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Abstract: In KST, it is always assumed that the knowledge state represents items that an individual can
solve in ideal conditions. Namely, the answers of individuals to items can be encoded as either correct
or incorrect. The correct answer indicates a complete mastery of the item, but the incorrect answer
may indicate a partial mastery of the item. It is reasonable to use a fuzzy knowledge state to represent
the partial mastery of items instead of complete mastery. The fuzzy knowledge state of an individual is
represented by a fuzzy set in F (Q) that the individual is capable of solving. For any fuzzy knowledge
state, each item has a value that represents the level of individual mastery of the item. Fuzzy knowledge
spaces and fuzzy learning spaces are generalizations of knowledge spaces and learning spaces. The
generalization based on partial order is helpful to distinguish the equally informative items, which
can directly induce a discriminative fuzzy knowledge structure. It is effective to use fuzzy knowledge
spaces and fuzzy learning spaces to assess knowledge and guide further learning. A fuzzy knowledge
space and a fuzzy learning space can be faithfully summarized by the fuzzy knowledge basis, since they
are union-closed. Any fuzzy knowledge state of a fuzzy knowledge space can be generated by forming
the union of some fuzzy knowledge states in the basis. A fuzzy knowledge basis is a generalization of
the knowledge basis of a knowledge space.

Keywords: fuzzy knowledge state; fuzzy knowledge space; fuzzy learning space; fuzzy knowledge
basis
Mathematics Subject Classification: 03B52, 03E72

1. Introduction

The theory of knowledge spaces (KST) provides a mathematical framework for assessment of
knowledge and advices for further learning [8, 14]. KST makes a dynamic evaluation process, where
the accurate dynamic evaluation is based on individuals’ responses to items and the quasi order
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(surmise relation) on domain Q [8, 36].
The ways to construct knowledge state of an individual or knowledge structure of a population are

the core of KST. The query [13, 18, 24, 25] and ps-query [6] algorithms have been designed to build
knowledge structures and knowledge states by interviewing experienced experts. As a result, based on
the expert’s judgment, the individual’s answer to an item is only extreme cases of completely correct
or incorrect. The assumption excludes the possibility of intermediate degrees of mastering an item.
For instance, it does not make sense even if an individual has mastered 80% or 90% of an item, which
indicates that the individual does not fully master the item.

If the item is elementary, it is reasonable that the answer can be clearly classified as “correct” (1) or
“incorrect” (0). For example, for an item 3+7=?, the answer of the item is unique. It is unreasonable
for some complex items to be only classified as “correct” (1) or “incorrect” (0). For example, what is
the key factor affecting people’s life span? The answer could be heredity, diet or wealth, etc. Therefore,
it is natural to use a fuzzy set in F (Q) to represent a partial mastery of items.

The knowledge state of an individual is inferred from their responses to items. A fuzzy knowledge
state assigns a value in [0, 1] for each item q instead of {0, 1}. The degree of membership K̃(q)
represents the mastery degree in item q of individual. It is natural to use fuzzy knowledge states
to represent the items that individuals can partially solve. A fuzzy knowledge state can be formed
according to the test of “item raw scores” by subjects, and what we get is always a fuzzy knowledge
state of an individual or a fuzzy knowledge structure of a certain population. Fuzzy knowledge spaces
and fuzzy learning spaces can be developed as a theoretical framework in which partial mastery of
items can be handled mathematically. A fuzzy knowledge state provides a broad way for knowledge
assessment and it can accurately evaluate knowledge, guide future learning and take some remedial
course for individuals. Specifically, the dichotomous knowledge state K is included in the set {0, 1} as
an extreme case of a fuzzy knowledge state.

In 1997, Schrepp attempted to generalize the main KST concepts to items with more than two
response alternatives [28]. In 2020, Stefanutti et al. provided the mathematical foundation for the
generalization of KST to the case of more than two ordered response categories [32]. Another related
study was proposed by Bartl and Belohlavek in 2011 from the perspective of complete residuated
lattice in fuzzy logic [3]. They studied the generalization of KST from the linearly ordered set, the
complete lattice and complete residuated lattice, respectively. Recently, Heller generalized quasi-
ordinal knowledge spaces to polytomous items, where each item allows for partially ordered response
values forming lattices [23, 37]. They generalized KST from a perspective of quasi-order, that is,
surmise relation. However, our work starts from a partial order on Q. The generalization of KST based
on partial order is helpful to distinguish the equally informative items, which can directly derive a
discriminative fuzzy knowledge structure.

In KST, the knowledge state of an individual represents the subject’s complete mastery of items.
That means, the evaluation criteria on Q is β = (1, 1, · · · , 1). Rely on partial order on Q, we generalize
the evaluation criteria β = (1, 1, · · · , 1) to the evaluation criteria β = (β1, β2, · · · , βn), where βi ∈ [0, 1]
for each 1 ≤ i ≤ n. For a given β = (β1, β2, · · · , βn), we say that the item q has mastered under β,
as long as the level of proficiency in item q reaches βq. The fuzzy learning smoothness indicates that
there is only one item that can be learned at a time under β. The fuzzy learning consistency shows
that knowing more does not prevent from partially learning something new, where partially learning
an item q means reaching the evaluation criteria βq. A fuzzy learning space can help to guide learning
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for individuals, and guide teaching for educators.
A fuzzy knowledge spaces can be faithfully summarized by a subfamily of their fuzzy knowledge

states. Any fuzzy knowledge state in (Q, K̃) can be generated by forming the union of some fuzzy
knowledge states in the fuzzy knowledge basis. The fuzzy knowledge basis is smaller than the fuzzy
knowledge space, which results in a substantial economy of storage in a computer memory. In 1993,
Dowling proposed an algorithm for finding the basis of a knowledge space [11]. The algorithm can be
extended to a fuzzy knowledge space and it can also obtained the fuzzy knowledge basis.

The rest of paper is organized as follows. Section 2 presents some relevant background about
KST and the fuzzy set theory. We introduce fuzzy knowledge states and fuzzy knowledge spaces in
Sections 3 and 4. Fuzzy learning spaces are discussed in Section 5. Section 6 introduces the fuzzy
basis of fuzzy knowledge space. Section 7 summarizes the major results of this paper.

2. Overview of KST and fuzzy set theory

A field of knowledge that can be parsed into a nonempty finite set of items, is denoted by Q.
Sometimes, Q can be conceptualized as comprising a specified set of notions, where a notion can
be identified with a problem or an equivalence class of problems. The knowledge state is the subset
of Q, which an individual is capable of solving in ideal conditions, denoted by K. A collection of
knowledge state is called knowledge structure, denoted by (Q,K), where K contains at least ∅ and Q.
Since

⋃
K = Q, we shall sometimes simply say thatK is the knowledge structure when the domain can

be omitted without ambiguity. There are two special types of knowledge structures, namely, knowledge
spaces and learning spaces. A knowledge structure K is called a knowledge space if it is closed under
union, i.e., K, L ∈ K implies K ∪ L ∈ K . A knowledge space is called a quasi-ordinal space if it is
additionally closed under intersection, i.e., K, L ∈ K implies K ∩ L ∈ K . Another special knowledge
structure is called learning space if it satisfies the two following conditions [7, 14]:

[L1] Learning smoothness. For any two states K, L such that K ⊂ L, there exists a finite chain of
states K = K0 ⊂ K1 ⊂ · · · ⊂ Kp = L such that |Ki\Ki−1| = 1 for 1 ≤ i ≤ p and so |L\K| = p. In
pedagogical view: If the state K of the learner is included in some other state L, then the learner can
reach state L by mastering the missing items one at a time.

[L2] Learning consistency. If K, L are two states satisfying K ⊂ L and q is an item such that
K + {q} ∈ K , then L∪ {q} ∈ K , where K + {q} means q < K. In pedagogical view: Knowing more does
not prevent from learning something new. For a detailed description of KST, please refer to Falmagne
and Doignon [8, 10, 14, 15].

Let I be the unit closed interval [0, 1] and Q be a nonempty finite set of items. A mapping from Q
to I is said to be a fuzzy set on Q. Alternatively, the fuzzy power set of Q is denoted by F (Q). A fuzzy
set K̃ ∈ F (Q) is denoted by { K̃(q)

q | q ∈ Q} and some K̃(q)
q are omitted if K̃(q) = 0 for q ∈ Q. For any

fuzzy set K̃ ∈ F (Q), K̃(q) is the membership degree of q to K̃. Some operations of fuzzy sets in F (Q)
are simply defined as follows [35, 38]:
(1). K̃1 = K̃2 ⇐⇒ K̃1(q) = K̃2(q),∀q ∈ Q; (2). K̃1 ⊆ K̃2 ⇐⇒ K̃1(q) ≤ K̃2(q),∀q ∈ Q;
(3). (K̃1 ∪ K̃2)(q) = K̃1(q) ∨ K̃2(q),∀q ∈ Q; (4). (K̃1 ∩ K̃2)(q) = K̃1(q) ∧ K̃2(q),∀q ∈ Q;
(5). K̃c(q) = 1 − K̃(q),∀q ∈ Q; (6). K̃1\K̃2 = K̃1 ∩ K̃c

2.
In the paper, the domain Q is a finite set of items, denoted by Q = {q1, q2, · · · , qn}, and K̃ is a family

of fuzzy knowledge states.
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3. Fuzzy knowledge state

Consider the domain U = {a, b, c, d, e, f } equipped with the knowledge structure:

K = {∅, {d}, {a, c}, {e, f }, {a, b, c}, {a, c, d}, {d, e, f }

{a, b, c, d}, {a, c, e, f }, {a, c, d, e, f },Q}.

This knowledge structure contains 11 knowledge states, including ∅ and Q [14]. Scanning from left to
right, we can find some learning paths from ∅ to Q. The concept of learning path in the finite case was
introduced by Falmagne and Doignon [13,16]. At first, a student knows nothing about the field, and is
thus in knowledge state ∅. He/she may then gradually learn from ∅ until completely masters all items
in Q.

It’s necessary to analyze the relationship between items for knowledge assessment. For a knowledge
structure K , denote by Kq = {K | q ∈ K,∀K ∈ K} the collection of all knowledge states in K
containing item q. Let K be a knowledge structure, the surmise relation “�” on Q be defined as
r � q ⇐⇒ r ∈

⋂
Kq [8, 14]. In the above knowledge structure, we get

⋂
Ka = {a, c},

⋂
Kb =

{a, b, c},
⋂
Kc = {a, c},

⋂
Kd = {d},

⋂
Ke = {e, f },

⋂
K f = {e, f }, which actually reveals the surmise

relation of items. We can verify that the surmise relation of the above knowledge structure is {a �
c, c � a, e � f , f � e, a � b, c � b}, see Figure 1.

b

e, f a, c

OO

d

Figure 1. Hasse diagram of the surmise relation of K .

The interpretation of the surmise relation between items is given as follows. Item a, c is simpler
than b, they are the premise or foundation of b. If a subject can solve b, he must be able to solve a, c,
but, if he can solve a and c, he will not necessarily be able to solve b. The relationship between items
is determined when the knowledge domain is given. It is the essential feature of knowledge domain
Q, and it will not change with the knowledge sates of individuals or knowledge structure of a certain
population. For instance, the item “2 + 3 =?” is simpler than item “2.07 + 1.931 =?”, but not other
relation.

A direct way to determine a fuzzy knowledge state is from the perspective of surmise relation, that
is a special quasi order. We can verify

Ka = Kc = {{a, c}, {a, b, c}, {a, c, d}, {a, b, c, d}, {a, c, e, f }, {a, c, d, e, f },Q}.

That means, items a and c are equally informative, any individual whose state contains item a has
necessarily mastered item c, and vice versa. Similarly, e and f are also equally informative. Therefore,
in order to avoid redundant computation, we start from a partial order on Q to extend the knowledge
state. A partial order is a more strictly relation than surmise relation on Q. Theorem 2 indicates a
discriminative fuzzy knowledge structure can be directly derived from a partially ordered set (Q,R).
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Definition 1. For a partially ordered set (Q,R), a function K̃ : Q→ [0, 1] is called a fuzzy knowledge
state if K̃(q) ≤ K̃(r) when (r, q) ∈ R for any r, q ∈ Q.

Remark 1. The K̃(r) is called degree of membership of fuzzy knowledge state K̃ about r. Let Q =

{a, b, c, d, e} and a partial order on Q be

R = {(b, c), (c, d), (a, e), (b, e), (c, e), (d, e)}.

The partial order can determine whether a fuzzy set in F (Q) is a fuzzy knowledge state. Any
fuzzy set K̃ : Q → [0, 1] can be regard as a fuzzy knowledge state of R if it simultaneously
satisfies K̃(c) ≤ K̃(b), K̃(d) ≤ K̃(c), K̃(e) ≤ K̃(a), K̃(e) ≤ K̃(b), K̃(e) ≤ K̃(c), K̃(e) ≤ K̃(d).
It’s obvious that (q, q) ∈ R for any q ∈ Q, they can be omitted from R without ambiguity. Let
K̃1 = { 0.3a ,

0.8
b ,

0.7
c ,

0.6
d ,

0.2
e }, K̃2={

0.7
a ,

0.9
b ,

0.8
c ,

0.6
d ,

0.5
e }, K̃3 = { 0.9a ,

0.7
b ,

0.6
c ,

0.5
d ,

0.4
e }, the knowledge states can

be regard as fuzzy knowledge states on R, since all the fuzzy knowledge states satisfy K̃(q) ≤ K̃(r)
for any (r, q) ∈ R. Let K̃4 = { 0.3a ,

0.2
b ,

0.8
c ,

1
d ,

0.6
e }, then K̃4 is not a fuzzy knowledge state of R, since

K̃4(b) ≤ K̃4(c). A partial order on Q is derived by experienced experts or teacher analyzing the
relationships between items. A family of fuzzy knowledge states be called a fuzzy knowledge structure
when it contains fuzzy knowledge states { 0

q1
, 0

q2
, · · · , 0

qn
} and { 1

q1
, 1

q2
, · · · , 1

qn
}.

Definition 2. Let (Q, K̃) be a fuzzy knowledge structure. The set of all the items contained in the
same membership degree of fuzzy knowledge states as item q is called a notion. Denoted by q∗, where
q∗ = {r ∈ Q | K̃(q) = K̃(r),∀K̃ ∈ K̃}.

It’s obvious that the collection Q∗ of all notions is a partition of the domain Q. The equivalence
class in q∗ means the same degree of membership of items in a fuzzy knowledge structure. A fuzzy
knowledge structure in which each notion contains a single item is called a discriminative fuzzy
knowledge structure.

Example 1. Let Q = {a, b, c, d, e} and a partial order on Q be

R = {(b, c), (c, d), (a, e), (b, e), (c, e), (d, e)}.

A fuzzy knowledge structure: K̃={{0a ,
0
b ,

0
c ,

0
d ,

0
e }, { 0.8a ,

0.8
b ,

0.6
c ,

0.5
d ,

0.2
e }, {0.7a ,

0.7
b ,

0.4
c ,

0.3
d ,

0.3
e },

{ 0.5a ,
0.5
b ,

0.3
c ,

0.2
d ,

0.1
e }, {

0.9
a ,

0.9
b ,

0.8
c ,

0.7
d ,

0.6
e }, {

0.8
a ,

0.8
b ,

0.7
c ,

0.6
d ,

0.5
e }, {

1
a ,

1
b ,

1
c ,

1
d ,

1
e }} is not discriminative,

since for each fuzzy knowledge state K̃ ∈ K̃ , we have K̃(a) = K̃(b). That is, items a and b are equally
informative. A discriminative fuzzy knowledge structure can always be manufactured from any fuzzy
knowledge structure (Q, K̃) by forming the notions. A discriminative fuzzy knowledge structure K̃ ∗

induced by K̃ on Q∗ via the definition a new domain Q∗ = {q∗ | q ∈ Q}. The discriminative fuzzy
knowledge structure K̃ ∗ = {K̃∗|K̃ ∈ K̃}, where K̃∗ : Q∗ → [0, 1] such that K̃∗(q∗) = K̃(q) for any
q ∈ Q, q∗ ∈ Q∗. We have the following conclusion to determine whether a fuzzy knowledge structure is
discriminative.

Theorem 1. A fuzzy knowledge structure (Q, K̃) is discriminative if and only if there exists a K̃ ∈ K̃
such that K̃(q) , K̃(r) when (q, r) < R.

Proof. Let R be the partial order of the fuzzy knowledge structure (Q, K̃). Each notions q∗ = {q} is
singletons when (Q, K̃) is discriminative. Necessity: If K̃(q) = K̃(r) for all K̃ ∈ K̃ and (q, r) < R, then
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q∗ = {q, r}, negating the notions q∗ = {q} is singletons of a discriminative fuzzy knowledge structure.
Hence, there is K̃ ∈ K̃ such that K̃(q) , K̃(r). Sufficiency: If for any (q, r) < R, there exists K̃ ∈ K̃
such that K̃(q) , K̃(r), then we have r < q∗. Moreover we have p < q∗ for any (p, q) ∈ R, since R is a
partial order. Thus the fuzzy notion q∗ = {q} for any q ∈ Q. Hence, (Q, K̃) is discriminative. �

It should be noted that fuzzy knowledge structures are different from probabilistic knowledge
structures (Q,K , p). Probabilistic knowledge structures that applied the basic local independence
model to real knowledge space data were introduced and developed in KST by Falmagne and
Doignon [12, 16, 19, 22, 29, 33]. It mostly considers two kinds of practical cases: the knowledge states
may have different frequencies in the population of reference, and the response to an item may be an
error for careless or guess the correct answer. It makes sense to introduce conditional probabilities of
responses, given the knowledge states. The most difference between probabilistic knowledge structures
and fuzzy knowledge structures is that the probability knowledge structure describes the probability of
knowledge states, which is still completely “master” or “not master” to each item. However, a fuzzy
knowledge state means partial mastery of items.

4. Fuzzy knowledge spaces

We focus on a special fuzzy knowledge structure, called fuzzy knowledge space, by assuming that
any subfamily of fuzzy knowledge states of K̃ is closed under union. An item-state table can be used
to represent a fuzzy knowledge structure, where rows represent fuzzy knowledge states and columns
represent items. The closure under union is a rather reasonable property: two students interacting for a
while will end up to merge their initial fuzzy knowledge states into a single one which is the union of
the two fuzzy knowledge states. A fuzzy knowledge space is important for assessment knowledge and
latent cognitive abilities.

Definition 3. A fuzzy knowledge structure (Q, K̃) is called a fuzzy knowledge space (resp. fuzzy closure
space) if it is union-closed (resp. intersection-closed), that is K̃ ∪ L̃ ∈ (Q, K̃) (resp. K̃ ∩ L̃ ∈ (Q, K̃))
for any K̃, L̃ ∈ (Q, K̃).

Example 2. Let Q = {a, b, c, d, e} and a partial order on Q be

R = {(b, c), (c, d), (a, e), (b, e), (c, e), (d, e)}.

It’s obvious that K̃1, K̃2, · · · , K̃15 are fuzzy knowledge states on (Q,R), see Table 1. The fuzzy knowledge
structure K̃ in Table 1 is a fuzzy knowledge space, that is K̃ ∪ L̃ ∈ K̃ for any K̃, L̃ ∈ K̃ . We now study
the properties of a fuzzy knowledge structure induced by a given partial order.

Theorem 2. All the fuzzy knowledge states induced by a partial order R on Q generates a union-closed
and intersection-closed discriminative fuzzy knowledge structure (Q, K̃).
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Table 1. A fuzzy knowledge space K̃ on (Q,R).

a b c d e
K̃1 0 0 0 0 0
K̃2 0.4 0.9 0 0 0
K̃3 0 0.8 0.7 0 0
K̃4 0 0.7 0.7 0.6 0
K̃5 0.4 0.9 0.7 0 0
K̃6 0 0.8 0.7 0.6 0
K̃7 0.4 0.9 0.7 0.6 0
K̃8 0.3 0.6 0.5 0.5 0.3
K̃9 0.3 0.8 0.7 0.5 0.3
K̃10 0.4 0.9 0.5 0.5 0.3
K̃11 0.4 0.9 0.7 0.5 0.3
K̃12 0.4 0.9 0.7 0.6 0.3
K̃13 0.7 0.8 0.8 0.7 0.6
K̃14 0.7 0.9 0.8 0.7 0.6
K̃15 1 1 1 1 1

Proof. Let K̃i, K̃ j ∈ K̃ be any fuzzy knowledge states induced by the partial order R. For any (r, q) ∈ R,
we have K̃i(r) ≥ K̃i(q), K̃ j(r) ≥ K̃ j(q). Then

(K̃i ∪ K̃ j)(r) = K̃i(r) ∨ K̃ j(r) = max{K̃i(r), K̃ j(r)}

= max{K̃i(r), K̃ j(r), K̃i(q), K̃ j(q)}

and (K̃i ∪ K̃ j)(q) = K̃i(q) ∨ K̃ j(q) = max{K̃i(q), K̃ j(q)}. Hence, (K̃i ∪ K̃ j)(r) ≥ (K̃i ∪ K̃ j)(q), the
union-closed is satisfied. By the similarity method, we have

(K̃i ∩ K̃ j)(r) = K̃i(r) ∧ K̃ j(r) = min{K̃i(r), K̃ j(r)}

(K̃i ∩ K̃ j)(q) = K̃i(q) ∧ K̃ j(q) = min{K̃i(q), K̃ j(q)}

= min{K̃i(r), K̃ j(r), K̃i(q), K̃ j(q)}.

Hence, (K̃i ∩ K̃ j)(r) ≥ (K̃i ∩ K̃ j)(q), the intersection-closed is satisfied. If K̃ is not discriminative,
then there exist two different items r, q such that K̃(r) = K̃(q) for any K̃ ∈ K̃ . Thus K̃(r) ≥ K̃(q) and
K̃(r) ≤ K̃(q) for any K̃ ∈ K̃ , that means (r, q) ∈ R, (q, r) ∈ R. We get r = q, since R is a partial order
relation on Q. Hence (Q, K̃) is discriminative. �

From Theorem 2, we say that the fuzzy knowledge structure induced by partial order relation R is a
discriminative fuzzy quasi ordinal space on Q, which is consistent with Birkhoff theorem [4, 5]. Such
a correspondence is defined by the equivalences

(r, q) ∈ R ⇐⇒ (∀K̃ ∈ K̃ : K̃(q) ≤ K̃(r)),

K̃ ∈ K̃ ⇐⇒ (∀(r, q) ∈ R : K̃(q) ≤ K̃(r)).
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Theorem 3. A discriminative fuzzy quasi ordinal space (Q, K̃) determined a partially ordered set
(Q,R).

Proof. For any discriminative fuzzy quasi ordinal space (Q, K̃), we define a relation R on Q as

(r, q) ∈ R ⇐= (∀K̃ ∈ K̃ : K̃(q) ≤ K̃(r)).

Then R is reflexive on Q, since K̃(r) ≤ K̃(r) holds for any r ∈ Q. That is (r, r) ∈ R for any r ∈ Q.
R is transitive on Q, since if K̃(p) ≤ K̃(r) and K̃(q) ≤ K̃(p), we have K̃(q) ≤ K̃(r) holds for all
r, p, q ∈ Q. That is (r, p) ∈ R and (p, q) ∈ R, then (r, q) ∈ R. R is antisymmetric on Q, since (Q, K̃) is
discriminative, then K̃(r) ≥ K̃(p) and K̃(p) ≥ K̃(r) implies r = p for all r, p ∈ Q. �

It should be observed that the result may not hold for any fuzzy knowledge structure that is not
discriminative fuzzy quasi ordinal space, since it may induce a quasi order on Q.

5. Fuzzy learning space

Learning space is a special knowledge space, which satisfies the axioms of learning smoothness
and learning consistency [14]. Cosyn and Uzun showed that the knowledge structures satisfying the
two axioms are equivalent to well-graded [9, 16] knowledge spaces [7]. In learning space, the axiom
of learning smoothness indicates that if the knowledge state of a learner is included in some other
knowledge state, then the learner can reach the knowledge state by mastering the missing items, one
at a time. There always exists an evaluation criteria for assessment knowledge and guidance future
learning of an individual or population. Relying on partial order, the evaluation criteria β = (1, 1, · · · , 1)
for ordinary learning spaces can be generalized to the evaluation criteria β = (β1, β2, · · · , βn), where
βi ∈ [0, 1] for each 1 ≤ i ≤ n. This evaluation criteria is not necessarily fixed, it may be dynamically
changed with the evaluation needs.

Definition 4. Let (Q,R) be a partially order set, β = (β1, β2, · · · , βn) is called an evaluation criteria
on Q if it satisfies β j ≤ βi when (qi, q j) ∈ R for each βi, β j ∈ [0, 1].

Remark 2. The evaluation criteria β = (β1, β2, · · · , βn) assigns a criteria βqi for item qi, the criteria βqi

simply denoted by βi. The value βi in β corresponds to the criteria for mastering of item qi. The quality
of response to items of individuals may be judged by points. When a subject’s response normalization
score for an item is not less than the value βi, we think that they can solve the item under evaluation
criteria β. The better the mastery of an item, the more points are assigned to it. Note that the ordinary
knowledge state represents the subject’s complete mastery of the items, where the evaluation criteria
can be regard as β = (1, 1, · · · , 1).

Definition 5. A family of fuzzy knowledge states is called a β-fuzzy knowledge structure if it contains β-
fuzzy empty set ∅̃ and β-fuzzy universal set Q̃, denoted by (Q, K̃), where ∅̃ ∈ F (Q) satisfies ∅̃(qi) < βi

for any qi ∈ Q, Q̃ ∈ F (Q) satisfies Q̃(qi) ≥ βi for any qi ∈ Q.

The ∅̃ means that the individual does not master all the items in Q under the evaluation criteria β.
The Q̃ indicates that the individual completely masters all items in Q under the evaluation criteria β.
We main concern whether the subjects meet the evaluation criteria when the value of β is given.
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Notation 1. Let (Q,R) be a partially ordered set and β be an evaluation criteria. For any K ∈ F (Q),
K̃β ∈ F (Q) such that K̃β(q) = K̃(q) when K̃(q) ≥ βq, otherwise K̃β(q) = 0 when K̃(q) < βq.

Remark 3. βq is the criteria which assigns to item q in evaluation criteria β. For fuzzy knowledge states
K̃ and L̃, if K̃β = L̃β, then the two fuzzy knowledge states can be considered to be indistinguishable
under β. It can determinate a partition on F̃ (Q): Let K̃ be a family of fuzzy knowledge states and
K̃i, K̃ j ∈ K̃ , the equivalence relation ∼β on K̃ means that K̃i ∼β K̃ j ⇔ K̃β = L̃β. Consider the partition
on F (Q) determined by ∼β: For any K̃ ∈ F (Q), the set {K̃′ : K̃′ ∼β K̃, K̃′ ∈ F (Q)} is denoted by [K̃],
the set {[K̃] : K̃ ∈ F (Q)} is denoted by F (Q)/ ∼β.

Theorem 4. For any two fuzzy knowledge states K̃i, K̃ j ∈ K̃ , K̃i ⊆ K̃ j implies (K̃i)β ⊆ (K̃ j)β.

Proof. Let K̃i, K̃ j be two fuzzy knowledge states and evaluation criteria β = (β1, β2, · · · , βn). We obtain
K̃i(q) ≤ K̃ j(q) for any q ∈ Q, since K̃i ⊆ K̃ j. If K̃i(q1) ≥ β1, K̃i(q2) ≥ β2, · · · , K̃i(qn) ≥ βn, then
K̃ j(q1) ≥ K̃i(q1) ≥ β1, K̃ j(q2) ≥ K̃i(q2) ≥ β2, · · · , K̃ j(qn) ≥ K̃i(qn) ≥ βn, where βi ∈ [0, 1], 1 ≤ i ≤ n.
Hence (K̃i)β ⊆ (K̃ j)β. �

Note that the (K̃i)β ⊆ (K̃ j)β and (K̃ j)β ⊆ (K̃i)β do not imply K̃i = K̃ j. The converse implication is
false, and the example below disproves the converse.

Example 3. Let Q = {a, b, c, d, e} and β = (0.8, 0.6, 0.5, 0.6, 0.4), the partial order is
R = {(b, c), (a, d), (a, e), (b, e), (c, e), (d, e)}. A fuzzy knowledge structure is K̃={{0a ,

0
b ,

0
c ,

0
d ,

0
e },

{ 0.9a ,
0.4
b ,

0.3
c ,

0.2
d ,

0.1
e }, {

0.8
a ,

0.5
b ,

0.2
c ,

0.5
d ,

0.2
e }, {

0.8
a ,

0.6
b ,

0.6
c ,

0.4
d ,

0.1
e }, {

1
a ,

1
b ,

1
c ,

1
d ,

1
e }}. It’s obvious that

{ 0.8a ,
0.5
b ,

0.2
c ,

0.5
d ,

0.2
e }β = { 0.8a ,

0
b ,

0
c ,

0
d ,

0
e } and { 0.8a ,

0.6
b ,

0.6
c ,

0.4
d ,

0.1
e }β = { 0.8a ,

0.6
b ,

0.6
c ,

0
d ,

0
e }, that is

{ 0.8a ,
0.5
b ,

0.2
c ,

0.5
d ,

0.2
e }β ⊆ {

0.8
a ,

0.6
b ,

0.6
c ,

0.4
d ,

0.1
e }β, but {0.8a ,

0.5
b ,

0.2
c ,

0.5
d ,

0.2
e } * {

0.8
a ,

0.6
b ,

0.6
c ,

0.4
d ,

0.1
e }. Theorem 4

and Example 3 show that the evaluation criteria for assessment knowledge of individuals is critical,
and it is meaningless to discard evaluation criteria for assessment knowledge. For any fuzzy knowledge
structure, we need adjust the concept of distance between two fuzzy knowledge states, rather than
counting the number of items by which two states differ.

Theorem 5. For any two fuzzy knowledge states K̃, L̃, (K̃ ∪ L̃)β = K̃β ∪ L̃β, (K̃ ∩ L̃)β = K̃β ∩ L̃β, where
β is an evaluation criteria.

Proof. According to Notation 1, (K̃∪ L̃)β(q) = (K̃∪ L̃)(q) = K̃(q)∨ L̃(q) = K̃)β(q)∨ L̃β(q) = (K̃β∪ L̃β)(q)
for any (K̃ ∪ L̃)(q) = K̃(q) ∨ L̃(q) ≥ βq, otherwise (K̃ ∪ L̃)β(q) = 0 when (K̃ ∪ L̃)(q) < βq. Hence,
(K̃ ∪ L̃)β = K̃β ∪ L̃β. Similarly, we can get (K̃ ∩ L̃)β(q) = (K̃ ∩ L̃)(q) = K̃(q) ∧ L̃(q) = K̃β(q) ∧ L̃β(q) =

(K̃β ∩ L̃β)(q) for any (K̃ ∩ L̃)(q) = K̃(q) ∧ L̃(q) ≥ βq, otherwise (K̃ ∩ L̃)β(q) = 0 when (K̃ ∩ L̃)(q) < βq.
Hence, (K̃ ∩ L̃)β = K̃β ∩ L̃β. �

Definition 6. Let (Q, K̃) be a fuzzy knowledge structure and β be an evaluation criteria. For any
K̃i, K̃ j ∈ K̃ , the β-relative distance between K̃i, K̃ j is dβ(K̃i, K̃ j) = |(K̃i)β ∪ (K̃ j)β| − |(K̃i)β ∩ (K̃ j)β|, where
|K̃β| = |{q | K̃β(q) , 0}| for any K̃ ∈ K̃ .

Intuitively, the β-relative distance between two fuzzy knowledge states represents the number of
different items with reaching the evaluation criteria β.

Corollary 1. Let (Q, K̃) be a fuzzy knowledge structure and β be an evaluation criteria. For any
K̃i, K̃ j ∈ K̃ , the β-relative distance dβ(K̃i, K̃ j) = |(K̃i ∪ K̃ j)β| − |(K̃i ∩ K̃ j)β|.
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Proof. It can be directly obtained from Definition 6 and Theorem 5. �

Example 4. In Example 1, let evaluation criteria β = (0.8, 0.9, 0.7, 0.7, 0.6). Take K̃ =

{ 0.4a ,
0.9
b ,

0.7
c ,

0.6
d ,

0.3
e } and L̃ = { 0.7a ,

0.8
b ,

0.8
c ,

0.7
d ,

0.6
e }. Then K̃β = { 0a ,

0.9
b ,

0.7
c ,

0
d ,

0
e }, L̃β = { 0a ,

0
b ,

0.8
c ,

0.7
d ,

0.6
e },

dβ(K̃, L̃) = |K̃β ∪ L̃β| − |K̃β ∩ L̃β| = |(K̃ ∪ L̃)β| − |(K̃ ∩ L̃)β| = 3. Note that the β-relative distance dβ(K, L)
is equivalent to the symmetric difference distance d(K, L) for any ordinary knowledge states K, L when
the evaluation criteria β = (1, 1, · · · , 1) [14].

Notation 2. Let (Q,R) be a partially ordered set and β be an evaluation criteria, a fuzzy set q̃ ∈ F (Q)
satisfy q̃(x) ≥ βq when x = q, otherwise q̃(x) = 0.

For a given evaluation criteria β, different individuals may have different degrees of membership
q̃(x) when the criteria of q is reached. If x = q, the degree of membership q̃(x) is not fixed, but
q̃(x) ∈ [βq, 1]. If x , q, the degree of membership q̃(x) = 0. It’s similar with the interval-valued fuzzy
set on Q [17, 39], but q̃ ∈ F (Q).

Definition 7. A β-fuzzy knowledge structure (Q, K̃) is called a fuzzy learning space if it satisfies the
following two conditions.

[L̃1] fuzzy learning smoothness: For any two fuzzy knowledge states K̃, L̃ ∈ (Q, K̃) such that K̃ ⊂
L̃, there exists a finite chain of fuzzy knowledge states K̃ = K̃0 ⊂ K̃1 ⊂ · · · ⊂ K̃p = L̃ such that
dβ(K̃i, K̃i−1) = 1 for 1 ≤ i ≤ p and dβ(K̃, L̃) = p.

[L̃2] fuzzy learning consistency: If K̃ and L̃ are two fuzzy knowledge states satisfying K̃ ⊂ L̃ and
q̃ ∈ F (Q) such that K̃ ∪ q̃ ∈ K̃ , then L̃ ∪ q̃ ∈ K̃ .

Remark 4. The fuzzy learning smoothness indicates that if the fuzzy knowledge state K̃ of a learner is
included in some other fuzzy knowledge state L̃, then the learner can reach the fuzzy knowledge state
L̃ by partially mastering the missing items one at a time. Partially mastering the missing items one at
a time means that the learner only needs to reach the criteria for solving the missing items. We refer to
this chain as an L̃1-chain from K̃ to L̃. The fuzzy learning consistency indicates that knowing more does
not prevent from partially learning something new, where partially learning an item q means reaching
the criteria βq. [L̃1] and [L̃2] can be called fuzzy learning axioms under evaluation criteria β, since they
can be regarded as generalizations of ordinary learning axioms. It’s equivalent between fuzzy learning
axioms and ordinary learning axioms when β = (1, 1, · · · , 1). Although learnstep number [14, 16]
(Here, represent by dβ(K̃i, K̃i−1)) is “1” in both axioms [L̃1] and [L1], they have completely different
meanings. The learnstep number “1” in [L̃1] indicates that there exists an item q such that only one
fuzzy knowledge state reach the criteria βq in the two fuzzy knowledge states. However, The learnstep
number “1” in [L1] represent there is exactly an different item q between the two knowledge states.

Example 5. Let Q = {a, b, c, d, e} and β = (0.8, 0.6, 0.5, 0.6, 0.4), the partial order is
R = {(b, c), (a, d), (a, e), (b, e), (c, e), (d, e)}. A β-fuzzy knowledge structure is K̃={{0a ,

0
b ,

0
c ,

0
d ,

0
e },

{ 0.9a ,
0
b ,

0
c ,

0
d ,

0
e }, {

0
a ,

0.6
b ,

0
c ,

0
d ,

0
e }, {

0.9
a ,

0
b ,

0
c ,

0.7
d ,

0
e }, {

0.9
a ,

0.6
b ,

0
c ,

0
d ,

0
e }, {

0
a ,

0.6
b ,

0.5
c ,

0
d ,

0
e }, {

0.9
a ,

0.6
b ,

0
c ,

0.7
d ,

0
e },

{ 0.9a ,
0.6
b ,

0.5
c ,

0
d ,

0
e }, {

0
a ,

0.6
b ,

0.5
c ,

0.7
d ,

0
e }, {

0.9
a ,

0.6
b ,

0.5
c ,

0.7
d ,

0
e }, {

0.9
a ,

0.6
b ,

0.5
c ,

0.7
d ,

0.5
e }}. We can verify that the

fuzzy knowledge structure is a fuzzy learning space. For instance, take two fuzzy knowledge states
K̃1 = { 0.9a ,

0
b ,

0
c ,

0
d ,

0
e }} and K̃2 = { 0.9a ,

0.6
b ,

0.5
c ,

0.7
d ,

0
e }, that is K̃1 ⊂ K̃2. There exists a L̃1-chain from K̃1 to

K̃2, that is { 0.9a ,
0
b ,

0
c ,

0
d ,

0
e }} ⊂ {

0.9
a ,

0
b ,

0
c ,

0.7
d ,

0
e } ⊂ {

0.9
a ,

0.6
b ,

0
c ,

0.7
d ,

0
e } ⊂ {

0.9
a ,

0.6
b ,

0.5
c ,

0.7
d ,

0
e }. It is easy to verify

that dβ(K̃1, K̃2) = 3. Take two fuzzy knowledge states K̃1 = { 0.9a ,
0
b ,

0
c ,

0
d ,

0
e } and K̃3 = {0.9a ,

0.6
b ,

0.5
c ,

0
d ,

0
e },
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that is K̃1 ⊂ K̃3. Take d̃ = { 0a ,
0
b ,

0
c ,

0.7
d ,

0
e }, then K̃1 ∪ d̃ ∈ K̃ such that K̃3 ∪ d̃ ∈ K̃ . There exist

some L̃1-chains from ∅̃ to Q̃, one of that is {0a ,
0
b ,

0
c ,

0
d ,

0
e } ⊆ {

0.9
a ,

0
b ,

0
c ,

0
d ,

0
e }} ⊆ {

0.9
a ,

0
b ,

0
c ,

0.7
d ,

0
e } ⊆

{ 0.9a ,
0.6
b ,

0
c ,

0.7
d ,

0
e } ⊆ {

0.9
a ,

0.6
b ,

0.5
c ,

0.7
d ,

0
e } ⊆ {

0.9
a ,

0.6
b ,

0.5
c ,

0.7
d ,

0.5
e }.

Theorem 6. For any fuzzy learning space (Q, K̃) and K̃ ∈ K̃ , if K̃ ∪ q̃ ∈ K̃ then K̃ ∪ p̃ ∈ K̃ for any
(p, q) ∈ R.

Proof. Suppose that K̃ ∪ p̃ < K̃ for some (p, q) ∈ R. We have K̃(p) < βp, since K̃ ∪ p̃ < K̃ . Then
(K̃ ∪ q̃)(q) ≥ βq imply (K̃ ∪ q̃)(p) ≥ βp, since (p, q) ∈ R and K̃ ∪ q̃ is a fuzzy knowledge state. That is
K̃ ⊂ K̃ ∪ q̃ and (K̃ ∪ q̃)(p) ≥ βp, but K̃(p) < βp. Note that K̃(q) < βq, since K̃(p) < βp and (p, q) ∈ R.
That means, there doesn’t exist a [L̃1]-chain from K̃ to K̃ ∪ q̃. This is a contradiction with the fact that
(Q, K̃) is a fuzzy learning space. Therefore, K̃ ∪ p̃ ∈ K̃ for any (p, q) ∈ R. �

Corollary 2. For any ordinary learning space (Q,K) and K ∈ K , if K ∪ {q} ∈ K then K ∪ {p} ∈ K
for any p � q, where “�” is the surmise relation of (Q,K).

Proof. Suppose that K∪{p} < K for some p � q. We have p < K, since K∪{p} < K . Then q ∈ K∪{q}
imply p ∈ K ∪ {q}, since p � q. That is K ⊂ K ∪ {q} and p ∈ K ∪ {q}, but p < K. Note that q < K, since
p < K and p � q. Then there doesn’t exist a [L1]-chain from K to K ⊂ K ∪ {q}. This is a contradiction
with the fact that (Q,K) is a learning space. Therefore, K ∪ {p} ∈ K for any p � q. �

Theorem 6 and Corollary 2 show that an individual always learns from the simple to the complex
items that he has not yet mastered.

Definition 8. A family of fuzzy knowledge states K̃ is called well-graded if for any two distinct fuzzy
knowledge states K̃, L̃ ∈ K̃ , there is a finite sequence of fuzzy knowledge states K̃ = K̃0, K̃1, · · · , K̃p = L̃
such that dβ(K̃i, K̃i−1) = 1 for 1 ≤ i ≤ p and dβ(K̃, L̃) = p.

Theorem 7. For any β-fuzzy knowledge structure (Q, K̃),the following three conditions are equivalent:

(1) (Q, K̃) is a fuzzy learning space;
(2) (Q, K̃) is union-closed and there is some fuzzy set q̃ ∈ F (Q) such that K̃\q̃ ∈ (Q, K̃) for any

nonempty fuzzy knowledge state K̃;
(3) (Q, K̃) is well-graded fuzzy knowledge space.

Proof. (1) ⇒ (2). Suppose that (Q, K̃) is a fuzzy learning space. For any fuzzy knowledge state K̃,
there is an L̃1-chain from ∅̃ to K̃, so K̃\q̃ ∈ (Q, K̃) for some q̃ ∈ F (Q). Turning to union closure, we
take any two fuzzy states K̃ , L̃ ∈ K̃ , and suppose that neither of them is ∅̃ or a subset of the other
(otherwise union-closure holds trivially). Since ∅̃ ⊂ L̃, axiom [L̃1] implies the existence of L̃1-chain
∅̃ ⊂ q̃1 ⊂ · · · ⊂ ∪

m
i=1q̃m = L̃, where each ∪ j

i=1q̃ j ∈ K̃ ( j = 1 · · ·m). Since ∅̃ ⊂ K̃ (∅̃, K̃ ∈ K̃), and
∅̃ ∪ q̃1 = q̃1 ∈ K̃ , axiom [L̃2] implies that K̃ ∪ q̃1 ∈ K̃ . Repeatedly applying of axiom [L̃2], since q̃1 ⊆

(K̃∪ q̃1) and q̃1∪ q̃2 ∈ K̃ be included in L̃1-chain. Therefore we have (K̃∪ q̃1)∪ q̃2 = K̃∪ (̃q1∪ q̃2) ∈ K̃ .
Applying the mathematical induction yields K̃ ∪ L̃ ∈ K̃ .

(2)⇒ (3). Only need verify (Q, K̃) is well-graded. Take any two fuzzy knowledge states K̃, L̃ with
K̃ ⊂ L̃ (with possibly K̃ = ∅̃). Repeatedly applying of condition (2) to state L̃, we get a sequence
of fuzzy knowledge states L̃0 = L̃, L̃1, · · · , L̃k = ∅̃ such that q̃i−1 ⊆ L̃i−1 and L̃i = L̃i−1\q̃i−1 for
i=1, 2, · · · , k. Let j be the largest index such that q̃ j * K̃. We obtain K̃ ⊂ K̃ ∪ q̃ j = K̃ ∪ L̃ j ⊆ L̃.

AIMS Mathematics Volume 8, Issue 11, 26840–26862.



26851

Replacing K̃ with K̃ ∪ q̃ j and using the induction we see that the condition of the fuzzy well-graded of
(Q, K̃) is satisfied.

(3) ⇒ (1). Axiom L̃1 results from the fuzzy wellgradedness condition. Suppose that K̃ ⊂ L̃ for
two fuzzy knowledge states and K̃ ∪ q̃ is also a fuzzy knowledge state. By union-closure, the set
(K̃ ∪ q̃) ∪ L̃ = L̃ ∪ q̃ is also a fuzzy knowledge state. So, L̃2 holds. �

How to use a simple method to determine that a fuzzy knowledge structure is a fuzzy learning
space? Now, Theorems 8 and 10 can make a simple decision.

Theorem 8. A fuzzy knowledge structure (Q, K̃) is a fuzzy learning space if and only if (Q, K̃) satisfies
the following two conditions:

(1) For any nonempty fuzzy knowledge state K̃, there exists q̃ ∈ F (Q) such that K̃ \ q̃ ∈ K̃;
(2) For any fuzzy knowledge state K̃ and q̃, r̃ ∈ F (Q), if K̃ ∪ q̃ ∈ K̃ , K̃ ∪ r̃ ∈ K̃ , then K̃ ∪ {̃q∪ r̃} ∈ K̃ .

Proof. Necessity. Since (Q, K̃) is a fuzzy learning space, the condition (1) is a direct consequence of
axiom L̃1. We only need to notice K̃ ∪ (̃q∪ r̃) = (K̃ ∪ q̃)∪ (K̃ ∪ r̃). Applying the assumed closure under
union of a fuzzy learning space which was proved in Theorem 7, we have K̃ ∪ (̃q ∪ r̃) ∈ (Q, K̃).

Sufficiency. To prove fuzzy learning smoothness, we consider two fuzzy knowledge states K̃ and
L̃ such that K̃ ⊂ L̃. According to condition (1), there exist two sequences K̃0 = ∅̃, K̃1, · · · , K̃n = K̃
and L̃0 = ∅̃, L̃1, · · · , L̃m = L̃ of fuzzy knowledge states such that dβ(K̃i, K̃i−1) = 1 for 1 ≤ i ≤ n and
dβ(L̃ j, L̃ j−1) = 1 for 1 ≤ j ≤ m. By applying condition (2) repeatedly, we derive K̃0 ∪ L̃0, K̃1 ∪ L̃0, · · · ,
K̃n∪ L̃0 ∈ K̃ , next K̃0∪ L̃1, K̃1∪ L̃1, · · · , K̃n∪ L̃1 ∈ K̃ , etc., and K̃0∪ L̃m−1, K̃1∪ L̃m−1, · · · , K̃n∪ L̃m−1 ∈ K̃ ,
finally K̃0 ∪ L̃m, K̃1 ∪ L̃m, · · · , K̃n ∪ L̃m ∈ K̃ . Thus K̃ ∪ L̃0 = K̃, K̃ ∪ L̃1, · · · , K̃ ∪ L̃m−1, L̃ are all in
K̃ , where K̃n = K̃, L̃m = L̃, and K̃ ⊂ L̃. After deleting of repetitions, we obtain the desired sequence
from K̃ to L̃. To prove fuzzy learning consistency, if there exists q̃ ∈ F (Q) such that K̃ ∪ q̃ ∈ K̃ .
We have clarified the existence of a sequence K̃ ∪ L̃0 = K̃, K̃ ∪ L̃1, · · · , K̃ ∪ L̃m−1, L̃ of fuzzy
knowledge states such that dβ(K̃ ∪ L̃i, K̃ ∪ L̃i−1) = 1 for 1 ≤ i ≤ m. Applying condition (2) repeatedly,
we obtain (K̃ ∪ L̃1) ∈ K , K̃ ∪ q̃ ∈ K̃ , that is (K̃ ∪ L̃1) ∪ q̃ ∈ K̃ . By the mathematical induction yields
(K̃ ∪ L̃2) ∪ q̃ ∈ K̃ , · · · , L̃ ∪ q̃ ∈ K̃ , where the last one is fuzzy learning consistency as expected. �

Definition 9. A fuzzy knowledge structure (Q, K̃) is β-relative discriminative if the set q∗ = {r ∈ Q |
K̃(q) ≥ βq ⇔ K̃(r) ≥ βr,∀K̃ ∈ K̃} contains a single item for any q ∈ Q.

Theorem 9. Let K̃ be a fuzzy knowledge structure and β = (β1, β2, · · · , βn) satisfies βi = β j for
each 1 ≤ i, j ≤ n. Then K̃ is a discriminative fuzzy knowledge structure if and only if K̃ is a β-relative
discriminative fuzzy knowledge structure.

Proof. Sufficiency: Suppose that K̃ is not a discriminative fuzzy knowledge structure, then there exist
q, r ∈ Q, q , r, such that K̃(q) = K̃(r) for all K̃ ∈ K̃ . Hence K̃(q) ≥ βq ⇔ K̃(r) ≥ βr, since βq = βr.
That means K̃ is not β-relative discriminative fuzzy knowledge structure. Necessity: Suppose K̃ is
not a β-relative discriminative fuzzy knowledge structure, then there exist q, r ∈ Q, q , r such that
K̃(q) ≥ βq ⇔ K̃(r) ≥ βr for any K̃ ∈ K̃ . Then K̃(q) = K̃(r) for any K̃ ∈ K̃ , since βq = βr in β. That
means K̃ is not a discriminative fuzzy knowledge structure. �

Note that a β-relative discriminative fuzzy knowledge structure is equivalent to a discriminative
knowledge structure when the β = (1, 1, · · · , 1). The Example 6 below shows that the Theorem 9 may
not hold if the evaluation criteria β is not satisfy βi = β j for all 1 ≤ i, j ≤ n.
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Example 6. Let Q = {a, b, c} and a partial order R = {(a, b), (b, c)}. A fuzzy knowledge structure is
K̃ = {{0a ,

0
b ,

0
c }, {

0.9
a ,

0.8
b ,

0.3
c }, {

0.8
a ,

0.7
b ,

0.2
c }, {

1
a ,

1
b ,

1
c }}, it’s a discriminative fuzzy knowledge structure since

there are some fuzzy knowledge states K̃ ∈ K̃ such that K̃(a) , K̃(b) and K̃(b) , K̃(c), K̃(a) , K̃(c).
However, this fuzzy knowledge structure is not β-relative discriminative when β = (0.7, 0.6, 0.5),
since K̃(a) ≥ 0.7 ⇔ K̃(b) ≥ 0.6 for any K̃ ∈ K̃ . Considering the fuzzy knowledge structure
K̃ = {{0a ,

0
b ,

0
c }, {

0.6
a ,

0.6
b ,

0.5
c }, {

0.8
a ,

0.8
b ,

0.3
c }, {

1
a ,

1
b ,

1
c }}. Take K̃ = { 0.6a ,

0.6
b ,

0.5
c }, then K̃(a) < 0.7, but

K̃(b) ≥ 0.6. Take K̃ = { 0.8a ,
0.8
b ,

0.3
c }, then K̃(a) ≥ 0.7, but K̃(c) < 0.3. Take K̃ = {0.6a ,

0.6
b ,

0.5
c }, then

K̃(b) ≥ 0.6, but K̃(c) < 0.3. That means, the fuzzy knowledge structure is β-relative discriminative
when β = (0.7, 0.6, 0.5). However, the fuzzy knowledge structure is not a discriminative fuzzy
knowledge structure. Therefore, when a fuzzy knowledge structure is not β-relative discriminative,
it is not a fuzzy learning space. We have the following conclusion.

Theorem 10. Any fuzzy learning space is β-relative discriminative.

Proof. Let (Q, K̃) be a fuzzy learning space. Suppose it is not β-relative discriminative, then there
exist two items qi, q j ∈ Q such that K̃(qi) ≥ βi ⇔ K̃(q j) ≥ β j for every K̃ ∈ K̃ . Since ∅̃ ⊂ Q̃, by
fuzzy learning smoothness axiom L̃1, there exists a L̃1-chain ∅̃ ⊂ K̃1 ⊂ K̃2 ⊂ · · · ⊂ K̃n ⊂ Q̃. Then,
we derive ∅̃ ⊂ {̃qi ∪ q̃ j} = K̃1 from Theorem 7 condition (2) by induction. Finally, we get either
∅̃ ⊂ {̃qi} ⊂ {̃qi ∪ q̃ j} or ∅̃ ⊂ {̃q j} ⊂ {̃qi ∪ q̃ j} which contradicts with K̃(qi) ≥ βi ⇔ K̃(q j) ≥ β j. So, the K̃
is β-relative discriminative. �

Theorem 10 can be regard as one of the judgment of a fuzzy learning space, since if a fuzzy
knowledge structure is not β-relative discriminative, then it isn’t a fuzzy learning space.

6. Fuzzy knowledge basis

A knowledge space can be faithfully summarized by a subfamily of their knowledge states. For
a fuzzy knowledge space, any fuzzy knowledge state of the space can be generated by forming the
union of some states in the fuzzy knowledge basis. Fuzzy knowledge basis plays an important role in
knowledge assessment and guidance learning.

Definition 10. The fuzzy knowledge basis of a fuzzy knowledge space (Q, K̃) is a minimal subfamily B̃
of K̃ spanning K̃ , where the span of B̃ is the family K̃ containing any union of arbitrary subfamily of
B̃.

The fuzzy knowledge basis of (Q, K̃) is denoted as B̃ = {B̃1, B̃2, · · · , B̃m}. Any fuzzy knowledge
state K̃ ∈ K̃ satisfies K̃ = ∪B̃

′

for some B̃
′

⊆ B̃. The minimal subfamily B̃ is with respect to set
inclusion.

Example 7. In Example 2, the fuzzy knowledge structure is a fuzzy knowledge space, and we can find
K̃5 = K̃2 ∪ K̃3, K̃6 = K̃3 ∪ K̃4, K̃7 = K̃2 ∪ K̃4, K̃9 = K̃3 ∪ K̃8, K̃10 = K̃2 ∪ K̃8, K̃11 = K̃2 ∪ K̃3 ∪ K̃8,
K̃12 = K̃4 ∪ K̃9 ∪ K̃7 ∪ K̃8, K̃14 = K̃2 ∪ K̃13. The fuzzy knowledge basis is B̃ = {K̃2, K̃3, K̃4, K̃8, K̃13, K̃15},
see Table 2.

Definition 11. Let (Q, K̃) be a fuzzy knowledge space. A fuzzy knowledge state K̃ is an atom at q if
and only if K̃′ * K̃ for any K̃′ ∈ F̃ q

K , where F̃ q
K = {K̃′ | K̃′(q) = K̃(q), K̃ , K̃′, K̃′ ∈ K̃}. A fuzzy

knowledge state K̃ ∈ K̃ is called an atom if it is an atom at q for some q ∈ Q.
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Table 2. The fuzzy knowledge basis of (Q, K̃).

a b c d e
K̃2 0.4 0.9 0 0 0
K̃3 0 0.8 0.7 0 0
K̃4 0 0.7 0.7 0.6 0
K̃8 0.3 0.6 0.5 0.5 0.3
K̃13 0.7 0.8 0.8 0.7 0.6
K̃15 1 1 1 1 1

Example 8. An atom at item q is a minimal fuzzy knowledge state of all fuzzy knowledge states with
the same degree of membership at q, and an atom at item q must satisfy K̃(q) , 0. By convention,
∅̃ is the union of the empty subfamily of the basis. Thus, since the basis is minimal, ∅̃ never belongs
to a basis. In Example 2, the atoms are {K̃2, K̃3, K̃4, K̃8, K̃13, K̃15}, where K̃2 = { 0.4a ,

0.9
b ,

0
c ,

0
d ,

0
e }, K̃3 =

{ 0a ,
0.8
b ,

0.7
c ,

0
d ,

0
e }, K̃4 = { 0a ,

0.7
b ,

0.7
c ,

0.6
d ,

0
e }, K̃8 = { 0.3a ,

0.6
b ,

0.5
c ,

0.5
d ,

0.3
e }, K̃13 = { 0.7a ,

0.8
b ,

0.8
c ,

0.7
d ,

0.6
e }, K̃15 =

{ 1a ,
1
b ,

1
c ,

1
d ,

1
e }. For the fuzzy knowledge state K̃13, we get F̃ a

K̃13
= {K̃14} and K̃14 * K̃13. Thus, K̃13 is an

atom at a. We get F̃ b
K̃13

= {K̃3, K̃6, K̃9} and K̃3 ⊆ K̃13, K̃6 ⊆ K̃13, K̃9 ⊆ K̃13. Thus, K̃13 is not an atom at

b. We get F̃ c
K̃13

= {K̃14} and K̃14 * K̃13. Thus, K̃13 is an atom at c. We get F̃ d
K̃13

= {K̃14} and K̃14 * K̃13.

Thus, K̃13 is an atom at d. We get F̃ e
K̃13

= {K̃14} and K̃14 * K̃13. Thus, K̃13 is an atom at e. Similarly,

we can verify K̃2 is an atom at a and b, K̃3 is an atom at b and c, K̃4 is an atom at b, c and d, K̃8 is an
atom at a, b, c, d and e, K̃15 is an atom at a, b, c, d and e.

Theorem 11. Let (Q, K̃) be a fuzzy knowledge space. A fuzzy knowledge state K̃ is an atom at q if and
only if K̃(q) ,

⋃
F̃K̃(q) for some q ∈ Q, where F̃K̃ = {K̃′ | K̃′ ⊂ K̃, K̃′ ∈ K̃}.

Proof. Necessity: Suppose K̃ =
⋃
F̃K̃ . Then for every q ∈ Q, there exists a K̃′ ∈ FK̃ such that

K̃(q) = K̃′(q). That is, there exists K̃′ ∈ F̃ q
K̃

such that K̃′ ⊆ K̃ for any q ∈ Q, where F̃ q
K̃

= {K̃′ |

K̃′(q) = K̃(q), K̃ , K̃′, K̃′ ∈ K̃}. Hence, K̃ is not an atom at item q. Sufficiency: Suppose K̃ is
not an atom at q. According to Definition 11, there exists a K̃′ ∈ F̃ q

K̃
such that K̃′ ⊆ K̃, where

F̃
q
K̃

= {K̃′ | K̃′(q) = K̃(q), K̃ , K̃′, K̃′ ∈ K̃}. That means K̃′ ∈ F̃K̃ = {K̃′ | K̃′ ⊂ K̃, K̃′ ∈ K̃}. Since

K̃′ ∈ F̃K̃ and K̃(q) = K̃′(q), then we have K̃(q) =
⋃
F̃K̃(q) for some q ∈ Q. We have a contradiction

with the fact that K̃(q) ,
⋃
F̃ (q). �

Theorem 12. The fuzzy knowledge basis of a fuzzy knowledge space (Q, K̃) is formed by the collection
of all the atoms.

Proof. Let B̃ be the fuzzy knowledge basis of (Q, K̃), and let Ã be the family of all the atoms of
(Q, K̃). We have to show that Ã = B̃. If some K̃ ∈ B̃ is not an atom. According to Theorem 11, we
get K̃ =

⋃
F̃ , where F̃K̃ = {K̃′ | K̃′ ⊂ K̃, K̃′ ∈ K̃}. Furthermore, K̃′ =

⋃
B̃
′

for any K̃′ ∈ F̃ , since
K̃′ ∈ K̃ . That means K̃ is an union of some fuzzy knowledge states in B̃, which is a contradiction.
Thus, K̃ is an atom. Eventually, we have B̃ ⊆ A. Conversely, take any K̃ ∈ Ã. Suppose K̃ is an atom
at q. Then, K̃(q) ,

⋃
F̃ (q), where F̃K̃ = {K̃′ | K̃′ ⊂ K̃}. That means, there doesn’t exist a family of

fuzzy knowledge states F̃ such that K̃ =
⋃
F̃ . Therefore K̃ ∈ B̃, then Ã ⊆ B̃. Eventually, Ã = B̃. �
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We give two algorithms for finding the fuzzy knowledge basis of a fuzzy knowledge space which
are based on Theorem 12 and Definition 11 respectively.
Step 1. List the fuzzy knowledge states K̃1, K̃2, · · · , K̃m in such a way that K̃i ⊂ K̃ j implies i < j for
i, j ∈ {1, 2, · · · ,m}. Thus, list the fuzzy knowledge states according to the order of their nondecreasing
size, and arbitrarily for states of the incomparable fuzzy knowledge states. Form an m × n array
T = (Ti j) with the rows and columns representing the fuzzy knowledge states and items, respectively.
The rows are indexed from 1 to m and the columns from 1 to n.
Step 2. Let K̃1 = ∅̃ and take K̃1 out of B̃, compute

⋃i−1
j=1 K̃ j. If K̃i =

⋃i−1
j=1 K̃ j holds, then take K̃i out of

B̃.
Step 3. If a fuzzy state K̃i satisfies K̃i ,

⋃i−1
j=1 K̃ j, then put K̃i in B̃.

Step 4. Repeat Steps 2 and 3. Eventually we get the fuzzy knowledge basis B̃.
The process of finding fuzzy knowledge basis is to remove union-reducible fuzzy knowledge states.

The above algorithm is similar to the Dowling proposal in 1993 [11] and that of Rusch and Wille
proposed in 1996 [27]. We extend it to the fuzzy knowledge spaces. According to Theorem 12, we
can see the process of finding the fuzzy knowledge basis is to find all the atoms. Another algorithm for
finding the fuzzy knowledge basis of a fuzzy knowledge space (Q, K̃) is as follows.
Step 1. For any fuzzy knowledge state K̃, compute F̃ q

K̃
for any item q ∈ Q, where F̃ q

K̃
= {K̃′ | K̃′(q) =

K̃(q), K̃ , K̃′}.
Step 2. If K̃′ * K̃ for any K̃′ ∈ F̃q, put K̃ in B̃. Otherwise, take K̃ out of B̃.
Step 3. Repeat Steps 1 and 2 for any fuzzy knowledge state in (Q, K̃). Eventually we get the fuzzy
knowledge basis B̃.

7. Empirical application

In this section, we take an example to illustrate the process of constructing fuzzy knowledge
structures and β-fuzzy knowledge structures from partial order R on Q, where the knowledge domain
Q is “Addition of fractions”.

For the “Addition of fractions”, Stefanutti et al. constructed a dichotomous knowledge structure
through 11 items [31]. However, there are equally informative items in the work of Stefanutti et al..
Therefore, we redesign some items, and then select 3 items for the domain. These items are listed in
Table 3.

Table 3. The items of the knowledge domain “Addition of fractions”.

Items
q1

1
12 + 5

12
q2

4
5 + 7

10
q3

5
6 + 1

15

For the item q1 : 1
12 + 5

12 , the process of solving q1 is as follows:

q1 : 1
12 + 5

12
= 6

12 Proficiency 0.6 in item q1

= 1
2 Proficiency 1 in item q1
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For the item q2 : 4
5 + 7

10 , the process of solving q2 is as follows:

q2 : 4
5 + 7

10
= 8

10 + 7
10 Proficiency 0.6 in item q2

= 15
10 = 3

2 Proficiency 1 in item q2

For the item q3 : 5
6 + 1

15 , the process of solving q3 is as follows:

q3 : 5
6 + 1

15
= 25

30 + 2
30 Proficiency 0.6 item q3

= 27
30 = 9

10 Proficiency 1 item q3

Based on the process of solving items, we assume that the partial order on Q is R = {(q1, q2), (q1, q3)}.
The dichotomous knowledge structure K is then obtained by applying

K ∈ K ⇔ (∀(p, q) ∈ R : q ∈ K ⇒ p ∈ K).

Eventually, K = {∅, {q1}, {q1, q2}, {q1, q3},Q}, see Table 4. Moreover, the Hasse diagram of K is
Figure 2.

Table 4. Constructing the dichotomous knowledge space (Q,K) by R.

K
R

(q1, q2) (q1, q3)

∅
√ √

{q1}
√ √

{q2} ×
√

{q3}
√

×

{q1, q2}
√ √

{q1, q3}
√ √

{q2, q3} × ×

Q
√ √

Q

{q1, q2}

;;

{q1, q3}

dd

{q1}

;;cc

∅

OO

Figure 2. Hasse diagram of the dichotomous knowledge space K .
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Based on the partial order R = {(q1, q2), (q1, q3)} on Q, the fuzzy knowledge structure K̃ is then
obtained by applying

K̃ ∈ K̃ ⇔ (∀(p, q) ∈ R : K̃(q) ≤ K̃(p)).

Eventually, the fuzzy knowledge structure induced by the partial order R = {(q1, q2), (q1, q3)} is
K̃={∅̃, { 0.6q1

, 0
q2
, 0

q3
}, { 0.6q1

, 0
q2
, 0.6

q3
}, {0.6q1

, 0.6
q2
, 0

q3
}, { 0.6q1

, 0.6
q2
, 0.6

q3
}, { 1

q1
, 0

q2
, 0

q3
}, { 1

q1
, 0

q2
, 0.6

q3
}, { 1

q1
, 0

q2
, 1

q3
}, { 1

q1
, 0.6

q2
, 0

q3
},

{ 1
q1
, 0.6

q2
, 0.6

q3
}, { 1

q1
, 0.6

q2
, 1

q3
}, { 1

q1
, 1

q2
, 0

q3
}, { 1

q1
, 1

q2
, 0.6

q3
}, { 1

q1
, 1

q2
, 1

q3
}}, see Table 5. Moreover, the Hasse diagram

of the fuzzy knowledge space K̃ is Figure 3.

Table 5. Constructing the fuzzy knowledge space (Q, K̃) by R.

K

R
(q1, q2) (q1, q3)

K

R
(q1, q2) (q1, q3)

∅̃
√ √

{ 0.6q1
, 0.6

q2
, 1

q3
}
√

×

{ 0
q1
, 0

q2
, 0.6

q3
}
√

× { 0.6q1
, 1

q2
, 0

q3
} ×

√

{ 0
q1
, 0

q2
, 1

q3
}

√
× { 0.6q1

, 1
q2
, 0.6

q3
} ×

√

{ 0
q1
, 0.6

q2
, 0

q3
} ×

√
{ 0.6q1

, 1
q2
, 1

q3
} × ×

{ 0
q1
, 0.6

q2
, 0.6

q3
} × × { 1

q1
, 0

q2
, 0

q3
}
√ √

{ 0
q1
, 0.6

q2
, 1

q3
} × × { 1

q1
, 0

q2
, 0.6

q3
}
√ √

{ 0
q1
, 1

q2
, 0

q3
} ×

√
{ 1

q1
, 0

q2
, 1

q3
}
√ √

{ 0
q1
, 1

q2
, 0.6

q3
} × × { 1

q1
, 0.6

q2
, 0

q3
}
√ √

{ 0
q1
, 1

q2
, 1

q3
} × × { 1

q1
, 0.6

q2
, 0.6

q3
}
√ √

{ 0.6q1
, 0

q2
, 0

q3
}
√ √

{ 1
q1
, 0.6

q2
, 1

q3
}
√ √

{ 0.6q1
, 0

q2
, 0.6

q3
}
√ √

{ 1
q1
, 1

q2
, 0

q3
}
√ √

{ 0.6q1
, 0

q2
, 1

q3
}
√

× { 1
q1
, 1

q2
, 0.6

q3
}
√ √

{ 0.6q1
, 0.6

q2
, 0

q3
}
√ √

{ 1
q1
, 1

q2
, 1

q3
}
√ √

{ 0.6q1
, 0.6

q2
, 0.6

q3
}
√ √
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{ 1
q1
, 1

q2
, 1

q3
}

{ 1
q1
, 1

q2
, 0.6

q3
}

88

{ 1
q1
, 0.6

q2
, 1

q3
}

ff

{ 1
q1
, 1

q2
, 0

q3
}

OO

{ 1
q1
, 0.6

q2
, 0.6

q3
}

88ff

{ 1
q1
, 0

q2
, 1

q3
}

OO

{ 1
q1
, 0.6

q2
, 0

q3
}

OO 88

{ 0.6q1
, 0.6

q2
, 0.6

q3
}

OO

{ 1
q1
, 0

q2
, 0.6

q3
}

OOff

{ 0.6q1
, 0.6

q2
, 0

q3
}

OO 88

{ 1
q1
, 0

q2
, 0

q3
}

ff 88

{ 0.6q1
, 0

q2
, 0.6

q3
}

OOff

{ 0.6q1
, 0

q2
, 0

q3
}

OO 88ff

∅̃

OO

Figure 3. Hasse diagram of the fuzzy knowledge space K̃ .

Rely on partial order R = {(q1, q2), (q1, q3)} on Q, the evaluation criteria is β = (1, 1, 1) for the
dichotomous knowledge spaces. In the example of “Addition of fractions”, if β = (1, 0.8, 0.5), then the
β-fuzzy knowledge structure is K̃β = {∅̃, { 1

q1
, 0

q2
, 0

q3
}, { 1

q1
, 0

q2
, 0.6

q3
}, { 1

q1
, 0

q2
, 1

q3
}, { 1

q1
, 1

q2
, 0

q3
}, { 1

q1
, 1

q2
, 0.6

q3
},

{ 1
q1
, 1

q2
, 1

q3
}}. Moreover, the Hasse diagram of the β-fuzzy knowledge structure K̃β is Figure 4.

{ 1
q1
, 1

q2
, 1

q3
}

{ 1
q1
, 0

q2
, 1

q3
}

99

{ 1
q1
, 1

q2
, 0.6

q3
}

ee

{ 1
q1
, 0

q2
, 0.6

q3
}

OO 44

{ 1
q1
, 1

q2
, 0

q3
}

OO

{ 1
q1
, 0

q2
, 0

q3
}

99ee

∅̃

OO

Figure 4. Hasse diagram of the β-fuzzy knowledge structure K̃β.
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In dichotomous KST, individuals need to completely solve some items at each step to reach larger
knowledge states. Dichotomous learning paths exclude the possibility of intermediate degrees of
mastering some items. In Figure 2, there are only two learning paths, that is ∅→ {q1} → {q1, q2} → Q
and ∅→ {q1} → {q1, q3} → Q.

However, for fuzzy knowledge structures, individuals only need to partially master some items at
each step to reach larger fuzzy knowledge states. There are more learning paths in fuzzy knowledge
structures than in dichotomous knowledge structures. Individuals and educators can choose anyone of
these learning paths from ∅̃ to { 1

q1
, 1

q2
, 1

q3
}. Those learning paths in fuzzy knowledge structures represent

individuals’ partial solving of items. There are several learning paths in Figures 3 and 4. We choose one
of learning paths in Figure 3 to show the learning process for “Addition of fractions” and the learning
paths in Figure 4 is similar. Learning path in K̃ : ∅̃ → {0.6q1

, 0
q2
, 0

q3
} → { 0.6q1

, 0
q2
, 0.6

q3
} → { 1

q1
, 0

q2
, 0.6

q3
} →

{ 1
q1
, 0.6

q2
, 0.6

q3
} → { 1

q1
, 1

q2
, 0.6

q3
} → { 1

q1
, 1

q2
, 1

q3
}

Step 1. ∅̃ → { 0.6q1
, 0

q2
, 0

q3
}. Solve the item q1 to the proficiency 0.6, then the fuzzy knowledge state

reaches { 0.6q1
, 0

q2
, 0

q3
};

Step 2. { 0.6q1
, 0

q2
, 0

q3
} → { 0.6q1

, 0
q2
, 0.6

q3
}. Solve the item q3 to the proficiency 0.6, then the fuzzy knowledge

state reaches { 0.6q1
, 0

q2
, 0.6

q3
};

Step 3. {0.6q1
, 0

q2
, 0.6

q3
} → { 1

q1
, 0

q2
, 0.6

q3
}. Solve the item q1 to the proficiency 1, then the fuzzy knowledge

state reaches { 1
q1
, 0

q2
, 0.6

q3
};

Step 4. { 1
q1
, 0

q2
, 0.6

q3
} → { 1

q1
, 0.6

q2
, 0.6

q3
}. Solve the item q2 to the proficiency 0.6, then the fuzzy knowledge

state reaches { 1
q1
, 0.6

q2
, 0.6

q3
};

Step 5. { 1
q1
, 0.6

q2
, 0.6

q3
} → { 1

q1
, 1

q2
, 0.6

q3
}. Solve the item q2 to the proficiency 1, then the fuzzy knowledge

state reaches { 1
q1
, 1

q2
, 0.6

q3
};

Step 6. { 1
q1
, 1

q2
, 0.6

q3
} → { 1

q1
, 1

q2
, 1

q3
}. Solve the item q3 to the proficiency 1, then the fuzzy knowledge state

reaches { 1
q1
, 1

q2
, 1

q3
}.

Similarly, we choose one of learning paths in Figure 4 to explain the learning process for “Addition
of fractions”. Learning path in K̃β: ∅̃ → { 0.6q1

, 0
q2
, 0

q3
} → { 0.6q1

, 0
q2
, 0.6

q3
} → { 1

q1
, 0

q2
, 0.6

q3
} → { 1

q1
, 0.6

q2
, 0.6

q3
} →

{ 1
q1
, 1

q2
, 0.6

q3
} → { 1

q1
, 1

q2
, 1

q3
}

Step 1. ∅̃→ { 1
q1
, 0

q2
, 0

q3
}. Solve the item q1 to the proficiency 1, then the fuzzy knowledge state reaches

{ 1
q1
, 0

q2
, 0

q3
};

Step 2. { 1
q1
, 0

q2
, 0

q3
} → { 1

q1
, 0

q2
, 0.6

q3
}. Solve the item q3 to the proficiency 0.6, then the fuzzy knowledge

state reaches { 1
q1
, 0

q2
, 0.6

q3
};

Step 3. { 1
q1
, 0

q2
, 0.6

q3
} → { 1

q1
, 1

q2
, 0.6

q3
}. Solve the item q2 to the proficiency 1, then the fuzzy knowledge

state reaches { 1
q1
, 1

q2
, 0.6

q3
};

Step 4. { 1
q1
, 1

q2
, 0.6

q3
} → { 1

q1
, 1

q2
, 1

q3
}. Solve the item q3 to the proficiency 1, then the fuzzy knowledge state

reaches { 1
q1
, 1

q2
, 1

q3
};

8. Conclusions

In this paper, we proposed an approach to generalize knowledge space and learning space for
assessment knowledge. We have explored various properties of fuzzy knowledge space and fuzzy

AIMS Mathematics Volume 8, Issue 11, 26840–26862.



26859

learning space. The knowledge state of an individual represents the items fully mastered in ordinary
knowledge space theory. The knowledge state of an individual in KST is inferred from their responses
to a set of items. A strict restriction in this approach to knowledge assessment leads to the lack
of a description for partial mastery of items. A fuzzy knowledge state can be used to express the
individual’s partial solving to items. A partial order in Definition 1 can avoid some equally informative
items. Theorem 2 indicates a discriminative fuzzy knowledge structure can be directly obtained from
a partially ordered set (Q,R). Theorems 2 and 3 indicate that there is a one-to-one correspondence
between the collection of all discriminative fuzzy quasi-ordinal space on F (Q) and the collection of
all partial orders on Q.

A fuzzy knowledge space is a union-closed fuzzy knowledge structure. The closure under union
is a rather reasonable property: Consider the case of two students engaged in extensive interactions
for a while, and one of the students will end up to merge their initial fuzzy knowledge states into a
single one which is the union of the two fuzzy knowledge states. Obviously, there is no certainty
that this will happen. However, requiring the existence of a fuzzy knowledge state in the structure
to cover this case is reasonable. A fuzzy learning space indicates that only one item can be learned
at a time under the evaluation criteria β. Theorem 6 and Corollary 2 indicate that if an individual
learns an item under β, then the individual can solve those items that are “predecessors” of the item.
This indicates that an individual always learns from the simple to the complex items. Theorem 7
proves that a discriminative fuzzy learning space is equivalent to a well-graded fuzzy knowledge space.
The β-relative discriminative in Definition 9 indicates that two do not simultaneously reach or not
reach the criteria in a β-relative discriminative fuzzy knowledge structure. Theorem 9 indicates that a
discriminative fuzzy knowledge structure is equivalent to a β-relative discriminative fuzzy knowledge
structure when each value in evaluation criteria β is the same. Theorem 10 states that if a fuzzy
knowledge structure is not β-relative discriminative, then it is not a fuzzy learning space.

The fuzzy knowledge basis of fuzzy knowledge space (Q, K̃) is a minimal subfamily of fuzzy
knowledge states, which spans (Q, K̃). Definition 11 and Theorem 11 show that if a fuzzy knowledge
state K̃ is an atom at q, then K̃ is related to the degree of membership K̃(q). Theorem 12 proves that
the fuzzy knowledge basis is formed by the collection of all the atoms. The algorithm for finding the
fuzzy knowledge basis is to find all atoms of K . The process of finding the fuzzy knowledge basis
is to remove union-reducible fuzzy knowledge states in K . On the link between cognitive diagnostic
models and knowledge space theory, Heller established the link between CDM (cognitive diagnostic
model) and KST in 2015 [21]. The competence-based extension of KST was greatly developed for the
assessment of knowledge and learning [1, 2, 20, 26, 30, 31, 34]. Skills identifying latent abilities can be
used to interpret individuals’ fuzzy knowledge states. Future work could be devoted to established the
link between fuzzy knowledge structures and skill functions.
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