Research article Special Issues

Fast hybrid explicit group methods for solving 2D fractional advection-diffusion equation

  • Received: 15 April 2022 Revised: 11 June 2022 Accepted: 19 June 2022 Published: 27 June 2022
  • MSC : 35XX, 65N12

  • In recent years, fractional partial differential equations (FPDEs) have been viewed as powerful mathematical tools for describing ample phenomena in various scientific disciplines and have been extensively researched. In this article, the hybrid explicit group (HEG) method and the modified hybrid explicit group (MHEG) method are proposed to solve the 2D advection-diffusion problem involving fractional-order derivative of Caputo-type in the temporal direction. The considered problem models transport processes occurring in real-world complex systems. The hybrid grouping methods are developed based upon a Laplace transformation technique with a pair of explicit group finite difference approximations constructed on different grid spacings. The proposed methods are beneficial in reducing the computational burden resulting from the nonlocality of fractional-order differential operator. The theoretical investigation of stability and convergence properties is conducted by utilizing the matrix norm analysis. The improved performance of the proposed methods against a recent competitive method in terms of central processing unit (CPU) time, iterations number and computational cost is illustrated by several numerical experiments.

    Citation: Fouad Mohammad Salama, Nur Nadiah Abd Hamid, Umair Ali, Norhashidah Hj. Mohd Ali. Fast hybrid explicit group methods for solving 2D fractional advection-diffusion equation[J]. AIMS Mathematics, 2022, 7(9): 15854-15880. doi: 10.3934/math.2022868

    Related Papers:

  • In recent years, fractional partial differential equations (FPDEs) have been viewed as powerful mathematical tools for describing ample phenomena in various scientific disciplines and have been extensively researched. In this article, the hybrid explicit group (HEG) method and the modified hybrid explicit group (MHEG) method are proposed to solve the 2D advection-diffusion problem involving fractional-order derivative of Caputo-type in the temporal direction. The considered problem models transport processes occurring in real-world complex systems. The hybrid grouping methods are developed based upon a Laplace transformation technique with a pair of explicit group finite difference approximations constructed on different grid spacings. The proposed methods are beneficial in reducing the computational burden resulting from the nonlocality of fractional-order differential operator. The theoretical investigation of stability and convergence properties is conducted by utilizing the matrix norm analysis. The improved performance of the proposed methods against a recent competitive method in terms of central processing unit (CPU) time, iterations number and computational cost is illustrated by several numerical experiments.



    加载中


    [1] M. Javaid, M. Tahir, M. Imran, D. Baleanu, A. Akgül, M. A. Imran, Unsteady flow of fractional Burgers' fluid in a rotating annulus region with power law kernel, Alex. Eng. J., 61 (2022), 17–27. https://doi.org/10.1016/j.aej.2021.04.106 doi: 10.1016/j.aej.2021.04.106
    [2] T. Anwar, P. Kumam, P. Thounthong, Asifa, S. Muhammad, F. Z. Duraihem, Generalized thermal investigation of unsteady MHD flow of Oldroyd-B fluid with slip effects and Newtonian heating; a Caputo-Fabrizio fractional model, Alex. Eng. J., 61 (2022), 2188–2202. https://doi.org/10.1016/j.aej.2021.06.090 doi: 10.1016/j.aej.2021.06.090
    [3] C. Xu, C. Aouiti, Z. Liu, Q. Qin, L. Yao, Bifurcation control strategy for a fractional-order delayed financial crises contagions model, AIMS Math., 7 (2022), 2102–2122. https://doi.org/10.3934/math.2022120 doi: 10.3934/math.2022120
    [4] W. A. E. M. Ahmed, H. M. A. Mageed, S. A. Mohamed, A. A. Saleh, Fractional order Darwinian particle swarm optimization for parameters identification of solar PV cells and modules, Alex. Eng. J., 61 (2022), 1249–1263. https://doi.org/10.1016/j.aej.2021.06.019 doi: 10.1016/j.aej.2021.06.019
    [5] M. Farman, A. Akgül, K. S. Nisar, D. Ahmad, A. Ahmad, S. Kamangar, et al., Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel, AIMS Math., 7 (2022), 1249–1263. https://doi.org/10.3934/math.2022046 doi: 10.3934/math.2022046
    [6] M. S. Ullah, M. Higazy, K. A. Kabir, Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach, Chaos Soliton. Fract., 155 (2022), 111636. https://doi.org/10.1016/j.chaos.2021.111636 doi: 10.1016/j.chaos.2021.111636
    [7] M. Farman, A. Akgül, T. Abdeljawad, P. A. Naik, N. Bukhari, A. Ahmad, Modeling and analysis of fractional order Ebola virus model with Mittag-Leffler kernel, Alex. Eng. J., 61 (2022), 2062–2073. https://doi.org/10.1016/j.aej.2021.07.040 doi: 10.1016/j.aej.2021.07.040
    [8] E. Bonyah, M. L. Juga, C. W. Chukwu, Fatmawati, A fractional order dengue fever model in the context of protected travelers, Alex. Eng. J., 61 (2022), 927–936. https://doi.org/10.1016/j.aej.2021.04.070 doi: 10.1016/j.aej.2021.04.070
    [9] S. Rashid, F. Jarad, F. S. Bayones, On new computations of the fractional epidemic childhood disease model pertaining to the generalized fractional derivative with nonsingular kernel, AIMS Math., 7 (2022), 4552–4573. http://dx.doi.org/10.3934/math.2022254 doi: 10.3934/math.2022254
    [10] A. S. V. Ravi Kanth, N. Garg, An unconditionally stable algorithm for multiterm time fractional advection-diffusion equation with variable coefficients and convergence analysis, Numer. Methods Partial Differ. Equations, 37 (2021), 1928–1945. https://doi.org/10.1002/num.22629 doi: 10.1002/num.22629
    [11] S. Savović, A. Djordjevich, Finite difference solution of the one-dimensional advection-diffusion equation with variable coefficients in semi-infinite media, Int. J. Heat Mass Tran., 55 (2012), 4291–4294. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.073 doi: 10.1016/j.ijheatmasstransfer.2012.03.073
    [12] H. Tajadodi, A Numerical approach of fractional advection-diffusion equation with Atangana-Baleanu derivative, Chaos Soliton. Fract., 130 (2020), 109527. https://doi.org/10.1016/j.chaos.2019.109527 doi: 10.1016/j.chaos.2019.109527
    [13] S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, New York: Argonne National Lab., 1995.
    [14] T. Hayat, M. Tamoor, M. I. Khan, A. Alsaedi, Numerical simulation for nonlinear radiative flow by convective cylinder, Results Phys., 6 (2016), 1031–1035. https://doi.org/10.1016/j.rinp.2016.11.026 doi: 10.1016/j.rinp.2016.11.026
    [15] S. Qayyum, M. I. Khan, T. Hayat, A. Alsaedi, Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk, Phys. B, 534 (2018), 173–183. https://doi.org/10.1016/j.physb.2018.01.044 doi: 10.1016/j.physb.2018.01.044
    [16] M. Waqas, M. I. Khan, T. Hayat, M. M. Gulzar, A. Alsaedi, Transportation of radiative energy in viscoelastic nanofluid considering buoyancy forces and convective conditions, Chaos Soliton. Fract., 130 (2020), 109415. https://doi.org/10.1016/j.chaos.2019.109415 doi: 10.1016/j.chaos.2019.109415
    [17] M. I. Khan, A. Alsaedi, T. Hayat, N. B. Khan, Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation, Comp. Methods Prog. Biom., 179 (2019), 104973. https://doi.org/10.1016/j.cmpb.2019.07.001 doi: 10.1016/j.cmpb.2019.07.001
    [18] B. Gireesha, G. Sowmya, M. I. Khan, H. F. Öztop, Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection, Comp. Methods Prog. Biom., 185 (2020), 105166. https://doi.org/10.1016/j.cmpb.2019.105166 doi: 10.1016/j.cmpb.2019.105166
    [19] T. Hayat, S. Ahmad, M. I. Khan, A. Alsaedi, Simulation of ferromagnetic nanomaterial flow of Maxwell fluid, Results Phys., 8 (2018), 34–40. https://doi.org/10.1016/j.rinp.2017.11.021 doi: 10.1016/j.rinp.2017.11.021
    [20] H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [21] Y. L. Zhao, T. Z. Huang, X. M. Gu, W. H. Luo, A fast second-order implicit difference method for time-space fractional advection-diffusion equation, Numer. Funct. Anal. Optim., 41 (2020), 257–293. https://doi.org/10.1080/01630563.2019.1627369 doi: 10.1080/01630563.2019.1627369
    [22] G. H. Gao, H. W. Sun, Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions, J. Comput. Phys., 298 (2015), 520–538. https://doi.org/10.1016/j.jcp.2015.05.052 doi: 10.1016/j.jcp.2015.05.052
    [23] A. Mardani, M. R. Hooshmandasl, M. H. Heydari, C. Cattani, A meshless method for solving the time fractional advection-diffusion equation with variable coefficients, Comput. Math. Appl., 75 (2018), 122–133. https://doi.org/10.1016/j.camwa.2017.08.038 doi: 10.1016/j.camwa.2017.08.038
    [24] A. Tayebi, Y. Shekari, M. H. Heydari, A meshless method for solving two-dimensional variable-order time fractional advection–diffusion equation, J. Comput. Phys., 340 (2017), 655–669. https://doi.org/10.1016/j.jcp.2017.03.061 doi: 10.1016/j.jcp.2017.03.061
    [25] C. E. Mejía, A. Piedrahita, A numerical method for a time-fractional advection-dispersion equation with a nonlinear source term, J. Appl. Math. Comput., 61 (2019), 593–609. https://doi.org/10.1007/s12190-019-01266-x doi: 10.1007/s12190-019-01266-x
    [26] S. T. Mohyud-Din, T. Akram, M. Abbas, A. I. Ismail, N. H. Ali, A fully implicit finite difference scheme based on extended cubic B-splines for time fractional advection-diffusion equation, Adv. Differ. Equ., 2018 (2018), 109. https://doi.org/10.1186/s13662-018-1537-7 doi: 10.1186/s13662-018-1537-7
    [27] M. Abbaszadeh, H. Amjadian, Second-order finite difference/spectral element formulation for solving the fractional advection-diffusion equation, Commun. Appl. Math. Comput., 2 (2020), 1–17. https://doi.org/10.1007/s42967-020-00060-y doi: 10.1007/s42967-020-00060-y
    [28] M. Badr, A. Yazdani, H. Jafari, Stability of a finite volume element method for the time-fractional advection-diffusion equation, Numer. Methods Partial Differ. Equations, 34 (2018), 1459–1471. https://doi.org/10.1002/num.22243 doi: 10.1002/num.22243
    [29] H. Azin, F. Mohammadi, M. Heydari, A hybrid method for solving time fractional advection-diffusion equation on unbounded space domain, Adv. Differ. Equ., 2020 (2020), 1–10. https://doi.org/10.1186/s13662-020-03053-6 doi: 10.1186/s13662-020-03053-6
    [30] Y. E. Aghdam, H. Mesgrani, M. Javidi, O. Nikan, A computational approach for the space-time fractional advection-diffusion equation arising in contaminant transport through porous media, Eng. Comput., 37 (2021), 3615–3627. https://doi.org/10.1007/s00366-020-01021-y doi: 10.1007/s00366-020-01021-y
    [31] M. Shafiq, M. Abbas, K. M. Abualnaja, M. Huntul, A. Majeed, T. Nazir, An efficient technique based on cubic B-spline functions for solving time-fractional advection diffusion equation involving Atangana-Baleanu derivative, Eng. Comput., 38 (2022), 901–917. https://doi.org/10.1007/s00366-021-01490-9 doi: 10.1007/s00366-021-01490-9
