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Abstract: This paper extends the cholera human-to-human direct transmission model from a
deterministic to a stochastic framework. This is expressed as mixed system of stochastic and
deterministic differential equations. A Lyapunov function is created to investigate the global stability
of the stochastic cholera epidemic, which shows the existence of global positivity of the solution using
the theory of stopping time. We then find the threshold quantity of the extended stochastic cholera
epidemic model. We derive a parametric condition R̃0, and for additive white noise, we establish
sufficient conditions for the extinction and the persistence of the cholera infection. Finally, for a
suitable choice of the parameter of the system for R̃0, we perform numerical simulations for both
scenarios of extinction and persistence of the dynamic of the cholera infection.
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1. Introduction

Infectious diseases significantly impact human health since they can have terrible effects. The
dynamical behavior of infectious diseases must be understood in order to safeguard human health and
control an infection [1]. Cholera, a diarrhea illness caused by Vibrio Cholera and characterized by
diarrhea, is one of the most severe infectious diseases [2]. WHO has identified cholera as a public
health issue [3]. Numerous theoretical and clinical research have been investigated in the literature.
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Cholera has been documented [4], but it still poses a serious hazard to public health in developing
nations.

Mathematical modeling is a powerful tool for understanding how disease spreads [5]. Additionally,
it provides future outbreak predictions and epidemic control strategies [6]. A disease’s epidemic model
may be deterministic or stochastic. An easy technique to analyze a system of ordinary differential
equations is to use a deterministic model [7]. Due to their straightforward formulation, these models
are commonly utilized. Deterministic models, however, have a number of limitations, including the fact
that when the population is small enough, they are less informative and more challenging to estimate
and analyze. Additionally, random effects disrupt deterministic models, causing trajectories to deviate
from expected noise behavior [8]. Deterministic models have their strengths and can be useful for
systems with well-defined rules and clear cause-and-effect relationships, but they often fall short in
capturing the complexity, randomness, and uncertainty present in many real-world systems. Stochastic
systems offer a more flexible and realistic way to model such complexity, making them a valuable tool
in various scientific, engineering, and social applications [9, 10].

Various techniques can be used to study stochastic epidemic systems [11]. The time and state
variables show that these processes are different from one another [12]. The literature has a variety of
stochastic models that investigate how environmental noise affects the spread of infectious diseases.
The stochastic models are efficient at calculating asymptotic expressions for the likelihood of an
outbreak occurring [13]. One of the traditional models is a stochastic S IS epidemiological model.
Gray et al. [14] presents such a model whose basic characteristics with vaccination are studied in [15].
By employing the threshold quantity of the deterministic system, the authors of [16] investigated
a stochastic S IS epidemic model’s dynamics and produced conditions for the noise of disease
persistence and extinction. Some authors studied the long-term behavior of an S IR stochastic epidemic
model [17]. They established a threshold condition for the extinction and persistence of the model and
supported their theoretical predictions through numerical simulations. Song et al. [18] used a stochastic
SIRS model for studying the noise impact of an infectious disease with a saturated incidence rate
and [19] reported a S IQS model for investigating the threshold dynamics for white noise.

Numerous scholars reported different mathematical models to study the cholera epidemic [20–
22]. Depending on the environmental noises, researchers studied a cholera stochastic system with
vaccination and derived significant conditions regarding the basic threshold number [23]. The role of
the aquatic reservoir on cholera disease was reported in [26], where they studied the endemic and
epidemic dynamics of the infection. The impact of factors like contaminated water, temperature,
rainfall, etc., on the cholera outbreak was investigated through a stochastic model system [27].
However, this work is solely concerned with theoretical considerations, and no analysis has been
performed. More recently, authors reported a fundamental deterministic model that considers the direct
contact transmission mechanism and the dynamics of the cholera sickness [28]. The model they used
for the said investigation has the following structure:

dS =
[
Π − ζS + ΛR − δIS

]
dt,

dT = [µI − (γ + ζ + η)T ]dt,

dI = [−(µ + ζ + α)I + δS I]dt,

dR = [ηT − (ζ + Λ)R]dt.

(1.1)

A description of the parameters in system (1.1), for t > 0 is given below.
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The term S is the compartment of the susceptible individuals, I is the compartment of the infected
populace, T denotes the class of treated people, and R is the class of the recovered class.

The birth rate of the population is represented by Π while the natural rate of mortality is symbolized
by ζ. δ denotes the contact rate between the susceptible class and the infected compartment; µ is the
rate of treatment while death due to infection is denoted by αwhile deaths during therapy are described
by γ and η is the rate of recovery, the loss rate of immunity is Λ.

Epidemic deterministic models assume even mixing in large populations, but this fails at outbreak
start due to few infected people and stochastic transmission. Homogeneous mixing is not accurate for
small initial infections, making deterministic models unsuitable. To address this, we introduce random
parameter variation using a parametric perturbation approach, reflecting real-world heterogeneity and
contact patterns. This enhances our understanding of disease dynamics during the early stages of
epidemics. In this work, we extend the notion of the cholera deterministic model presented in [28] into
a stochastic problem by taking direct human-to-human transmission into account. For this purpose, we
apply the idea of parametric perturbation by choosing parameters from model (1.1) and transforming
it to a random variable [9, 18, 19]. For more results, we refer to the following collection of articles in
the book Disease Prevention and Health Promotion in Developing Countries [29].

We outline the environmental changes that affect the parameter δ such that δ→ δ+εdW(t). Here, the
standard Brownian motion with intensity σ2 > 0 is denoted by the symbol W(t). Suppose (Ω,F ,P)
represents an entire probability space with filtration so that {F }t≥0 meets the prerequisites (i.e., F0,
including all null sets, is assumed to be continuous from the right and growing). Our stochastic model
extends the deterministic one presented in [24] and up to the random excitations, it keeps similar
extensions as in [23, 30]. We study the following stochastic model with identic stochastic perturbation
for the classes S and I:

dS =
[
ΛR + Π − δIS − ζS

]
dt − εS IdW(t),

dI = [δIS − (ζ + α + µ)I]dt + εS IdW(t),
dT = [µI − (ζ + η + γ)T ]dt,

dR = [ηT − (ζ + Λ)R]dt.

(1.2)

The manuscript is organized as follows: Section 2 of the manuscript is devoted to the basic
preliminaries, including concepts and presentation of important formulas. In Section 3, the dynamic
behavior of a positive solution is examined within a global context, utilize the Lyapunov analysis.
Section 4 deals with exploration of the conditions under which the disease is guaranteed to become
extinct with a probability of one. In Section 5, we establish the necessary conditions to demonstrate
weak permanence and mean permanence with a probability one for the infection. Section 6 is dedicated
to the execution of numerical simulations aimed at illustrating the core theoretical findings. The
derivation of the basic threshold number is presented in Section 7. The calculated threshold number
provides sufficient conditions for the infection to persist or eventually dies out. Finally we conclude
our work in Section 7.

2. Preliminaries

Introduce the notation R4
+ = {(y1, y2, y3, y4)|yi > 0, i = 1, 2, 3, 4}. Suppose that (F ,Ω,P) illustrates

a probability measure space and the filtration {F }t≥0 observing the necessary relations (that is, all null
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sets include in F0, and is continuously increasing). Take into account the underlying m-dimensional
stochastic system

dχ(t) = f(t, χ(t)) + g(t, χ(t))dW(t), (2.1)

such that f(t, χ) is m-dimensional vector function in Rm define in [t0,∞] × Rm , g(t, χ) is m × d matrix,
f and g are locally Lipschitz functions in χ. The differential operator L define by [12, 31] associated
with (2.1) as follow

L =
∂

∂t
+

m∑
i=1

fi(t)
∂

∂yi
+

1
2

m∑
i, j=1

[gT (y, t), g(y, t)]i j
∂2

∂yi∂y j
.

Once the operator L is applied to the function N ∈ C2,1([t0,∞] × Rm), one may consequently obtain

LN(y, t) = Ny(y, t)f(y, t) + Nt(y, t) +
1
2

[Vyyg(y, t)gT (y, t)],

such that Nt = ∂N
∂t , Ny =

∑m
i=1

∂N
∂yi

, Vyy =
∑m

i, j=1
∂2N
∂yi∂y j

. So we can define Itô formula for y(t) ∈ Rm as

dN(y, t) = LN(y, t)dt + Ny(y, t)g(y, t)dWt.

3. Qualitative analysis of the system (1.2)

The first question to ask when examining dynamic behavior is whether the solution exists globally.
Additionally, a populace dynamics system takes into account whether the solution is non-negative. So,
in this part, we begin by demonstrating that the solution of model (1.2) is positive as well as global.
Locally Lipschitz coefficients ensure a unique local solution for an ordinary differential equation on a
given interval by guaranteeing a bounded rate of change for the solution within a neighborhood around
each point. This controlled growth prevents solutions from diverging and overlapping, leading to a
distinct trajectory for each initial condition, thereby ensuring uniqueness on the interval [25]. For this
reason, the coefficients of the equation typically need to meet the local Lipschitz condition and the
linear growth condition in order to produce a stochastic differential equation that has a distinct global
solution for a given initial value [10]. Even if they are locally Lipschitz continuous, the coefficients
of the model (1.2) do not meet the linear growth condition, hence the solution of the system (1.2)
may blow up at a certain point in time. This part of the paper demonstrates that the solution of the
system (1.2) is positive and global utilizing the Lyapunov analysis approach.

Theorem 1. The distinct solution of the stochastic model (1.2) on t greater than or equal to zero is
unique and for a starting point (S 0,T0, I0,R0) ∈ R4, with probability one will stay in R4, specifically
(S ,T, I,R) ∈ Ω for positive t almost surely (a.s).

Proof. Since the parameters of the system (1.2) meet the local Lipschitz conditions, then there exists a
distinct local solution (I,T, S ,R) for an assigned starting value given as (S 0,T (0, I0,R0) ∈ R4on [0, τe)
a.s., with τe indicates the time of outbursts. Furthermore, to ascertain that solution is global, we require
to verify τe = ∞ as sure. Assume that j0 > 0 is sufficient large satisfies (I0,T0, S 0,R0) remain in the
interval [ 1

j0
, j0]. For each integer j ≥ j0 we describe the time of stopping

τ j = inf{min(T, I,R, S ; t ∈ [0, τe)) ≤
1
j

or max((T, I,R, S ) ≥ j}.
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In this paper, ∅ represents the empty set such that inf ∅ = ∞. By definition τ j is rising as j → ∞.
Take τ∞ = lim j→∞ τ j, from which τe ≥ τ∞ a.s. Now we require to prove that τ∞ = ∞ a.s, therefore
τe = ∞ and (I,T, S ,R) ∈ R4 a.s. Furthermore, to accomplish this task, we must prove that τ∞ = ∞ a.s.
Suppose that this assumption is false, then one may find some constants B > 0 and any 0 < ε < 1 for
which P{τ∞ ≤ B} > ε. As a significance of this, there exist an integer j1 ≥ j0 in such a manner

P{τ j ≤ B} ≥ ε, ∀ j ≥ j1. (3.1)

Clearly when t ≤ τ j, we can write

d(I + T + S + R) = [Π − ζ(I + T + S + R) − αI − γT ] ≤ [Π − ζ(I + T + S + R)],

which can be further written as

(S ,T,R, I) ≤

Π
ζ

I0 + S 0 + R0 + T0 ≤
Π
ζ

I0 + S 0 + R0 + T0 I0 + S 0 + T0 + R0 >
Π
ζ

:= N.

Now, let us define a Lyapunov function V from R4 to R̄ as follows:

V(S , I,T,R) = (−1 + S − ln S ) + (−1 + I − ln I) + (+T − ln T − 1) + (R − 1 − ln R).

This function is obviously positive as − ln u − 1 + u ≥ 0,∀ u > 0. Suppose that j ≥ j0 and for arbitrary
B > 0, applying the Itô Integral formula, one may arrive at

dV = LVdt − ε(I − S )dW(t). (3.2)

According to the definition of the operator L, we have

LV = (1 −
1
S

)[Π + ΛR − δIS + ζS ] + (1 −
1
I

)[δIS − (ζ + µ + α)I + (1 −
1
T

)[µI − (ζ + η + γ)T ]

+(1 −
1
R

)[ηT − (ζ + Λ)R] +
1
2
ε2S 2 +

1
2
ε2I2.

After further simplification, one may write

LV = Π − ζS − (ζ + α)I − (ζ + γ)T − ζR −
Π

S
−

ΛR
S

+ δI + ζ − δS + (ζ + µ + α)

−
µI
T

+ (ζ + η + γ) −
ηT
R

+ (ζ + Λ) +
1
2
ε2(S 2 + I2)

≤ Π + δI + ζ + (ζ + µ + α) + (ζ + η + γ) + (ζ + Λ) +
1
2
ε2(S 2 + I2)

≤ Π + δN + ζ + (ζ + µ + α) + (ζ + η + γ) + (ζ + Λ) +
1
2
ε2N2 := J.

Inserting this into (3.1) leads to

dV(S , I,T,R) ≤ Jdt − ε(I − S )dW(t). (3.3)
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Integrating (3.3) from 0 to τ j ∧ B one may arrive at∫ τ j∧B

0
dV(S ,T, I,R) ≤ J

∫ τ j∧B

0
dt − ε

∫ τ j∧B

0
(−S + I)dW(t),

where τ j ∧ B = min(τn, t). After taking expectations on both sides, it becomes

EV
(
S (τ j ∧ B), I(τ j ∧ B),T (τ j ∧ B),R(τ j ∧ B)

)
≤ V

(
S 0,T0, I0,R0) + JE(τ j ∧ B

)
(3.4)

≤ V(S 0,T0, I0,R0) + JB.

Put Ω j = {τ j ≤ B} for j ≥ j1 and by (3.1), P{Ωk} ≥ ε. It can be noticed that for each ω ∈ Ω j, there
corresponds at least one of S (τ j, ω), I(τ j, ω),T (τ j, ω),R(τ j, ω) and that is equal to j or 1

j , and thus
V(S (τ j, ω), I(τ j, ω),T (τ j, ω),R(τ j, ω)) which must not minimum than

−1 + j − ln j or 1
j − ln 1

j + 1 = 1
j − 1 + ln j.

Subsequently one may arrive at

V(S (τ j, ω), I(τ j, ω),T (τ j, ω),R(τ j, ω)) ≥ [ j − 1 − ln j] ∧ [
1
j
− 1 + ln j].

Next, it is easy to write from Eqs (3.1) and (3.4) that

V(S 0,T0, I0,R0) + JB ≥ E
[
1ΩkV(S (τ j, ω), I(τ j, ω),T (τ j, ω),R(τ j, ω))

]
≥ [ j − 1 − ln j] ∧

[
1
j

+ ln j − 1
]
.

Note that 1Ωk is the indicator function of Ωk. Suppose that j→ ∞ induces to the contradiction

∞ > V(S 0, I0,T0,R0) + JB = ∞.

Thus accordingly, it is necessary that

τ∞ = ∞ a.s.

4. Extinction of disease

For the dynamical behavior in epidemiology, our major concern is how to regulate the illness spread
so that the infectious illness vanishes in a long term. For this purpose, the investigation of the sufficient
conditions of disease extinction is performed in this section.

To establish sufficient conditions for the cholera disease extinction, we introduce the new notation

in this paper: let 〈x(t)〉 =
1
t

∫
x(r)dr.

For our planned stochastic model (1.2), the basic reproduction value R̃0 is described as

R̃0 =
δΠ

ζ(ζ + µ + α)
−

ε2Π2

2ζ2(ζ + µ + α)
. (4.1)
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Lemma 1. Suppose that a continuous real-valued martingale denoted by M = {Mt}t≥0 is disappearing
at positive t. So lim

t→0
〈M,M〉t = ∞ a.s., infer that lim

t→0

Mt
〈M,M〉t

= 0 a.s. Moreover, lim
t→0

〈M,M〉t
t < ∞ almost

surely, interprets that lim
t→0

Mt
t = 0 almost surely.

Theorem 2. Let (I, S ,T,R) be the solution of the planned system (1.2) with starting value
(I0,T0, S 0,R0) ∈ η∗. If

a) ε2 > δ2

2(ζ+µ+α) , therefore lim
t→0

sup ln I
t ≤ −(ζ + µ + α) + δ2

2ε2 < 0 very nearly surely;

b) 1 > R̃0 and ε2 ≤
δζ

Π
, therefore lim

t→0
sup

ln I
t
≤ (ζ + µ + α)(−1 + R̃0) < 0 very nearly surely.

Proof. By using the Itô integral formula to our proposed model (1.2), then

d(ln I) =

[
δS − (ζ + α + µ) −

ε2S 2

2

]
dt + εS dW(t). (4.2)

Integrating (4.2) from zero to t and then take ratio of t, we obtain

ln I
t
≤

[
−(ζ + α + µ) +

δ2

2ε2

]
+
ε

t

∫ t

0
S dW(t) +

ln I0

t

≤

[
−(ζ + µ + α) +

δ2

2ε2

]
+

ln I0

t
+

M(t)
t
, (4.3)

where the non-discontinuous local martingale with property M(0) is equal to zero, represented by

M(t) = ε

∫ t

0
S dW(t) [25]. Furthermore

lim
t→0

sup
〈M,M〉t

t
<
ε2Π2

ζ2 < ∞ a.s.

Consider Lemma 1, which can be cast into

lim
t→0

M(t)
t

= 0, a.s.

By applying the limit superior on both sides of (4.3) , it follows that

lim
t→0

sup
ln I

t
≤ −(ζ + µ + α) +

δ2

2ε2 + lim
t→0

sup
M(t)

t
+ lim

t→0
sup

ln I0

t
(4.4)

≤ −(ζ + µ + α) +
δ2

2ε2 very nearly surely.

If condition (a), namely,

0 > ε2 >
δ2

2(ζ + µ + α)

holds, we obtain lim
t→0

sup
ln I

t
, a.s. Consequently, one may deduce that limt→0 I is equal to zero very

nearly surely.
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Integrating system (1.2) gives the underlying system

−S 0 + S =
[
Λ〈R〉 + ζ〈S 〉

]
t + Π − δ〈I〉〈S 〉 − ε

∫ t

0
I(r)S (r)dW(r),

−I0 + I =
[
−(ζ + µ + α)〈I〉 + δ〈I〉〈S 〉

]
t + ε

∫ t

0
I(r)S (r)dW(r),

T − T0 =
[
µ〈I〉 − (γ + ζ + η)〈T 〉

]
t, R − R0 =

[
−(ζ + Λ)〈R〉 + η〈T 〉

]
t.

Further simplification leads to

S − S 0

t
+

I − I0

t
= − (ζ + µ + α) 〈I〉 + Λ〈R〉 + Π + ζ〈S 〉,

η
(
−T0 + T

t

)
+ (ζ + η + γ)

(R − R0

t

)
= ηµ〈I〉 − (ζ + Λ)(γ + η + ζ)I〉 − (Λ + ζ)(γ + η + ζ)〈R〉]t.

After some manipulation, the last equation may written in the form

(ζ + Λ)(ζ + η + γ)
ζ

(
−S 0 + S

t
+
−I0 + I

t

)
+

Λ(ζ + η + γ)
ζ

(R − R0

t

)
+
ηΛ

ζ

(
−T0 + T

t

)
=

Π(ζ + Λ)(η + ζ + γ)
ζ

−
(ζ + α + µ)(ζ + Λ)(γ + ζ + η)

ζ
〈I〉 +

ηµΛ

ζ
〈I〉 − (ζ + Λ)(ζ + η + γ)〈S 〉

=
Π(ζ + Λ)(ζ + η + γ)

ζ
− (ζ + Λ)(ζ + η + γ)〈S 〉 −

ηµΛ − (ζ + α + µ)(ζ + Λ)(η + ζ + γ)
ζ

〈I〉.

Consequently, we arrive at

〈S 〉 =
Π

ζ
+
ηµΛ − (ζ + µ + α)(Λ + ζ)(γ + ζ + η)

ζ(ζ + Λ)(ζ + η + γ)
〈I〉 + ϕ(t). (4.5)

Note that the value of ϕ(t) is given by

ϕ(t) = −
1
ζ

(
−I0 + I

t
−

S 0 − S
t

)
−

ηΛ

ζ(ζ + Λ)(ζ + η + γ)

(
−T0 + T

t

)
−

Λ

ζ(ζ + Λ)

(
−R0 + R

t

)
.

It is apparent that as t → ∞ so as ϕ(t)→ 0 a.s.,

lim
t→0

ϕ(t) = 0. (4.6)

Now we use the Itô integral formula [25] to the model (1.2), then it attain the form

d(ln I) =

[
δS − (ζ + α + µ) −

ε2S 2

2

]
dt + εS dW(t).

Integrating from zero to t, we reach the expression

− ln I0 + ln I =

[
−(ζ + α + µ) + δ〈S 〉 −

ε2〈S 2〉

2

]
t + ε

∫ t

0
I(r)S (r)dW(r)

≤

[
δ〈S 〉 − (ζ + µ + α) −

ε2〈S 〉2

2

]
t + ε

∫ t

0
I(r)S (r)dW(r). (4.7)
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Dividing both sides by t to obtain

ln I
t
≤

[
δ〈S 〉 − (α + µ + ζ) −

ε2〈S 〉2

2

]
+

ln I0

t
+
ε

t

∫ t

0
I(r)S (r)dW(r).

This can be further written as

ln I
t
≤

[
δ〈S 〉 − (ζ + µ + α) +

ln I0

t
−
ε2〈S 〉2

2

]
+

M(t)
t
, (4.8)

where M(t) = ε

∫ t

0
I(r)S (r)dW(r) is a continuous and local martingale which satisfies the condition

M(0) = 0, see, e.g., [25]. By putting (4.5) in (4.8), one may obtain

ln I
t
≤ δ

Π

ζ
−

[
(ζ + µ + α)

ζ
−

ηµΛ

ζ(ζ + Λ)(ζ + η + γ)

] (
δ − ε2 Π

ζ

)
〈I〉

− (ζ + µ + α) +
ln I0

t
+ θ(t) −

ε2Π2

2ζ2 +
M(t)

t
. (4.9)

Note that the term θ(t) in (4.9) is given by

θ(t) = δϕ(t) −
ε2

2
ϕ2(t) − ε2[

(ζ + µ + α)
ζ

−
ηµΛ

ζ(ζ + Λ)(ζ + η + γ)
]〈I〉ϕ(t) +

ε2Π

ζ
ϕ(t).

Further

lim
t→0

sup
〈M,M〉t

t
≤
ε2Π2

ζ2 < ∞ a.s.,

with the help of Lemma 1 can be written as

lim
t→0

M(t)
t

= 0 and lim
t→0

θ(t) = 0 a.s. (4.10)

Next, by taking limit superior on both sides of (4.9) leads to

lim
t→0

sup
ln I

t
≤ (α + ζ + µ)

[
−1 + R̃0

]
−

[
(α + ζ + µ)

ζ
−

ηµΛ

ζ(ζ + Λ)(ζ + η + γ)

] (
δ − ε2 Π

ζ

)
lim
t→0

sup〈I〉.

(4.11)

With the help of the above defined condition (b), inequality (4.11) gives

lim
t→0

sup
ln I

t
≤ (ζ + α + µ)[−1 + R̃0] −

[
(ζ + µ + α)

ζ
−

ηµΛ

ζ(ζ + Λ)(ζ + η + γ)

] (
δ −

δζ

Π

Π

ζ

)
lim
t→0

sup〈I〉.

This gives lim
t→0

sup
ln I

t
< 0 a.s., as a result of which we deduce that lim

t→0
I = 0 a.s.
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5. Persistence of disease

This section of our manuscript is devoted for the construction of important relations for the disease
dispersed in the populace. We follow the techniques discussed in [14, 16, 17]. The planned stochastic
system (1.2) stated that persistence in means if

lim
t→0

inf
∫ t

0
I(r)dr > 0, a.s.

To proceed further, we consider it necessary to state the following lemmas:

Lemma 2. Assume that f ∈ C[[0,∞) × (0,∞)] and F(t) ∈ C[[0,∞) × Ω,R], in case one can find
non-negative constants π0, π and M satisfies

ln f (t) ≤ πt − π0

∫ t

0
f (s)ds + F(t)almost surely for all M ≤ t,

along with lim
t→0

F(t)
t

= 0 almost surely. As a result
π

π0
≤ lim

t→0
sup

1
t

∫ t

0
f (s)ds almost surely.

Lemma 3. Assume that f ∈ C[[0,∞) × (0,∞)] and F(t) ∈ C[[0,∞) × Ω,R] if there exist non-negative
constants π0, π and M such that

ln f (t) ≤ πt − π0

∫ t

0
f (s)ds + F(t) almost surely for all M ≤ t,

along with lim
t→0

F(t)
t

= 0 a.e., then
π

π0
≥ lim

t→0
inf

1
t

∫ t

0
f (s)ds a.e.

Theorem 3. If R̃0 > 1 and ε2 <
δζ

Π
, so for any starting value (S 0,T0, I0,R0) ∈ η∗, the solution

(S ,T, I,R) of the planned cholera disease system (1.2) satisfies the property

X1 ≥ lim
t→0

sup〈I〉 ≥ lim
t→0

inf〈I〉 ≥ X2

very nearly surely, where

X1 =
(ζ + µ + α)(R̃0 − 1)[

(ζ+α+µ)
ζ
−

ηµΛ

ζ(ζ+Λ)(ζ+η+γ)

] (
δ − ε2 Π

ζ

) ,
X2 =

(ζ + α + µ)(R̃0 − 1)

δ
[

(ζ+α+µ)
ζ
−

ηµΛ

ζ(ζ+Λ)(ζ+η+γ)

] .
Proof. From the last inequality of (4.9), we may write

ln I
t
≤ δ

Π

ζ
+

M(t)
t
−
ε2Π2

2ζ2 −

[
(ζ + µ + α)

ζ
−

ηµΛ

ζ(ζ + Λ)(ζ + η + γ)

] (
δ − ε2 Π

ζ

)
〈I〉

+
ln I0

t
+ θ(t) − (ζ + µ + α)
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= δ
Π

ζ
− (ζ + µ + α) −

ε2Π2

2ζ2 −

[
(ζ + µ + α)

ζ
−

ηµΛ

ζ(ζ + Λ)(ζ + η + γ)

] (
δ − ε2 Π

ζ

)
〈I〉

+
ln I0

t
+ θ(t) +

M(t)
t

= (ζ + µ + α)
[
δ

Π

ζ(ζ + µ + α)
− 1 −

ε2Π2

2ζ2(ζ + µ + α)

]
−

[ (ζ + µ + α)
ζ

−
ηµΛ

ζ(ζ + Λ)(ζ + η + γ)

] (
δ − ε2 Π

ζ

)
〈I〉 +

M(t)
t

+
ln I0

t
+ θ(t).

Using the value of R̃ from (4.1), the last result takes the form:

ln I
t
≤ (ζ + µ + α)(R̃0 − 1)

[
(α + µ + ζ)

ζ
−

ηµΛ

ζ(ζ + Λ)(ζ + η + γ)

] (
δ − ε2 Π

ζ

)
〈I〉

+
M(t)

t
+ θ(t) +

ln I0

t
. (5.1)

Upon some algebraic manipulation, (5.1) yields:

〈I〉 ≤
(α + µ + ζ)(R̃0 − 1)[

(α+µ+ζ)
ζ
−

ηµΛ

ζ(ζ+Λ)(ζ+η+γ)

] (
δ − ε2 Π

ζ

) +

[
θ(t) + ln I0

t +
M(t)

t −
ln I

t

][
(ζ+µ+α)

ζ
−

ηµΛ

ζ(ζ+Λ)(ζ+η+γ)

(
δ − ε2 Π

ζ

)] . (5.2)

Taking limit superior on both sides and using Lemma 2 together with (4.6), we arrive at:

lim
t→0

sup〈I〉 ≤
(R̃0 − 1)(ζ + µ + α)[

(ζ+µ+α)
ζ
−

ηµΛ

ζ(ζ+Λ)(ζ+η+γ)

]
(δ − ε2 Π

ζ
)

= X1. (5.3)

On the other hand, from (4.5) and (4.7), one may write

ln I − ln I0

t
=

[
δ〈S 〉 +

M(t)
t
− (ζ + µ + α) −

ε2〈S 〉2

2

]
= δ

[
Π

ζ
−

(
(ζ + α + µ)

ζ
−

ηµΛ

ζ(ζ + Λ)(ζ + η + γ)

)
〈I〉 + θ(t)

]
− (ζ + µ + α)

−
ε2〈S 〉2

2
+

M(t)
t
.

Thus, we have

ln I − ln I0

t
≥ δ

Π

ζ
− δ

[
(ζ + µ + α)

ζ
−

ηµΛ

ζ(ζ + Λ)(ζ + η + γ)

]
〈I〉 + δθ(t) − (ζ + µ + α)

−
ε2Π2

2ζ2 +
M(t)

t
.

With the help of (4.1), the last in-equality gives

ln I − ln I0

t
≥ (ζ + α + µ)(R̃0 − 1) − δ

[
(µ + ζ + α)

ζ
−

ηµΛ

ζ(ζ + Λ)(ζ + η + γ)

]
〈I〉 +

M(t)
t

+ δθ(t). (5.4)
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After some algebra, one may observe that (5.4) leads to the following equation:

〈I〉 ≥
(ζ + µ + α)(R̃0 − 1)

δ
[

(ζ+α+µ)
ζ
−

ηµΛ

ζ(ζ+Λ)(ζ+η+γ)

] +

[
θ(t) − ln I

t +
M(t)

t + ln I0
t

]
δ
[

(ζ+µ+α)
ζ
−

ηµΛ

ζ(ζ+Λ)(ζ+η+γ)

] . (5.5)

Applying the inferior limit to each side and utilize Lemma 3 with (4.9) we can write

lim
t→0

inf〈I〉 ≥
(ζ + α + µ)(R̃0 − 1)

δ
[

(ζ+η+µ)
ζ
−

ηµΛ

ζ(ζ+Λ)(ζ+η+γ)

] = X2. (5.6)

Thus from (4.5) and (4.9), we have

X2 ≤ lim
t→0

inf〈I〉 ≤ lim
t→0

sup〈I〉 ≤ X1 a.s.

6. Numerical simulation

In order to validate our theoretical results, we perform three numerical tests for the present S ITR
stochastic system (1.2). This coupled stochastic model is derived from the classic S ITR model (1.1).
Thus, we use a random excitation of the population classes S and I. For computational simplicity, we
use white noise as a random perturbation. These noises are independent. System (1.2) is discretized
using the first-order stochastic Runge Kutta scheme. For such a stochastic framework, we refer to [32].
The derivation of this scheme is given as follows:

S tn+1 = S tn +
[
Π + ΛRtn − δItnS tn + ζS tn

]
∆tn − εS tn Itn∆Wtnε

2S tn Itn

(
(∆W1,tn)

2 − Λtn

)
2
√

∆tn
,

Itn+1 = Itn + [δItnS tn − (ζ + µ + α)Itn]∆tn + εS tn Itn∆Wtn + ε2S tn Itn

(
(∆W1,tn)

2 − ∆tn

)
2
√

∆tn
,

Ttn+1 = Ttn + [µtn − (ζ + η + γ)Ttn]∆tn,

Rtn+1 = Rtn + [ηTtn − (ζ + Λ)Rtn]∆tn.

(6.1)

Where ∆tn = tn+1 − tn represents the time step and ∆Wtn = Wtn+1 − Wtn stands for the independent
increments of the Gaussian Brownian motion generating the white noise. For simplicity, we implement
a fixed time step ∆tn = ∆t for the evolution of all classes. We subdivide the temporal interval into 1,000
equally spaced subintervals. Subject to various random initial conditions that satisfy our theoretical
requirements, we numerically solve the S ITR system (1.2). We run our code in order to generate six
simulations. The parameters of these six tests are given in Table 1. For tests 4–6, we use the same
technique for the parameters σ as implemented in [33, 34]. Moreover, it should be stressed that the
choice of our parameters proved in Theorems 2 and 3 is relevant for checking the extinctions and
persistence scenarios. In tests 1–3, we simulate the extinction case and in tests 4 and 5 we simulate the
persistence case. Obviously, all these parameters follow the conditions of our proven results. For every
simulation, we show two samples of numerical realization and the associated numerical mean solution
of a large number of solutions. Namely, we generate 1,000 solutions for each test.
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The initial values of all classes are represented by the values S (0), I(0), T (0), and R(0). The choice
of these values is generated randomly in [0, 1]. This choice is updated by the following normalization
at each time step:

S + I + T + R = 1, for all t > 0.

In the following figures we provide two sample realizations of the stochastic numerical solution
of the model under consideration. Test 1 based on simulations, we observe that all results obey the
results of Theorems 1 and 2. For any on t ≥ 0, the solution (S , I,T,R) exits in R4

+. Also, all tests
demonstrate a good accuracy and stability of the proposed model (1.2). Moreover, extinction and
persistence scenarios are clearly demonstrated in the following simulations.

In Figures 1–3, we see the extinction of the class I for the choice of R̃0 < 1. The third column
of these figures represents the asymptotical behavior of all population classes as a mean of 1000
random simulations using the same entries in the table above. In Figures 4–6, we show the persistence
case, where the class of infected individuals I remain persistent. This class will never vanish if
R̃0 > 1. Finally, it should be stressed that both out theoretical and computational results show similar
conclusions as deduced in [23, 24, 30].

Table 1. Parametric description: extinction 1–3, persistence 4–6.

Test 1 Test 2 Test 3 Test4 Test 5 Test 6
Π 0.61995 0.41905 0.16379 0.55006 0.13708 0.38993
δ 0.05 0.10 0.15 0.01 0.01 0.07
Λ 0.05 0.07 0.06 0.1 0.05 0.05
α 0.83 0.85 0.86 0.05 0.5 0.05
ζ 0.25 0.27 0.26 0.05 0.045 0.10
µ 0.05 0.05 0.06 0.05 0.05 0.05
η 0.91 0.90 0.89 0.02 0.02 0.02
γ 0.25 0.25 0.25 0.50 0.50 0.50
ε 0.11 0.15 0.11 0.58 0.01 0.32
S 0 0.25 0.20 0.30 0.03027 0.37345 0.22651
I0 0.25 0.40 0.50 0.66719 0.15955 0.22703
T0 0.25 0.30 0.10 0.12568 0.12142 0.48787
R0 0.25 0.10 0.20 0.17684 0.34557 0.05857
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Figure 1. Simulation samples of a possible extinction scenario using parameters of test 1.
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Figure 2. Simulation samples of a possible extinction scenario using parameters of test 2.
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Figure 3. Simulation samples of a possible extinction scenario using parameters of test 3.
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Figure 4. Simulation samples of a possible persistence scenario using parameters of test 4.
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Figure 5. Simulation samples of a possible persistence scenario using parameters of test 5.
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Figure 6. Simulation samples of a possible persistence scenario using parameters of test 6.

7. Conclusions

Due to the nonregular and random happening, ecological phenomenon influences in the real world,
such as absolute moisture, temperature, and rainfall, considerably affect the infection strength of
diseases such as cholera. Thus, joining stochastic effects into the deterministic model provides
a more realistic technique for modeling epidemic systems. We have evaluated a stochastic S ITR
cholera system, which comprises variability in the direct transmission and functional our theoretical
consequences to the dynamic of cholera based on realistic parameter values. To begin with, we
extend the work [28] to the stochastic cholera model with random perturbations directly proportional to
T, I, S , and R. Initially, we established the conditions for the persistence and extinction of the cholera
infection. Furthermore, computer simulations confirm and indicate that white noise significantly affects
the disease extinction and persistence of the cholera epidemic. Generally, we got similar results as
in [23, 24, 30]. Similarly, the persistence of cholera infection is minimized with the noise strength
increasing. We brought the numerical conclusions using the Runge-Kutta stochastic scheme, which
supports our analytical results.
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Appendix

Consider the infected compartment of stochastic system (1.2),

dI = [δIS − (ζ + α + µ)I]dt + εS IdW(t).

Let f (t, I) = log I. Using Itô formula, one can write

d f (t, I) =
1
I

d[δIS (ζ + α + µ)I]dt +
1
I
εIS dW(t)

−
1

2I2 [δIS dt − (ζ + α + µ)Idt + εS IdW(t)]2.

By chain rule, we have

d f (t, I) = [δS − (ζ + α + µ)]dt −
1
2

[εS ]2dt + εS dW(t)

= δS −
1
2
ε2S 2 − (ζ + α + µ)]dt + εS dW(t).

Now for next generation matrix, assume that

f = δS −
1
2
ε2S 2,
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v = (ζ + α + µ).

Again suppose that the Jacobian matrix of f and v w.r.t., I are F and V respectively, which can be write

at the no-infection equilibrium point E0 = (
Π

ζ
, 0, 0, 0) as,

F = δ
Π

ζ
−

1
2
σ2(

Π

ζ
)2,

V = (ζ + α + µ).

From the last two expressions, it is easy to write

FV−1 =
δΠ
ζ
− 1

2σ
2(Π

ζ
)2

(ζ + α + µ)
.

The eigenvalue can be found by the Characteristics equation∣∣∣∣ 1
(ζ + α + µ)

[δ
Λ

µ
−

1
2
σ2(

Λ

µ
)2] − λ

∣∣∣∣ = 0.

After solving, we get the reproduction number of stochastic model as,

R̃0 =
δΠ

ζ(ζ + µ + α)
−

ε2Π2

2ζ2(ζ + µ + α)
.
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