We unified several kinds of convexity by introducing the class $ \mathcal{A}_{\zeta, w}([0, 1]\times I^2) $ of $ (\zeta, w) $-admissible functions $ F: [0, 1]\times I\times I\to \mathbb{R} $. Namely, we proved that most types of convexity from the literature generate functions $ F\in \mathcal{A}_{\zeta, w}([0, 1]\times I^2) $ for some $ \zeta\in C([0, 1]) $ and $ w\in C^1(I) $ with $ w(I)\subset I $ and $ w' > 0 $. We also studied some properties of $ (\zeta, w) $-admissible functions and established some integral inequalities that unify various Hermite-Hadamard-type inequalities from the literature.
Citation: Hassen Aydi, Bessem Samet, Manuel De la Sen. A generalization of convexity via an implicit inequality[J]. AIMS Mathematics, 2024, 9(5): 11992-12010. doi: 10.3934/math.2024586
We unified several kinds of convexity by introducing the class $ \mathcal{A}_{\zeta, w}([0, 1]\times I^2) $ of $ (\zeta, w) $-admissible functions $ F: [0, 1]\times I\times I\to \mathbb{R} $. Namely, we proved that most types of convexity from the literature generate functions $ F\in \mathcal{A}_{\zeta, w}([0, 1]\times I^2) $ for some $ \zeta\in C([0, 1]) $ and $ w\in C^1(I) $ with $ w(I)\subset I $ and $ w' > 0 $. We also studied some properties of $ (\zeta, w) $-admissible functions and established some integral inequalities that unify various Hermite-Hadamard-type inequalities from the literature.
[1] | B. Bayraktar, M. Gürbuz, On some integral inequalities for $(s, m)$-convex functions, TWMS J. App. Eng. Math., 10 (2020), 288–295. |
[2] | J. M. Borwein, J. D. Vanderwerff, Convex functions: Constructions, characterizations and counterexamples, Cambrige University Press, Cambridge, 2010. https://doi.org/10.1017/CBO9781139087322 |
[3] | W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen, Publ. Inst. Math., 23 (1978), 13–20. |
[4] | M. V. Cortez, Féjer type inequalities for $(s, m)$-convex functions in second sense, Appl. Math. Inf. Sci., 10 (2016), 1689–696. https://doi.org/10.18576/amis/100507 doi: 10.18576/amis/100507 |
[5] | S. Dragomir, On some new inequalities of Hermite-Hadamard type for $m$-convex functions, Tamkang J. Math., 33 (2002), 45–55. https://doi.org/10.5556/j.tkjm.33.2002.304 doi: 10.5556/j.tkjm.33.2002.304 |
[6] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X |
[7] | S. S. Dragomir, S. Fitzpatrik, The Hadamard's inequality for $s$-convex functions in the second sense, Demonstratio Math., 32 (1999), 687–696. https://doi.org/10.1515/dema-1999-0403 doi: 10.1515/dema-1999-0403 |
[8] | S. S. Dragomir, S. Fitzpatrik, The Jensen inequality for $s$-Breckner convex functions in linear spaces, Demonstratio Math., 33 (2000), 43–49. https://doi.org/10.1515/dema-2000-0114 doi: 10.1515/dema-2000-0114 |
[9] | S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341. |
[10] | S. S. Dragomir, G. H. Toader, Some inequalities for $m$-convex functions, Stud. Univ. Babes-Bolyia. Math., 38 (1993), 21–28. |
[11] | S. S. Dragomir, B. T. Torebek, Some Hermite-Hadamard type inequalities in the class of hyperbolic $p$-convex functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113 (2019), 3413–3423. https://doi.org/10.1007/s13398-019-00708-2 doi: 10.1007/s13398-019-00708-2 |
[12] | T. Du, Y. Li, Z. Yang, A generalization of Simpson's inequality via differentiable mapping using extended $(s, m)$-convex functions, Appl. Math. Comput., 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045 doi: 10.1016/j.amc.2016.08.045 |
[13] | J. Hadamard, Étude sur les propriétés des fonctions entiéres et en particulier d'une fonction considérée par Riemann, J. Math. Pure. Appl., 58 (1893), 171–215. |
[14] | C. Hermite, Sur deux limites d'une intégrale défine, Mathesis, 3 (1983), 1–82. |
[15] | L. Hörmander, Notions of convexity, Progr. Math., Birkhäuser, Boston, 127 (1994). |
[16] | H. Hudzik, L. Maligranda, Some remarks on $s$-convex functions, Aequ. Math., 48 (1994), 100–111. https://doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981 |
[17] | H. Kadakal, A generalization of some integral inequalities for multiplicatively $P$-functions, Int. J. Math. Combin., 2 (2019), 60–68. https://doi.org/10.11121/ijocta.01.2019.00738 doi: 10.11121/ijocta.01.2019.00738 |
[18] | H. Kadakal, $(m_1, m_2)$-convexity and some new Hermite-Hadamard type inequalities, Int. J. Math. Model. Comput., 9 (2019), 297–309. https://doi.org/10.31801/cfsuasmas.511184 doi: 10.31801/cfsuasmas.511184 |
[19] | H. Kadakal, Ostrowski type inequalities for multiplicatively $P$-functions, Numer. Meth. Part. D. E., 40 (2020), 1–10. https://doi.org/10.1002/num.22724 doi: 10.1002/num.22724 |
[20] | M. A. Latif, S. S. Dragomir, E. Momoniat, Some $\phi$-analogues of Hermite-Hadamard inequality for $s$-convex functions in the second sense and related estimates, J. King Saud Univ. Sci., 29 (2017), 263–273. https://doi.org/10.1016/j.jksus.2016.07.001 doi: 10.1016/j.jksus.2016.07.001 |
[21] | J. Park, Generalization of Ostrowski-type inequalities for differentiable real $(s, m)$-convex mappings, Far East J. Math. Sci., 49 (2011), 157–171. https://doi.org/10.1155/2011/493531 doi: 10.1155/2011/493531 |
[22] | Z. Pavić, M. A. Ardic, The most important inequalities for $m$-convex functions, Turk. J. Math., 41 (2017), 625–635. https://doi.org/10.3906/mat-1604-45 doi: 10.3906/mat-1604-45 |
[23] | C. E. M. Pearce, A. M. Rubinov, $P$-functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Appl., 240 (1999), 92–104. https://doi.org/10.1006/jmaa.1999.6593 doi: 10.1006/jmaa.1999.6593 |
[24] | R. R. Phelps, Convex functions, monotone operators and differentiability, 2 Eds., Springer-Verlag, New York, 1993. |
[25] | A. W. Roberts, D. E. Verberg, Convex functions, Academic Press, New York, 1973. |
[26] | M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite-Hadamard type for $s$-convex functions, Miskolc Math. Notes, 16 (2015), 491–501. https://doi.org/10.18514/MMN.2015.1099 doi: 10.18514/MMN.2015.1099 |
[27] | G. H. Toader, Some generalisations of the convexity, Proc. Colloq. Approx. Optim., Cluj-Napoca, Romania, 1984,329–338. |
[28] | R. Webster, Convexity, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. |
[29] | V. Stojiljković, Hermite Hadamard type inequalities involving $(k-p)$ fractional operator with $(\alpha, h-m) -p$ convexity, Eur. J. Pure Appl. Math., 16 (2023), 503–522. https://doi.org/10.29020/nybg.ejpam.v16i1.4689 doi: 10.29020/nybg.ejpam.v16i1.4689 |
[30] | B. Y. Xi, Y. Wang, F. Qi, Some integral inequalities of Hermite-Hadamard type for extended $(s, m)$-convex functions, Transylv. J. Math. Mech., 5 (2013), 69–84. |
[31] | J. Zhang, Z. L. Pei, F. Qi, Integral inequalities of Simpson's type for strongly extended $(s, m)$-convex functions, J. Comput. Anal. Appl., 26 (2019), 499–508. |