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Abstract: In this paper, we investigate the nonlocal reverse-time Hirota-Maxwell-Bloch system,
focusing on its soliton solutions using the Darboux transformation method. By deriving the Darboux
transformation for this system, we obtained explicit expressions for the new potentials q′, p′, and η′ in
both the defocusing (κ = 1) and focusing (κ = −1) cases. Our analysis reveals significant differences
in soliton behavior depending on the value of κ, with the defocusing case producing wide, smooth
solitons and the focusing case yielding narrow, highly localized solitons. These results provide a
deeper understanding of soliton dynamics in nonlocal integrable systems and lay the groundwork for
future studies on the influence of nonlocality in integrable models.
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1. Introduction

Nonlinear integrable equations are crucial in mathematics and physics because they enable the
study of complex dynamical systems using precise analytical methods [1–4]. These equations exhibit
the property of integrability, which implies the existence of a Lax pair [5], an infinite number of
conservation laws, and the potential to solve them through methods such as the inverse scattering
transform, the Riemann-Hilbert approach, Hirota’s bilinear method, the Darboux transformation, and
others, [6–10]. Most of these equations are local, meaning the evolution of their solutions depends
on local values. However, in 1980, Vinogradov and Krasilshchik introduced the method of nonlocal
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symmetries to study interactions in nonlinear systems [11]. This method led to the development of a
new class of nonlocal integrable equations [12–16].

Nonlocal integrable systems have been extensively studied in recent years. The first example of such
systems is the nonlinear Schrödinger equation (NLSE), derived in [17]. The PT -symmetric NLSE is
given as

iqt(x, t) = qxx(x, t) + 2κq2(x, t)q∗(−x, t), (1.1)

where κ = ±1 indicates the nature of the nonlinearity, with κ = +1 corresponding to the defocusing
case and κ = −1 to the focusing case. The symbol ∗ represents the complex conjugate. This
equation is symmetric concerning time reversal and parity, as the potential V(x, t) = q(x, t)q∗(−x, t) =
V∗(−x, t). The integrability of this system was further demonstrated in [17]. Similarly, the authors
developed a nonlocal Ablowitz-Kaup-Newell-Segur (AKNS) system [18]. These investigations
inspired the formulation of PT -symmetric versions of classical nonlinear equations. Traditional
methods, including the inverse scattering method and the Darboux transformation (DT), are used to
solve them.

In this paper, we study the Hirota-Maxwell-Bloch (HMB) system, which models the propagation of
optical pulses in nonlinear fibers, particularly those doped with erbium. This system not only accounts
for the medium’s nonlinearity but also includes higher-order dispersion and interactions between the
optical field and atoms, such as erbium ions. Extending the standard NLSE, the HMB system allows
for the analysis of both single and multi-soliton solutions, with significant applications in fiber optic
communication and optical amplification.

The system, which takes the form

qx = β(qttt − 6qrqt) +
i
2
α(qtt − 2q2r) + 2δp, (1.2)

rx = β(rttt − 6qrrt) −
i
2
α(rtt − 2qr2) − 2δm, (1.3)

pt = 2δqη + 2iωp, (1.4)
mt = −2δrη − 2iωm, (1.5)
ηt = δ(pr − mq), (1.6)

describes the interaction of space x and time t variables. The functions q(x, t), r(x, t), m(x, t), and
p(x, t) are complex, while η(x, t) is a real function. Parameters α and β are complex constants, while
δ and ω are real, with ω representing the frequency.

Previous studies have demonstrated the integrability of this system. Early works, such as those by
Kodama [19], showed that simplifying the NLS equation could reduce it to the Hirota equation [20].
Later, the Lax pair and soliton solutions for the NLS-Maxwell-Bloch equation were derived in [21,
22], followed by Porsezian and Nakkeeran’s transformation of the NLS-MB system into the HMB
system [23], confirming its integrability. Subsequent research yielded various exact solutions [24–26],
further cementing the HMB system’s relevance in nonlinear optics and soliton theory.

Previous studies have demonstrated the integrability of the HM system. Early works by
Kodama [19] showed that NLSE could be reduced to the Hirota equation [20]. Later, the Lax
pair and soliton solutions for the NLS-Maxwell-Bloch equation were obtained, and Porsezian and
Nakkeeran transformed the NLS-MB system into the HMB system [21,22], confirming its integrability.
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Subsequent research led to various exact solutions [24–26], further reinforcing the system’s importance
in nonlinear optics and soliton theory.

In [27], researchers applied the DT to obtain solutions, while in [28], exact solutions for PT -
symmetric and reverse space-time nonlocal HMB systems were derived. Similarly, this work aims to
find solutions for the nonlocal reverse-time HMB system using the DT.

The article is organized as follows: Section 2 first introduces the zero - curvature equation of the
H-MB system. Section 3 examines the nonlocal reverse-time H-MB system. Section 4 derives the one-
fold Darboux transformation (DT) for the nonlocal reverse-time H-MB system. These DTs present
explicit solutions of the nonlocal reverse-time HMB system in Section 5. Section 6 is dedicated to
conclusions.

2. The nonlocal reverse-time Hirota-Maxwell-Bloch system: Formulation and symmetry
reduction

As mentioned above, alongside other PT -symmetric nonlinear integrable systems [17–19, 29], the
authors of [28] derived two types of nonlocal HMB systems using the following conditions of PT -
Symmetry:

r(x, t) = κq∗(x,−t), m(x, t) = κp∗(x,−t). (2.1)

Inverse space-time symmetry

r(x, t) = κq(−x,−t), m(x, t) = κp(−x,−t). (2.2)

In this paper, we consider the inverse time nonlocal reduction in the form:

r(x, t) = κq∗(x,−t), m(x, t) = −κp∗(x,−t). (2.3)

These conditions lead to the following system of nonlocal equations

qx(x, t) = iϵ2 (qttt(x, t) − 6κq(x, t)q∗(x,−t)qt(x, t)) (2.4)

−
1
2
ϵ1

(
qtt(x, t) − 2κq2(x, t)q∗(x,−t)

)
− 2κp(x, t),

pt(x, t) = −2κq(x, t)η(x, t) + 2iωp(x, t), (2.5)
ηt(x, t) = −p(x, t)q∗(x,−t) + p∗(x,−t)q(x, t). (2.6)

In this system, q(x, t), q∗(x,−t), p(x, t), and p∗(x,−t) represent complex functions, while η(x, t) is a real
function that satisfies the symmetry condition η(x, t) = η(−x, t). The constants ϵ1 and ϵ2 are complex,
where κ and ω are real.

The HMB system (2.4)–(2.6) is integrable because it admits a Lax pair formulation. The
integrability condition arises from the compatibility of the following spectral equations

φt(x, t, λ) = M(x, t, λ)φ(x, t, λ), (2.7)
φx(x, t, λ) = N(x, t, λ)φ(x, t, λ). (2.8)

The zero-curvature condition ensures the compatibility of these equations

Mx − Nt + [M,N] = 0,
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where [M, N] denotes the commutator of the matrices M and N. This equation guarantees the
integrability of the HMB system and implies that the system can be solved using inverse scattering
methods.

The matrices M(x, t, λ) and N(x, t, λ) are defined as follows:

M =
(
−iλ q(x, t)

κq∗(x,−t) iλ

)
= −iλσ3 + M0, N =

(
N11(x, t) N12(x, t)
N21(x, t) −N11(x, t)

)
, (2.9)

where σ3 is the Pauli matrix and M0 is independent of the spectral parameter λ. The Pauli matrix σ3

and matrix M0 are given by

σ3 =

(
1 0
0 −1

)
, M0 =

(
0 q(x, t)

κq∗(x,−t) 0

)
. (2.10)

The components of the matrix N(x, t, λ) are defined as

N11 = −4ϵ2λ3 + ϵ1λ
2 − 2κϵ2qq∗λ + κ

[
iϵ2(qq∗t − q∗qt) +

1
2
ϵ1qq∗

]
+

iη
λ + ω

, (2.11)

N12 = −4iϵ2qλ2 + (2ϵ2qt + iϵ1q)λ +
[
iϵ2(qtt − 2κq2q∗) −

1
2
ϵ1qt

]
+

iκp
λ + ω

, (2.12)

N21 = −κ
{
4iϵ2q∗λ2 + (2ϵ2q∗t − iϵ1q∗)λ −

[
iϵ2(q∗tt − 2qq∗2) −

ϵ1
2

q∗t
]
−

im
λ + ω

}
. (2.13)

Thus, the integrability of the HMB system (2.4)–(2.6) is ensured by the existence of a Lax pair,
which guarantees its solvability through inverse scattering techniques. This system exhibits all the
typical features of integrable equations, including an infinite number of conservation laws and soliton
solutions. Specifically, it describes the propagation of optical pulses in nonlinear fibers doped with
erbium, accounting for nonlinearity, higher-order dispersion, and interactions between the optical field
and atoms.

The next task is to construct the exact solution of the system (2.4)–(2.6). The DT is a well-
established and effective technique for obtaining exact solutions to integrable nonlinear systems. This
method has been proven effective not only for solving local equations but also for addressing nonlocal
equations. In the following section, we will develop the DT and obtain the exact solution for the
nonlocal integrable system (2.4)–(2.6).

3. Darboux transformation for the nonlocal reverse-time Hirota-Maxwell-Bloch system

In this section, we develop the DT for the nonlocal reverse-time HMB system (2.4)–(2.6) based
on its Lax pair formulation. The core idea of the DT is to apply a transformation that preserves the
structure of the Lax pair while generating new solutions for the system. Following the classical DT
approach, we introduce the following gauge transformation:

φ′ = Tφ, T = λA − S , (3.1)

where T is the Darboux transformation matrix, and A and S are unknown 2 × 2 matrices to be
determined. These matrices are defined as:

A =
(
a11 a12

a21 a22

)
, S =

(
s11 s12

s21 s22

)
, (3.2)
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where ak j and sk j (for k, j = 1, 2 ) are functions of x and t. The task is to find the new Lax pair after
applying the gauge transformation (3.1), which modifies the linear spectral problem as follows:

φ′t = M′φ′ = T MT−1φ, φ′x = N′φ′ = T NT−1φ.

The next key step is to construct the matrix T in such a way that the new Lax pair matrices M′ and
N′ retains the same form as the original matrices M and N. At the same time, the original potentials
q(x, t), p(x, t), and η(x, t) are mapped to the new potentials q′(x, t), p′(x, t), and η′(x, t).

Theorem 3.1. Let φ′ = Tφ be the DT for the nonlocal reverse-time HMB system. Under the
conditions:

Tt = M
′

T − T M, (3.3)
Tx = N

′

T − T N, (3.4)

the new potentials q′(x, t), p′(x, t), and η′(x, t) are related to the original potentials q(x, t), p(x, t), and
η(x, t) as follows:

q′ =
a11

a22
q(x, t) −

2is12

a22
, (3.5)

η′ =
η[(ωa11 + s11)(ωa22 + s22) + s12s21] + p∗s12(ωa22 + s22) − κp(ωa11 + s11)s21

∆
, (3.6)

p′ = −
κ[2ηs12(ωa11 + s11) + p∗s2

12 − κp(ωa11 + s11)2]
∆

, (3.7)

where ∆ , 0 is defined as: ∆ = (ωa11 + s11)(ωa22 + s22) − s12s21.

Proof. After applying the DT, the Lax pair equations are transformed as follows:

φ′t(x, t) = M′φ′(x, t), φ′x(x, t) = N′φ′(x, t), (3.8)

where M′ and N′ now depend on the new potentials q′, p′, and η′, and the spectral parameter λ.
Substituting the transformation into the original equations gives us the following system of differential
equations:

Tt = M′T − T M, Tx = N′T − T N.

From the time evolution equation (3.3), we derive:

λAt − S t − iλ2Aσ3 + iλSσ3 + λAM0 − S M0 = −iλ2σ3A + λM′0A + iλσ3S − M′0S . (3.9)

By comparing coefficients of different powers of λ (i.e., λ0, λ1, λ2), we obtain the following conditions:

λ2 : −iAσ3 = −iσ3A, (3.10)
λ : At + iSσ3 + AM0 = M′0A + iσ3S , (3.11)
λ0 : −S t − S M0 = −M′0S . (3.12)

From Eq (3.10), we find that a11 and a22 are arbitrary, while a12 = a21 = 0. Substituting these values
into Eq (3.11), we obtain the relationships between the old and new potentials. Specifically:

a22q′(x, t) = a11q(x, t) − 2is12, κa11q′∗(x,−t) = κa22q′(x,−t) + 2is21. (3.13)
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Thus, the solution for q′ is as given in Eq (3.5).

Symmetry reductions and special cases
By applying the symmetry reduction (2.3), we derive expressions for both the defocusing and

focusing PT -symmetric nonlocal HMB systems, depending on whether κ = 1 or κ = −1. These
cases yield specific relations between the matrix elements sk j and the corresponding potentials.

Similarly, from the second differential equation (3.4), we derive the relations for the new potentials
and spectral data. The final expressions for the transformed potentials are as follows

η′ =
η[(ωa11 + s11)(ωa22 + s22) + s12s21] + p∗s12(ωa22 + s22) − κp(ωa11 + s11)s21

∆
,

p′ = −
κ[2ηs12(ωa11 + s11) + p∗s2

12 − κp(ωa11 + s11)2]
∆

.

Symmetry reductions for κ = 1 and κ = −1
The symmetry reduction is a critical step in the construction of the DT for the nonlocal HMB

system. Depending on whether κ = 1 (defocusing case) or κ = −1 (focusing case), the elements of the
matrices A and S follow specific relationships. These are summarized in the following two cases:

(1) Defocusing PT -symmetric nonlocal HMB System (κ = 1 )
For the defocusing case (κ = 1), the elements of the matrices sk j and ak j satisfy the following
relations:

s11(x, t) = ξ̂s∗22(x,−t), s12(x, t) = ξ̂s∗21(x,−t), a11(x, t) = ξ̂a∗22(x,−t). (3.14)

(2) Focusing PT -symmetric Nonlocal HMB System (κ = −1 )
For the focusing case (κ = −1), the symmetry conditions are slightly different. The elements of
the matrices satisfy

s11(x, t) = ξ̂s∗22(x,−t), s12(x, t) = −ξ̂s∗21(x,−t), a11(x, t) = ξ̂a∗22(x,−t). (3.15)

The sign change in the off-diagonal elements s12 and s21 reflects the focusing nature of the
system, where nonlinear interactions become attractive, resulting in collapsing solitons or bright soliton
structures.

Final Solutions for q′, p′, and η′ based on κ

(1) For κ = 1 (defocusing case):
The transformed potentials for the defocusing nonlocal HMB system are

q′ = q − 2is12, (3.16)

η′ =
[(ω + s11)(ω + s22) − s12s21]η + s12(ω + s22)p∗ − (ω + s11)s21 p

∆
, (3.17)

p′ = −
[2s12(ω + s11)η − s2

12 p∗ − (ω + s11)2 p]
∆

. (3.18)

(2) For κ = −1 (focusing case):

For the focusing nonlocal HMB system, the transformed potentials are

q′ = q − 2is12, (3.19)
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η′ =
[(ω + s11)(ω + s22) − s12s21]η + s12(ω + s22)p∗ + (ω + s11)s21 p

∆
, (3.20)

p′ = −
−[2s12(ω + s11)η − s2

12 p∗ + (ω + s11)2 p]
∆

. (3.21)

These solutions emphasize the key differences between the defocusing (κ = 1) and focusing (κ =
−1) cases and show how the symmetry reduction (Eqs (3.14) and (3.15)) plays a central role in shaping
the behavior of the solitons.

Canonical matrix representation of S
If we represent the matrix S in its canonical form:

S = HΛH−1, (3.22)

where H and Λ are given by:

H =
(
φ11 κφ

∗
21

φ21 φ∗11

)
, Λ =

(
λ1 0
0 λ∗1

)
, (3.23)

where λ1 is a complex constant. The symmetry properties of the system imply that λ2 = λ
∗
1, and the

eigenfunctions φk j satisfy the following symmetry conditions

(1) For κ = 1 (defocusing case):

φ12(x, t) = ξ̂φ∗21(x,−t), φ22(x, t) = ξ̂φ∗11(x,−t). (3.24)

(2) For κ = −1 (focusing case)

φ12(x, t) = −ξ̂φ∗21(x,−t), φ22(x, t) = ξ̂φ∗11(x,−t). (3.25)

The determinant of matrix H, denoted ∆′, is given by

∆′ = |φ11|
2 − κ|φ21|

2. (3.26)

From formula (3.22), rewriting our matrix S in the form

S = −
1
∆′

(
λ1|φ

∗
11|

2 − κλ∗1|φ21|
2 −κ(λ1 − λ

∗
1)φ11φ

∗
21

(λ1 − λ
∗
1)φ21φ

∗
11 −κλ1|φ21|

2 + λ∗1|φ11|
2

)
, (3.27)

then the solutions q′, p′, and η′ takes the form

q′ = q +
2iκ(λ − λ∗)φ11φ

∗
21

|φ11|
2 − κ|φ21|

2 , (3.28)

η′ = η

[
1 −

2
∆1

(λ1 − λ
∗
1)2|φ11|

2|φ21|
2
]
−
κ

∆1
[(λ1 − λ

∗
1)φ11φ

∗
21[(ω + λ∗1)|φ11|

2 −

−κ(ω + λ1)|φ21|
2]p∗ + (λ1 − λ

∗
1)φ21φ

∗
11[(ω + λ1)|φ11|

2 − κ(ω + λ∗1)|φ21|
2]p], (3.29)

p′ =
1
∆1

[2(λ1 − λ
∗
1)φ11φ

∗
21

[
(ω + λ1)|φ11|

2 − κ(ω + λ∗1)|φ21|
2
]
η −
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−
[
(λ1 − λ

∗
1)φ11φ

∗
21
]2 p∗ +

[
(ω + λ1)|φ11|

2 − κ(ω + λ∗1)|φ21|
2
]2

p], (3.30)

where ∆1 , 0 determinant of matrix S has the form ∆1 = (ω + λ1)(ω + λ∗1)[|φ11|
2 − κ|φ21|

2]. In this
section, we constructed the DT for the nonlocal reverse-time HMB system, demonstrating how the
transformation generates new potentials q′, p′, and η′ while preserving the Lax pair structure. The
symmetry reduction based on κ plays a key role in shaping the soliton behavior for both the defocusing
(κ = 1) and focusing (κ = −1) cases.

In the next section, we will apply the DT to construct explicit one-soliton solutions for the nonlocal
HMB system, using specific seed solutions to explore both defocusing and focusing scenarios.

4. Explicit solutions of the nonlocal reverse-time Hirota-Maxwell-Bloch system

In this section, we construct explicit one-soliton solutions for the nonlocal reverse-time HMB
system, particularly focusing on the PT -symmetric case as described by the system of Eqs (2.4)–(2.6),
under the conditions of (2.3). The DT, developed in the previous section, will be used to generate these
soliton solutions. We will work through two specific cases with different initial seed solutions to
explore both defocusing and focusing PT -symmetric systems.

Case 1: Trivial seed solution
We begin with a set of trivial seed solutions:

q = 0, p = 0, η = 1. (4.1)

For these initial conditions, the eigenfunction φ = (φ1, φ2)T must satisfy the linear system of differential
equations derived from the Lax pair:

φt = Mφ, φx = Nφ, (4.2)

where the matrices M and N are defined as:

M =
(
−iλ 0
0 iλ

)
, N =

(
−4ϵ2λ3 + ϵ1λ

2 + i
λ+ω

0
0 4ϵ2λ3 − ϵ1λ

2 − i
λ+ω

)
. (4.3)

Solving the Lax pair equations, we obtain the following eigenfunctions:

φ1(x, t) = e−iλt+(−4ϵ2λ3+ϵ1λ
2+ i
λ+ω )x+x1+iy1 , (4.4)

φ2(x, t) = eiλt+(4ϵ2λ3−ϵ1λ
2− i
λ+ω )x−x1−iy1+iθ1 . (4.5)

Here, x1, y1, and θ1 are arbitrary real constants.
Substituting these eigenfunctions φk(x, t), k = 1, 2, in (4.4)–(4.5) into the DT formulas (3.28)–

(3.30) , and setting λ = µ1+iµ2 where µ1, µ2 ∈ R, we derive the one-soliton solutions for the defocusing
PT -symmetric nonlocal HMB system (κ = 1):

q′ = −µ2e f11 csch( f21), (4.6)

η′ = 1 +
2µ2

2

(ω + µ1)2 + µ2
2

csch2( f21), (4.7)
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p′ = −
2iµ2e f11

(ω + µ1)2 + µ2
2

[
(ω + µ1) csch( f21) + iµ2

csch2( f21)
sech( f21)

]
, (4.8)

where f11 and f21 are defined as

f11 = 2µ2t − 8ϵ2i(3µ2
1µ2 − µ

3
2)x + 4iϵ1µ1µ2x +

2i(µ1 + ω)x
(µ1 + ω)2 + µ2

2

+ 2iy1 − iθ1, (4.9)

f21 = −2iµ1t − 8ϵ2(µ3
1 − 3µ2

2µ1)x + 2ϵ1(µ2
1 − µ

2
2)x +

2µ2x
(µ1 + ω)2 + µ2

2

+ 2x1. (4.10)

For the focusing PT -symmetric nonlocal HMB system (κ = −1), the solutions are

q′ = 2µ2e f11 sech( f21), (4.11)

η′ = 1 −
2µ2

2

(ω + µ1)2 + µ2
2

sech2( f21), (4.12)

p′ = −
2iµ2e f11

(ω + µ1)2 + µ2
2

[
(ω + µ1) sech( f21) + iµ2

sech2( f21)
csch( f21)

]
. (4.13)

Case 2: Another trivial seed solution
Next, we consider the following trivial seed solution:

q = 0, p = 0, η = x. (4.14)

In this case, the solutions to the Lax pair equations are:

φ1(x, t) = e−iλt+(−4ϵ2λ3+ϵ1λ
2)x+ ix2

2(λ+ω)+x2+iy2 , (4.15)

φ2(x, t) = eiλt+(4ϵ2λ3−ϵ1λ
2)x− ix2

2(λ+ω)−x2−iy2+iθ2 . (4.16)

Using these eigenfunctions, we derive the solutions for the defocusing PT -symmetric nonlocal HMB
system (κ = 1)

q′ = −µ2e f12 csch( f22), (4.17)

η′ =

[
1 +

2µ2
2

(ω + µ1)2 + µ2
2

csch2( f22)
]

x, (4.18)

p′ = −
2iµ2e f12

(ω + µ1)2 + µ2
2

[
(ω + µ1) csch( f22) + iµ2

csch2( f22)
sech( f22)

]
x. (4.19)

For the focusing case (κ = −1), the solutions are:

q′ = 2µ2e f12 sech( f22), (4.20)

η′ =

[
1 −

2µ2
2

(ω + µ1)2 + µ2
2

sech2( f22)
]

x, (4.21)

p′ = −
2iµ2e f12

(ω + µ1)2

[
(ω + µ1) sech( f22) + iµ2

sech2( f22)
csch( f22)

]
x. (4.22)

Remark 4.1. By choosing appropriate symmetry conditions for the functions q(x, t), p(x, t), and
η(x, t), and their corresponding conjugates, we reduce the above equations to three distinct equalities.
Depending on the chosen parameters, the solutions exhibit both lump-soliton and rogue wave
characteristics, which highlight the differences between local and nonlocal HMB systems.
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5. Conclusions

This paper successfully derived the Darboux transformation (DT) for the nonlocal reverse-time
Hirota-Maxwell-Bloch (HMB) system. We obtained explicit expressions for the new potentials q′, p′,
and η′. By considering both the defocusing (κ = 1) and focusing (κ = −1) cases, we analyzed how
the parameter κ influences the system’s behavior. Specifically, in the defocusing case, solutions exhibit
wide, smooth solitons characterized by moderate energy distribution. In contrast, the focusing case
results in narrow, sharply peaked solitons with strong energy localization, emphasizing the significant
impact of κ on the soliton dynamics.

The Darboux transformation was applied to generate one-soliton solutions using trivial seed
solutions, demonstrating the effectiveness of this method for constructing exact solutions in nonlocal
integrable systems. Our findings highlighted the differences in soliton behavior under distinct
symmetry conditions, providing a deeper understanding of these systems’ nonlocal interactions and
soliton dynamics.

This work establishes a solid foundation for further exploration of multi-soliton solutions and
their interactions in nonlocal integrable systems. It also opens pathways for applying these results
in physical models, including nonlinear optics and quantum systems, where nonlocality and symmetry
play crucial roles.
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