    [32] Z. Liu, Q. Wang, A non-standard finite difference method for space fractional advection-diffusion equation, Numer. Methods Partial Differ. Equations, 37 (2021), 2527–2539. https://doi.org/10.1002/num.22734 doi: 10.1002/num.22734
    [33] A. Atangana, Fractional discretization: The African's tortoise walk, Chaos Soliton. Fract., 130 (2020), 109399. https://doi.org/10.1016/j.chaos.2019.109399 doi: 10.1016/j.chaos.2019.109399
    [34] A. Sunarto, P. Agarwal, J. Sulaiman, J. V. L. Chew, S. Momani, Quarter-sweep preconditioned relaxation method, algorithm and efficiency analysis for fractional mathematical equation, Fractal Fract., 5 (2021), 98. https://doi.org/10.3390/fractalfract5030098 doi: 10.3390/fractalfract5030098
    [35] A. M. Saeed, N. M. AL-harbi, Group splitting with SOR/AOR methods for solving boundary value problems: A computational comparison, Eur. J. Pure Appl. Math., 14 (2021), 905–914. https://doi.org/10.29020/nybg.ejpam.v14i3.4031 doi: 10.29020/nybg.ejpam.v14i3.4031
    [36] F. M. Salama, N. H. M. Ali, Fast $O(N)$ hybrid method for the solution of two dimensional time fractional cable equation, Compusoft, 8 (2019), 3453–3461.
    [37] F. M. Salama, N. H. M. Ali, N. N. Abd Hamid, Fast $O(N)$ hybrid Laplace transform-finite difference method in solving 2D time fractional diffusion equation, J. Math. Comput. Sci., 23 (2021), 110–123. http://dx.doi.org/10.22436/jmcs.023.02.04 doi: 10.22436/jmcs.023.02.04
    [38] C. Gong, W. Bao, G. Tang, B. Yang, J. Liu, An efficient parallel solution for Caputo fractional reaction-diffusion equation, J. Supercomput., 68 (2014), 1521–1537. https://doi.org/10.1007/s11227-014-1123-z doi: 10.1007/s11227-014-1123-z
    [39] F. R. Lin, S. W. Yang, X. Q. Jin, Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys., 256 (2014), 109–117. https://doi.org/10.1016/j.jcp.2013.07.040 doi: 10.1016/j.jcp.2013.07.040
    [40] Y. Xu, Z. He, The short memory principle for solving Abel differential equation of fractional order, Comput. Math. Appl., 62 (2011), 4796–4805. https://doi.org/10.1016/j.camwa.2011.10.071 doi: 10.1016/j.camwa.2011.10.071
    [41] F. M. Salama, N. H. M. Ali, Computationally efficient hybrid method for the numerical solution of the 2D time fractional advection-diffusion equation, Int. J. Math. Eng. Manag., 5 (2020), 4796–4805. https://doi.org/10.33889/IJMEMS.2020.5.3.036 doi: 10.33889/IJMEMS.2020.5.3.036
    [42] N. H. M. Ali, K. Foo, Modified explicit group AOR methods in the solution of elliptic equations, Appl. Math. Sci., 6 (2012), 2465–2480.
    [43] K. B. Tan, N. H. M. Ali, C. H. Lai, Parallel block interface domain decomposition methods for the 2D convection–diffusion equation, Int. J. Comput. Math., 89 (2012), 1704–1723. https://doi.org/10.1080/00207160.2012.693606 doi: 10.1080/00207160.2012.693606
    [44] N. H. M. Ali, A. M. Saeed, Preconditioned modified explicit decoupled group for the solution of steady state navier-stokes equation, Appl. Math. Inf. Sci., 7 (2013), 1837. http://dx.doi.org/10.12785/amis/070522 doi: 10.12785/amis/070522
    [45] N. H. M. Ali, L. M. Kew, New explicit group iterative methods in the solution of two dimensional hyperbolic equations, J. Comput. Phys., 231 (2012), 6953–6968. https://doi.org/10.1016/j.jcp.2012.06.025 doi: 10.1016/j.jcp.2012.06.025
    [46] L. M. Kew, N. H. M. Ali, New explicit group iterative methods in the solution of three dimensional hyperbolic telegraph equations, J. Comput. Phys., 294 (2015), 382–404. https://doi.org/10.1016/j.jcp.2015.03.052 doi: 10.1016/j.jcp.2015.03.052
    [47] M. A. Khan, N. H. M. Ali, N. N. Abd Hamid, A new fourth-order explicit group method in the solution of two-dimensional fractional Rayleigh-Stokes problem for a heated generalized second-grade fluid, Adv. Differ. Equ., 2020 (2020), 598. https://doi.org/10.1186/s13662-020-03061-6 doi: 10.1186/s13662-020-03061-6
    [48] F. M. Salama, N. H. M. Ali, N. N. Abd Hamid, Efficient hybrid group iterative methods in the solution of two-dimensional time fractional cable equation, Adv. Differ. Equ., 2020 (2020), 257. https://doi.org/10.1186/s13662-020-02717-7 doi: 10.1186/s13662-020-02717-7
    [49] A. Ali, T. Abdeljawad, A. Iqbal, T. Akram, M. Abbas, On unconditionally stable new modified fractional group iterative scheme for the solution of 2D time-fractional telegraph model, Symmetry, 13 (2021), 2078. https://doi.org/10.3390/sym13112078 doi: 10.3390/sym13112078
    [50] N. Abdi, H. Aminikhah, A. Sheikhani, J. Alavi, M. Taghipour, An efficient explicit decoupled group method for solving two–dimensional fractional Burgers' equation and its convergence analysis, Adv. Math. Phys., 2021 (2021), 6669287. https://doi.org/10.1155/2021/6669287 doi: 10.1155/2021/6669287
    [51] F. M. Salama, N. N. Abd Hamid, N. H. M. Ali, U. Ali, An efficient modified hybrid explicit group iterative method for the time-fractional diffusion equation in two space dimensions, AIMS Math., 7 (2022), 2370–2392. https://doi.org/10.3934/math.2022134 doi: 10.3934/math.2022134
    [52] J. Ren, Z. Z. Sun, W. Dai, New approximations for solving the Caputo-type fractional partial differential equations, Appl. Math. Model., 40 (2016), 2625–2636. https://doi.org/10.1016/j.apm.2015.10.011 doi: 10.1016/j.apm.2015.10.011
    [53] S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21 (2017), 650–678. https://doi.org/10.4208/cicp.OA-2016-0136 doi: 10.4208/cicp.OA-2016-0136
    [54] Y. Yan, Z. Z. Sun, J. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme, Commun. Comput. Phys., 22 (2017), 1028–1048. https://doi.org/10.4208/cicp.OA-2017-0019 doi: 10.4208/cicp.OA-2017-0019
    [55] M. Zhao, H. Wang, Fast finite difference methods for space-time fractional partial differential equations in three space dimensions with nonlocal boundary conditions, Appl. Numer. Math., 145 (2019), 411–428. https://doi.org/10.1016/j.apnum.2019.05.007 doi: 10.1016/j.apnum.2019.05.007
    [56] P. Lyu, Y. Liang, Z. Wang, A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation, Appl. Numer. Math., 151 (2020), 448–471. https://doi.org/10.1016/j.apnum.2019.11.012 doi: 10.1016/j.apnum.2019.11.012
    [57] C. Gong, W. Bao, G. Tang, Y. Jiang, J. Liu, Computational challenge of fractional differential equations and the potential solutions: A survey, Math. Probl. Eng., 2015 (2015), 258265. https://doi.org/10.1155/2015/258265 doi: 10.1155/2015/258265
    [58] Z. Liu, A. Cheng, X. Li, A fast-high order compact difference method for the fractional cable equation, Numer. Methods Partial Differ. Equations, 34 (2018), 2237–2266. https://doi.org/10.1002/num.22286 doi: 10.1002/num.22286
    [59] J. L. Zhang, Z. W. Fang, H. W. Sun, Exponential-sum-approximation technique for variable-order time-fractional diffusion equations, J. Appl. Math. Comput., 68 (2022), 323–347. https://doi.org/10.1007/s12190-021-01528-7 doi: 10.1007/s12190-021-01528-7
    [60] A. Balasim, N. H. M. Ali, A rotated Crank-Nicolson iterative method for the solution of two-dimensional time-fractional diffusion equation, Indian J. Sci. Technol., 8 (2015), 1–8. https://doi.org/10.17485/ijst/2015/v8i32/92045 doi: 10.17485/ijst/2015/v8i32/92045
    [61] R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge: Cambridge university press, 1994.
    [62] N. Morača, Bounds for norms of the matrix inverse and the smallest singular value, Linear Algebra Appl., 429 (2008), 2589–2601. https://doi.org/10.1016/j.laa.2007.12.026 doi: 10.1016/j.laa.2007.12.026
    [63] A. Mohebbi, M. Abbaszadeh, Compact finite difference scheme for the solution of time fractional advection-dispersion equation, Numer. Algor., 63 (2013), 431–452. https://doi.org/10.1007/s11075-012-9631-5 doi: 10.1007/s11075-012-9631-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1554) PDF downloads(126) Cited by(9)

Article outline

Figures and Tables

Figures(10)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog