Research article Special Issues

A generalization of convexity via an implicit inequality

  • Received: 08 February 2024 Revised: 16 March 2024 Accepted: 19 March 2024 Published: 27 March 2024
  • MSC : 26A51, 26D15, 26D10

  • We unified several kinds of convexity by introducing the class $ \mathcal{A}_{\zeta, w}([0, 1]\times I^2) $ of $ (\zeta, w) $-admissible functions $ F: [0, 1]\times I\times I\to \mathbb{R} $. Namely, we proved that most types of convexity from the literature generate functions $ F\in \mathcal{A}_{\zeta, w}([0, 1]\times I^2) $ for some $ \zeta\in C([0, 1]) $ and $ w\in C^1(I) $ with $ w(I)\subset I $ and $ w' > 0 $. We also studied some properties of $ (\zeta, w) $-admissible functions and established some integral inequalities that unify various Hermite-Hadamard-type inequalities from the literature.

    Citation: Hassen Aydi, Bessem Samet, Manuel De la Sen. A generalization of convexity via an implicit inequality[J]. AIMS Mathematics, 2024, 9(5): 11992-12010. doi: 10.3934/math.2024586

    Related Papers:

  • We unified several kinds of convexity by introducing the class $ \mathcal{A}_{\zeta, w}([0, 1]\times I^2) $ of $ (\zeta, w) $-admissible functions $ F: [0, 1]\times I\times I\to \mathbb{R} $. Namely, we proved that most types of convexity from the literature generate functions $ F\in \mathcal{A}_{\zeta, w}([0, 1]\times I^2) $ for some $ \zeta\in C([0, 1]) $ and $ w\in C^1(I) $ with $ w(I)\subset I $ and $ w' > 0 $. We also studied some properties of $ (\zeta, w) $-admissible functions and established some integral inequalities that unify various Hermite-Hadamard-type inequalities from the literature.



    加载中


    [1] B. Bayraktar, M. Gürbuz, On some integral inequalities for $(s, m)$-convex functions, TWMS J. App. Eng. Math., 10 (2020), 288–295.
    [2] J. M. Borwein, J. D. Vanderwerff, Convex functions: Constructions, characterizations and counterexamples, Cambrige University Press, Cambridge, 2010. https://doi.org/10.1017/CBO9781139087322
    [3] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen, Publ. Inst. Math., 23 (1978), 13–20.
    [4] M. V. Cortez, Féjer type inequalities for $(s, m)$-convex functions in second sense, Appl. Math. Inf. Sci., 10 (2016), 1689–696. https://doi.org/10.18576/amis/100507 doi: 10.18576/amis/100507
    [5] S. Dragomir, On some new inequalities of Hermite-Hadamard type for $m$-convex functions, Tamkang J. Math., 33 (2002), 45–55. https://doi.org/10.5556/j.tkjm.33.2002.304 doi: 10.5556/j.tkjm.33.2002.304
    [6] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [7] S. S. Dragomir, S. Fitzpatrik, The Hadamard's inequality for $s$-convex functions in the second sense, Demonstratio Math., 32 (1999), 687–696. https://doi.org/10.1515/dema-1999-0403 doi: 10.1515/dema-1999-0403
    [8] S. S. Dragomir, S. Fitzpatrik, The Jensen inequality for $s$-Breckner convex functions in linear spaces, Demonstratio Math., 33 (2000), 43–49. https://doi.org/10.1515/dema-2000-0114 doi: 10.1515/dema-2000-0114
    [9] S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.
    [10] S. S. Dragomir, G. H. Toader, Some inequalities for $m$-convex functions, Stud. Univ. Babes-Bolyia. Math., 38 (1993), 21–28.
    [11] S. S. Dragomir, B. T. Torebek, Some Hermite-Hadamard type inequalities in the class of hyperbolic $p$-convex functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113 (2019), 3413–3423. https://doi.org/10.1007/s13398-019-00708-2 doi: 10.1007/s13398-019-00708-2
    [12] T. Du, Y. Li, Z. Yang, A generalization of Simpson's inequality via differentiable mapping using extended $(s, m)$-convex functions, Appl. Math. Comput., 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045 doi: 10.1016/j.amc.2016.08.045
    [13] J. Hadamard, Étude sur les propriétés des fonctions entiéres et en particulier d'une fonction considérée par Riemann, J. Math. Pure. Appl., 58 (1893), 171–215.
    [14] C. Hermite, Sur deux limites d'une intégrale défine, Mathesis, 3 (1983), 1–82.
    [15] L. Hörmander, Notions of convexity, Progr. Math., Birkhäuser, Boston, 127 (1994).
    [16] H. Hudzik, L. Maligranda, Some remarks on $s$-convex functions, Aequ. Math., 48 (1994), 100–111. https://doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981
    [17] H. Kadakal, A generalization of some integral inequalities for multiplicatively $P$-functions, Int. J. Math. Combin., 2 (2019), 60–68. https://doi.org/10.11121/ijocta.01.2019.00738 doi: 10.11121/ijocta.01.2019.00738
    [18] H. Kadakal, $(m_1, m_2)$-convexity and some new Hermite-Hadamard type inequalities, Int. J. Math. Model. Comput., 9 (2019), 297–309. https://doi.org/10.31801/cfsuasmas.511184 doi: 10.31801/cfsuasmas.511184
    [19] H. Kadakal, Ostrowski type inequalities for multiplicatively $P$-functions, Numer. Meth. Part. D. E., 40 (2020), 1–10. https://doi.org/10.1002/num.22724 doi: 10.1002/num.22724
    [20] M. A. Latif, S. S. Dragomir, E. Momoniat, Some $\phi$-analogues of Hermite-Hadamard inequality for $s$-convex functions in the second sense and related estimates, J. King Saud Univ. Sci., 29 (2017), 263–273. https://doi.org/10.1016/j.jksus.2016.07.001 doi: 10.1016/j.jksus.2016.07.001
    [21] J. Park, Generalization of Ostrowski-type inequalities for differentiable real $(s, m)$-convex mappings, Far East J. Math. Sci., 49 (2011), 157–171. https://doi.org/10.1155/2011/493531 doi: 10.1155/2011/493531
    [22] Z. Pavić, M. A. Ardic, The most important inequalities for $m$-convex functions, Turk. J. Math., 41 (2017), 625–635. https://doi.org/10.3906/mat-1604-45 doi: 10.3906/mat-1604-45
    [23] C. E. M. Pearce, A. M. Rubinov, $P$-functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Appl., 240 (1999), 92–104. https://doi.org/10.1006/jmaa.1999.6593 doi: 10.1006/jmaa.1999.6593
    [24] R. R. Phelps, Convex functions, monotone operators and differentiability, 2 Eds., Springer-Verlag, New York, 1993.
    [25] A. W. Roberts, D. E. Verberg, Convex functions, Academic Press, New York, 1973.
    [26] M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite-Hadamard type for $s$-convex functions, Miskolc Math. Notes, 16 (2015), 491–501. https://doi.org/10.18514/MMN.2015.1099 doi: 10.18514/MMN.2015.1099
    [27] G. H. Toader, Some generalisations of the convexity, Proc. Colloq. Approx. Optim., Cluj-Napoca, Romania, 1984,329–338.
    [28] R. Webster, Convexity, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994.
    [29] V. Stojiljković, Hermite Hadamard type inequalities involving $(k-p)$ fractional operator with $(\alpha, h-m) -p$ convexity, Eur. J. Pure Appl. Math., 16 (2023), 503–522. https://doi.org/10.29020/nybg.ejpam.v16i1.4689 doi: 10.29020/nybg.ejpam.v16i1.4689
    [30] B. Y. Xi, Y. Wang, F. Qi, Some integral inequalities of Hermite-Hadamard type for extended $(s, m)$-convex functions, Transylv. J. Math. Mech., 5 (2013), 69–84.
    [31] J. Zhang, Z. L. Pei, F. Qi, Integral inequalities of Simpson's type for strongly extended $(s, m)$-convex functions, J. Comput. Anal. Appl., 26 (2019), 499–508.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(556) PDF downloads(52) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog