocal Hirota equations, J. Math. Phys., 60 (2019), 081508. http://dx.doi.org/10.1063/1.5013154 doi: 10.1063/1.5013154
    [9] T. V. Redkina, R. G. Zakinyan, A. R. Zakinyan, O. B. Surneva, O. S. Yanovskaya, B$\ddot{a}$cklund transformations for nonlinear differential equations and systems, Axioms, 8 (2019), 45. http://dx.doi.org/10.3390/axioms8020045 doi: 10.3390/axioms8020045
    [10] N. V. Priya, M. Senthilvelan, G. Rangarajan, M. Lakshmanan, On symmetry preserving and symmetry broken bright, dark and antidark soliton solutions of nonlocal nonlinear Schr$\ddot{o}$dinger equation, Phys. Lett. A, 383 (2019), 15–26. http://dx.doi.org/10.1016/j.physleta.2018.10.011 doi: 10.1016/j.physleta.2018.10.011
    [11] A. M. Vinogradov, I. S. Krasiloshchik, A method for computing higher symmetries of nonlinear evolutionary equations and nonlocal symmetries, Dokl. Akad. Nauk SSSR, 253 (1980), 1289–1293.
    [12] L. Y. Ma, S. F. Shen, Z. N. Zhu, Integrable nonlocal complex mKdV equation: Soliton solution and gauge equivalence, 2016, arXiv: 1612.06723. http://dx.doi.org/10.48550/arXiv.1612.06723
    [13] S. Y. Lou, Alice-Bob systems, $\hat{\mathrm{P}}-\hat{\mathrm{T}}-\hat{\mathrm{C}}$ symmetry invariant and symmetry breaking soliton solutions, J. Math. Phys., 59 (2018), 083507. http://dx.doi.org/10.1063/1.5051989 doi: 10.1063/1.5051989
    [14] B. Yang, J. Yang, Transformations between nonlocal and local integrable equations, Stud. Appl. Math., 140 (2018), 178–201. http://dx.doi.org/10.1111/sapm.12195 doi: 10.1111/sapm.12195
    [15] S. D. Pace, Y. L. Liu, Topological aspects of brane fields: Solitons and higher-form symmetries, SciPost Phys., 16 (2024), 128. http://dx.doi.org/10.21468/SciPostPhys.16.5.128 doi: 10.21468/SciPostPhys.16.5.128
    [16] K. Sakkaravarthi, S. Singh, N. Karjanto, Exploring the dynamics of nonlocal nonlinear waves: Analytical insights into the extended Kadomtsev-Petviashvili model, Front. Phys., 11 (2023), 1168830. http://dx.doi.org/10.3389/fphy.2023.1168830 doi: 10.3389/fphy.2023.1168830
    [17] M. J. Ablowitz, Z. H. Musslimani, Integrable nonlocal nonlinear Schr$\ddot{o}$dinger equation, Phys. Rev. Lett., 110 (2013), 064105. http://dx.doi.org/10.1103/PhysRevLett.110.064105 doi: 10.1103/PhysRevLett.110.064105
    [18] M. J. Ablowitz, Z. H. Musslimani, Integrable nonlocal nonlinear equations, Stud. Appl. Math., 139 (2017), 7–59. http://dx.doi.org/10.1111/sapm.12153 doi: 10.1111/sapm.12153
    [19] Y. Kodama, Normal forms for weakly dispersive wave equations, Phys. Lett. A, 112 (1985), 193–196. http://dx.doi.org/10.1016/0375-9601(85)90500-6 doi: 10.1016/0375-9601(85)90500-6
    [20] R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14 (1973), 805–809. http://dx.doi.org/10.1063/1.1666399 doi: 10.1063/1.1666399
    [21] K. Nakkeeran, Optical solitons in erbium-doped fibres with higher-order effects and pumping, J. Phys. A Math. Gen., 33 (2000), 4377. http://dx.doi.org/10.1088/0305-4470/33/23/311 doi: 10.1088/0305-4470/33/23/311
    [22] K. Nakkeeran, K. Porsezian, Solitons in an erbium-doped nonlinear fibre medium with stimulated inelastic scattering, J. Phys. A Math. Gen., 28 (1995), 3817. http://dx.doi.org/10.1088/0305-4470/28/13/025 doi: 10.1088/0305-4470/28/13/025
    [23] K. Porsezian, K. Nakkeeran, Optical soliton propagation in an Erbium doped nonlinear light guide with higher order dispersion, Phys. Rev. Lett., 74 (1995), 2941. https://doi.org/10.1103/PhysRevLett.74.2941 doi: 10.1103/PhysRevLett.74.2941
    [24] J. S. He, L. Zhang, Y. Cheng, Y. S. Li, Determinant representation of Darboux transformation for the AKNS system, Sci. China Ser. A, 49 (2006), 1867–1878. http://dx.doi.org/10.1007/s11425-006-2025-1 doi: 10.1007/s11425-006-2025-1
    [25] L. H. Wang, K. Porsezian, J. S. He, Breather and rogue wave solutions of a generalized nonlinear Schr$\ddot{o}$dinger equation, Phys. Rev. E, 87 (2013), 053202. http://dx.doi.org/10.1103/PhysRevE.87.053202 doi: 10.1103/PhysRevE.87.053202
    [26] J. M. Yang, C. Z. Li, T. T. Li, Z. N. Cheng, Darboux transformation and solutions of the two-component Hirota-Maxwell-Bloch system, Chinese Phys. Lett., 30 (2013), 104201. http://dx.doi.org/10.1088/0256-307x/30/10/104201 doi: 10.1088/0256-307x/30/10/104201
    [27] C. Z. Li, J. S. He, K. Porsezian, Rogue waves of the Hirota and the Maxwell-Bloch equations, Phys. Rev. E, 87 (2013), 012913. http://dx.doi.org/10.1103/PhysRevE.87.059903 doi: 10.1103/PhysRevE.87.059903
    [28] L. An, C. Z. Li, L. X. Zhang, Darboux transformations and solutions of nonlocal Hirota and Maxwell-Bloch equations, Stud. Appl. Math., 147 (2021), 60–83. http://dx.doi.org/10.1111/sapm.12378 doi: 10.1111/sapm.12378
    [29] Z. X. Zhou, Darboux transformations and global solutions for a nonlocal derivative nonlinear Schr$\ddot{o}$dinger equation, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 480–488. http://dx.doi.org/10.1016/j.cnsns.2018.01.008 doi: 10.1016/j.cnsns.2018.01.008
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1091) PDF downloads(27) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog