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admissible functions F : [0, 1] × I × I → R. Namely, we proved that most types of convexity from the
literature generate functions F ∈ Aζ,w([0, 1] × I2) for some ζ ∈ C([0, 1]) and w ∈ C1(I) with w(I) ⊂ I
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1. Introduction

Let I be an interval of R and f : I → R. The function f is said to be convex on I, if f (tx+ (1− t)y) ≤
t f (x) + (1 − t) f (y) for all t ∈ [0, 1] and x, y ∈ I. The class of convex functions is widely used in pure
and applied mathematics. Several works related to the study of convex functions can be found in the
literature, (see e.g., [2, 15,24,25,28, 29]). Convex functions satisfy nice properties that are very useful
for the study of various mathematical problems. A natural question is to ask whether such properties
can be extended to other classes of functions. This question motivated the generalization of convexity
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in various directions. We recall below some interesting generalizations from the literature. Throughout
this paper, by I we mean an interval of R. The class of convex functions on I is denoted by CV(I).

Breckner [3] introduced the class of s-convex functions in the second sense. Namely, a function
f : I → R is called s-convex in the second sense on I, where 0 < s ≤ 1, if

f (tx + (1 − t)y) ≤ ts f (x) + (1 − t)s f (y)

for all t ∈ [0, 1] and x, y ∈ I. The class of s-convex functions in the second sense on I is denoted by
K2

s (I). Observe that, if f ∈ K2
s (I), then f ≥ 0 (it can be easily seen by taking x = y and t = 1

2 ). Clearly,
we have K2

1(I) = CV(I). Remark also that, if f ∈ CV(I) and f ≥ 0, then f ∈ K2
s (I) for all 0 < s ≤ 1.

Some related works to s-convexity in the second sense can be found in [7, 8, 16].
Dragomir et al. [9] introduced the class of P-functions. Recall that f : I → R is called a P-function

on I, if
f (tx + (1 − t)y) ≤ f (x) + f (y)

for all t ∈ [0, 1] and x, y ∈ I. The class of P-functions on I is denoted by P(I). Observe that, if f ∈ K2
s (I)

for some s ∈ (0, 1], then f ∈ P(I). For some studies related to P-functions, see e.g., [17, 19, 23].
In [27], Toader introduced the class of m-convex functions. Namely, for 0 < m ≤ 1, a function

f : [0,∞)→ R is called m-convex on [0,∞), if

f (tx + (1 − t)y) ≤ t f (x) + (1 − t)m f
( y
m

)
for all t ∈ [0, 1] and x, y ≥ 0. We denote by Km([0,∞)) the class of m-convex on [0,∞). Remark that
K1([0,∞)) = CV([0,∞)). Some contributions related to m-convex functions can be found in [5,10,22].

By combining the concepts of s-convexity and m-convexity, Park [21] introduced the class of (s,m)-
convex functions. Namely, a function f : [0,∞) → R is called (s,m)-convex on [0,∞) for some
s,m ∈ (0, 1], if

f (tx + (1 − t)y) ≤ ts f (x) + (1 − t)sm f
( y
m

)
for all t ∈ [0, 1] and x, y ≥ 0. We denote by K2

s,m([0,∞)) the class of (s,m)-convex functions on
[0,∞). Observe that K2

s,1([0,∞)) = K2
s ([0,∞)) and K2

1,m([0,∞)) = Km([0,∞)). Remark also that, if
f ∈ Km([0,∞)) and f ≥ 0, then f ∈ K2

s,m([0,∞)) for all 0 < s ≤ 1. We refer to [1, 4, 12, 30, 31], for
some works related to (s,m)-convex functions.

Our aim in this paper is to provide a unification of all the above types of convexity via an implicit
inequality involving three functions F : [0, 1] × I × I → R, ζ ∈ C(I) (C(I) is the class of continuous
functions on I) and w ∈ C1(I) (C1(I) is the class of differentiable functions whose derivatives are
continuous on I). Our main idea is motivated by the following observation. Assume that f ∈ CV(I),
that is,

f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y), 0 ≤ t ≤ 1, x, y ∈ I. (1.1)

If we consider the function F : [0, 1] × I × I → R defined by

F(t, x, y) = f (tx + (1 − t)y), 0 ≤ t ≤ 1, x, y ∈ I,

then (1.1) reduces to the inequality

F(t, x, y) ≤ ζ(t)F(1, x, y) + ζ(1 − t)
F(0, x,w(y))

w′(y)
, 0 ≤ t ≤ 1, x, y ∈ I,
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where ζ(t) = t, 0 ≤ t ≤ 1, and w(x) = x, x ∈ I.
The rest of this paper is arranged as follows. In Section 2, we introduce the class of (ζ,w)-admissible

functionsAζ,w

(
[0, 1] × I2

)
, where ζ ∈ C([0, 1]) and w ∈ C1(I) with w(I) ⊂ I and w′ > 0. We show that

the definitions of several kinds of convexity from the literature can be reduced to an implicit inequality
involving a mapping F ∈ Aζ,w

(
[0, 1] × I2

)
for some ζ ∈ C([0, 1]) and w ∈ C1(I) with w(I) ⊂ I and

the derivative w′ > 0. We also establish some properties of the class of functions Aζ,w

(
[0, 1] × I2

)
.

In Section 3, we establish new integral inequalities involving (ζ,w)-admissible functions. We show
that several Hermite-Hadamard-type inequalities from the literature can be deduced from our obtained
inequalities.

2. The class of (ζ,w)-admissible functions

2.1. Definition and examples

Definition 2.1. Let ζ ∈ C([0, 1]) and w ∈ C1(I) with w(I) ⊂ I and w′ > 0. A function

F : [0, 1] × I × I → R

is said to be (ζ,w)-admissible on [0, 1] × I × I, if

F(t, x, y) ≤ ζ(t)F(1, x, y) + ζ(1 − t)
F(0, x,w(y))

w′(y)
for all t ∈ [0, 1] and x, y ∈ I. The class of (ζ,w)-admissible functions on [0, 1] × I × I is denoted by
Aζ,w

(
[0, 1] × I2

)
.

We show below that the class of (ζ,w)-admissible functions generalizes various kinds of convexity.

Proposition 2.1. For all f ∈ CV(I), there exists F = F f ∈ Aζ,w

(
[0, 1] × I2

)
for some ζ ∈ C([0, 1]) and

w ∈ C1(I) with w(I) ⊂ I and w′ > 0.

Proof. Let f ∈ CV(I). We introduce the functions ζ and w defined by

ζ(t) = t, 0 ≤ t ≤ 1,
w(x) = x, x ∈ I.

We also introduce the function F defined by

F(t, x, y) = f (tx + (1 − t)y), t ∈ [0, 1], x, y ∈ I.

Observe that for all x, y ∈ I, we have
F(1, x, y) = f (x),
F(0, x, y) = f (y).

Then, by convexity of f , for all t ∈ [0, 1] and x, y ∈ I, we obtain

F(t, x, y) = f (tx + (1 − t)y)
≤ t f (x) + (1 − t) f (y)
= ζ(t)F(1, x, y) + ζ(1 − t)F(0, x, y)

= ζ(t)F(1, x, y) + ζ(1 − t)
F(0, x,w(y))

w′(y)
,

which shows that F is (ζ,w)-admissible. �
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Proposition 2.2. Let 0 < s ≤ 1. For all f ∈ K2
s (I), there exists F = F f ∈ Aζ,w

(
[0, 1] × I2

)
for some

ζ ∈ C([0, 1]) and w ∈ C1(I) with w(I) ⊂ I and w′ > 0.

Proof. Let f ∈ K2
s (I). We introduce the functions ζ and w defined by

ζ(t) = ts, 0 ≤ t ≤ 1,
w(x) = x, x ∈ I.

We also introduce the function F defined by

F(t, x, y) = f (tx + (1 − t)y), t ∈ [0, 1], x, y ∈ I.

Then, by s-convexity of f , for all t ∈ [0, 1] and x, y ∈ I, we obtain

F(t, x, y) = f (tx + (1 − t)y)
≤ ts f (x) + (1 − t)s f (y)
= ζ(t)F(1, x, y) + ζ(1 − t)F(0, x, y)

= ζ(t)F(1, x, y) + ζ(1 − t)
F(0, x,w(y))

w′(y)
,

which shows that F is (ζ,w)-admissible. �

Proposition 2.3. For all f ∈ P(I), there exists F = F f ∈ Aζ,w

(
[0, 1] × I2

)
for some ζ ∈ C([0, 1]) and

w ∈ C1(I) with w(I) ⊂ I and w′ > 0.

Proof. Let f ∈ P(I). We introduce the functions ζ and w defined by

ζ(t) = 1, 0 ≤ t ≤ 1,
w(x) = x, x ∈ I.

We also introduce the function F defined by

F(t, x, y) = f (tx + (1 − t)y), t ∈ [0, 1], x, y ∈ I.

Then, since f ∈ P(I), for all t ∈ [0, 1] and x, y ∈ I, we obtain

F(t, x, y) = f (tx + (1 − t)y)
≤ f (x) + f (y)
= ζ(t)F(1, x, y) + ζ(1 − t)F(0, x, y)

= ζ(t)F(1, x, y) + ζ(1 − t)
F(0, x,w(y))

w′(y)
,

which shows that F is (ζ,w)-admissible. �

Proposition 2.4. Let 0 < m ≤ 1. For all f ∈ Km([0,∞)), there exists F = F f ∈ Aζ,w

(
[0, 1] × [0,∞)2

)
for some ζ ∈ C([0, 1]) and w ∈ C1([0,∞)) with w ≥ 0 and w′ > 0.
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Proof. Let f ∈ Km([0,∞)). We introduce the functions ζ and w defined by

ζ(t) = t, 0 ≤ t ≤ 1,

w(x) =
x
m
, x ≥ 0.

We also introduce the function F defined by

F(t, x, y) = f (tx + (1 − t)y), t ∈ [0, 1], x, y ≥ 0.

Then, since f ∈ Km([0,∞)), for all t ∈ [0, 1] and x, y ≥ 0, we obtain

F(t, x, y) = f (tx + (1 − t)y)

≤ t f (x) + (1 − t)m f
( y
m

)
= ζ(t)F(1, x, y) + ζ(1 − t)

F(0, x,w(y))
w′(y)

,

which shows that F is (ζ,w)-admissible. �

Proposition 2.5. Let 0 < s,m ≤ 1. For all f ∈ K2
s,m([0,∞)), there exists F = F f ∈

Aζ,w

(
[0, 1] × [0,∞)2

)
for some ζ ∈ C([0, 1]) and w ∈ C1([0,∞)) with w ≥ 0 and w′ > 0.

Proof. Let f ∈ K2
s,m([0,∞)). We introduce the functions ζ and w defined by

ζ(t) = ts, 0 ≤ t ≤ 1,

w(x) =
x
m
, x ≥ 0.

We also introduce the function F defined by

F(t, x, y) = f (tx + (1 − t)y), t ∈ [0, 1], x, y ≥ 0.

Then, since f ∈ K2
s,m([0,∞)), for all t ∈ [0, 1] and x, y ≥ 0, we obtain

F(t, x, y) = f (tx + (1 − t)y)

≤ ts f (x) + (1 − t)sm f
( y
m

)
= ζ(t)F(1, x, y) + ζ(1 − t)

F(0, x,w(y))
w′(y)

,

which shows that F is (ζ,w)-admissible. �

2.2. Basic properties

Proposition 2.6. Let F,G ∈ Aζ,w

(
[0, 1] × I2

)
for some ζ ∈ C([0, 1]) and w ∈ C1(I) with w(I) ⊂ I and

w′ > 0. Then, for all α ≥ 0, αF ∈ Aζ,w

(
[0, 1] × I2

)
and F + G ∈ Aζ,w

(
[0, 1] × I2

)
.
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Proof. Let t ∈ [0, 1] and x, y ∈ I. Since F is (ζ,w)-admissible, we have

F(t, x, y) ≤ ζ(t)F(1, x, y) + ζ(1 − t)
F(0, x,w(y))

w′(y)
. (2.1)

For all α ≥ 0, multiplying the above inequality by α, we get

αF(t, x, y) ≤ ζ(t)
[
αF(1, x, y)

]
+ ζ(1 − t)

αF(0, x,w(y))
w′(y)

,

which shows that αF is (ζ,w)-admissible. Furthermore, since G is (ζ,w)-admissible, we have

G(t, x, y) ≤ ζ(t)G(1, x, y) + ζ(1 − t)
G(0, x,w(y))

w′(y)
. (2.2)

Summing (2.1) and (2.2), we obtain

(F + G)(t, x, y) ≤ ζ(t)(F + G)(1, x, y) + ζ(1 − t)
(F + G)(0, x,w(y))

w′(y)
,

which shows that F + G is (ζ,w)-admissible. �

Proposition 2.7. Let ζ1, ζ2 ∈ C([0, 1]) be such that

ζ1(t) ≤ ζ2(t), 0 ≤ t ≤ 1.

Let w ∈ C1(I) with w(I) ⊂ I and w′ > 0. If F ∈ Aζ1,w

(
[0, 1] × I2

)
and F ≥ 0, then F ∈

Aζ2,w

(
[0, 1] × I2

)
.

Proof. Let F ∈ Aζ1,w

(
[0, 1] × I2

)
. Let t ∈ [0, 1] and x, y ∈ I. Then

F(t, x, y) ≤ ζ1(t)F(1, x, y) + ζ1(1 − t)
F(0, x,w(y))

w′(y)
. (2.3)

Since ζ1 ≤ ζ2, w′ > 0 and F ≥ 0, we have

ζ1(t)F(1, x, y) + ζ1(1 − t)
F(0, x,w(y))

w′(y)
≤ ζ2(t)F(1, x, y) + ζ2(1 − t)

F(0, x,w(y))
w′(y)

. (2.4)

Hence, from (2.3) and (2.4), we deduce that F is (ζ2,w)-admissible. �

Proposition 2.8. Let ζ ∈ C([0, 1]), ζ ≥ 0 and w1,w2 ∈ C1(I) with wi(I) ⊂ I and w′i > 0, i = 1, 2. Let
F ∈ Aζ,w2

(
[0, 1] × I2

)
with

F(0, x,w2(y))
w′2(y)

≤
F(0, x,w1(y))

w′1(y)
(2.5)

for all x, y ∈ I. Then F ∈ Aζ,w1

(
[0, 1] × I2

)
.
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Proof. Let t ∈ [0, 1] and x, y ∈ I. Since F is (ζ,w2)-admissible, we have

F(t, x, y) ≤ ζ(t)F(1, x, y) + ζ(1 − t)
F(0, x,w2(y))

w′2(y)
. (2.6)

Furthermore, since ζ ≥ 0 and using (2.5), we obtain

ζ(t)F(1, x, y) + ζ(1 − t)
F(0, x,w2(y))

w′2(y)
≤ ζ(t)F(1, x, y) + ζ(1 − t)

F(0, x,w1(y))
w′1(y)

. (2.7)

Hence, from (2.6) and (2.7), we deduce that F is (ζ,w1)-admissible. �

We provide below an application of Proposition 2.8.

Example 2.1. Let 0 < m1 ≤ m2 < 1 and f ∈ Km2([0,∞)), that is,

f (tx + (1 − t)y) ≤ t f (x) + (1 − t)m2 f
(

y
m2

)
(2.8)

for all t ∈ [0, 1] and x, y ≥ 0. We shall use Proposition 2.8 to show that f ∈ Km1([0,∞)).
Remark that for t = y = 0, the above inequality reduces to

(1 − m2) f (0) ≤ 0,

which implies (since m2 < 1) that
f (0) ≤ 0. (2.9)

Now, taking y = 0 in (2.8), we get that for all t ∈ [0, 1] and x ≥ 0,

f (tx) ≤ t f (x) + (1 − t)m2 f (0),

which implies by (2.9) that
f (tx) ≤ t f (x), t ∈ [0, 1], x ≥ 0.

In particular, for t = m1
m2

and x =
y

m1
, y ≥ 0, we have

m2 f
(

y
m2

)
≤ m1 f

(
y

m1

)
. (2.10)

On the other hand, from Proposition 2.4 (see also its proof), we know that the function

F(t, x, y) = f (tx + (1 − t)y), t ∈ [0, 1], x ≥ 0

is (ζ,w2)-admissible on [0, 1] × [0,∞) × [0,∞), where ζ(t) = t and

w2(x) =
x

m2
, x ≥ 0.

Let us introduce the function
w1(x) =

x
m1
, x ≥ 0.
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By (2.10), for all x, y ≥ 0, we have

F(0, x,w2(y))
w′2(y)

= m2 f
(

y
m2

)
≤ m1 f

(
y

m1

)
=

F(0, x,w1(y))
w′1(y)

.

Hence, by Proposition 2.8, F is also (ζ,w1)-admissible on [0, 1] × [0,∞) × [0,∞), that is,

F(t, x, y) ≤ ζ(t)F(1, x, y) + ζ(1 − t)
F(0, x,w1(y))

w′1(y)
, t ∈ [0, 1], x, y ≥ 0,

which is equivalent to

f (tx + (1 − t)y) ≤ t f (x) + (1 − t)m1 f
(

y
m1

)
, t ∈ [0, 1], x, y ≥ 0.

Consequently, f is also m1-convex.

Proposition 2.9. Let ζ1, ζ2 ∈ C([0, 1]) be two nonnegative functions and w(x) = x for all x ∈ I. Let

ζ∗ = max
0≤t≤1

ζ(t),

where ζ(t) = max{ζ1(t), ζ2(t)}, t ∈ [0, 1]. Let F,G : [0, 1] × I × I → [0,∞) be two functions satisfying
the following properties:

(i) F ∈ Aζ1,w

(
[0, 1] × I2

)
;

(ii) G ∈ Aζ2,w

(
[0, 1] × I2

)
;

(iii) For all x, y ∈ I,
(F(1, x, y) − F(0, x, y))(G(1, x, y) −G(0, x, y)) ≥ 0.

Then FG ∈ A2ζ∗ζ,w

(
[0, 1] × I2

)
.

Proof. Let t ∈ [0, 1] and x, y ∈ I. By (i) and (ii), we have

(FG)(t, x, y) = F(t, x, y)G(t, x, y)
≤ (ζ1(t)F(1, x, y) + ζ1(1 − t)F(0, x, y)) (ζ2(t)G(1, x, y) + ζ2(1 − t)G(0, x, y))

= ζ1(t)ζ2(t)(FG)(1, x, y) + ζ1(t)ζ2(1 − t)F(1, x, y)G(0, x, y)
+ ζ1(1 − t)ζ2(t)F(0, x, y)G(1, x, y) + ζ1(1 − t)ζ2(1 − t)(FG)(0, x, y)
≤ ζ2(t)(FG)(1, x, y) + ζ(t)ζ(1 − t)F(1, x, y)G(0, x, y)

+ ζ(1 − t)h(t)F(0, x, y)G(1, x, y) + ζ2(1 − t)(FG)(0, x, y),

that is,
(FG)(t, x, y) ≤ ζ2(t)(FG)(1, x, y) + ζ(t)ζ(1 − t)F(1, x, y)G(0, x, y)

+ ζ(1 − t)ζ(t)F(0, x, y)G(1, x, y) + ζ2(1 − t)(FG)(0, x, y).
(2.11)
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On the other hand, by (iii), we have

F(1, x, y)G(0, x, y) + F(0, x, y)G(1, x, y) ≤ (FG)(0, x, y) + (FG)(1, x, y),

which implies by (2.11) that

(FG)(t, x, y) ≤ ζ2(t)(FG)(1, x, y) + ζ(t)ζ(1 − t)(FG)(0, x, y) + ζ(t)ζ(1 − t)(FG)(1, x, y)
+ ζ2(1 − t)(FG)(0, x, y)

= ζ(t) (ζ(t)(FG)(1, x, y) + ζ(1 − t)(FG)(0, x, y))

+ ζ(1 − t) (ζ(t)(FG)(1, x, y) + ζ(1 − t)(FG)(0, x, y))

= (ζ(t) + ζ(1 − t)) (ζ(t)(FG)(1, x, y) + ζ(1 − t)(FG)(0, x, y))

≤ 2ζ∗ζ(t))(FG)(1, x, y) + 2ζ∗ζ(1 − t)(FG)(0, x, y),

which proves that FG is (2ζ∗ζ,w)-admissible. �

3. Hermite-Hadamard-type inequalities

One of the most famous inequalities involving convex functions is the double Hermite-Hadamard
inequality [13, 14]:

f
(
a + b

2

)
≤

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
2

,

which holds for all f ∈ CV(I) and a, b ∈ I with a < b. The above double-inequality has been
generalized and extended in various directions, see e.g., [4, 5, 7, 9, 11, 18, 23, 26, 30] and the references
therein.

In this section, using the class of (ζ,w)-admissible functions, we provide generalizations of several
Hermite-Hadamard-type inequalities from the literature.

Theorem 3.1. Let F ∈ Aζ,w

(
[0, 1] × I2

)
for some ζ ∈ C([0, 1]) and w ∈ C1(I) with w(I) ⊂ I and

w′ > 0. Then, for all x, y ∈ I, we have∫ 1

0
F(t, x, y) dt ≤ Iζ

(
F(1, x, y) +

F(0, x,w(y))
w′(y)

)
, (3.1)

where Iζ =
∫ 1

0
ζ(t) dt.

Proof. Let x, y ∈ I. Since F is (ζ,w)-admissible, then

F(t, x, y) ≤ ζ(t)F(1, x, y) + ζ(1 − t)
F(0, a,w(y))

w′(y)
, t ∈ (0, 1).

Integrating the above inequality over (0, 1), we obtain∫ 1

0
F(t, x, y) dt ≤

(∫ 1

0
ζ(t) dt

)
F(1, x, y) +

(∫ 1

0
ζ(1 − t) dt

)
F(0, x,w(y))

w′(y)
.

Remarking that ∫ 1

0
ζ(1 − t) dt =

∫ 1

0
ζ(t) dt,

AIMS Mathematics Volume 9, Issue 5, 11992–12010.
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we get ∫ 1

0
F(t, x, y) dt ≤

(∫ 1

0
ζ(t) dt

) (
F(1, x, y) +

F(0, x,w(y))
w′(y)

)
,

which proves (3.1). �

Theorem 3.2. Let F ∈ Aζ,w

(
[0, 1] × I2

)
for some ζ ∈ C([0, 1]) and w ∈ C1(I) with w(I) ⊂ I and

w′ > 0. Assume also that F is continuous on [0, 1] × I × I. Then, for all x, y ∈ I, we have∫ 1

0
F

(
1
2
, tx + (1 − t)y, ty + (1 − t)x

)
dt

≤ ζ

(
1
2

) ∫ 1

0
F(1, tx + (1 − t)y, ty + (1 − t)x) dt

+ ζ

(
1
2

) ∫ 1

0

F(0, tx + (1 − t)y,w(ty + (1 − t)x))
w′(ty + (1 − t)x)

dt.

(3.2)

Proof. Let x, y ∈ I. Since F is (ζ,w)-admissible, then

F(t, u, v) ≤ ζ(t)F(1, u, v) + ζ(1 − t)
F(0, u,w(v))

w′(v)
, t ∈ (0, 1), u, v ∈ I.

In particular, for t = 1
2 , we have

F
(
1
2
, u, v

)
≤ ζ

(
1
2

)
F(1, u, v) + ζ

(
1
2

)
F(0, u,w(v))

w′(v)
, u, v ∈ I. (3.3)

Taking u = tx + (1 − t)y and v = ty + (1 − t)x, where t ∈ (0, 1), (3.3) reduces to

F
(
1
2
, tx + (1 − t)y, ty + (1 − t)x

)
≤ ζ

(
1
2

)
F(1, tx + (1 − t)y, ty + (1 − t)x) + ζ

(
1
2

)
F(0, tx + (1 − t)y,w(ty + (1 − t)x))

w′(ty + (1 − t)x)
.

Integrating the above inequality over t ∈ (0, 1), we get∫ 1

0
F

(
1
2
, tx + (1 − t)y, ty + (1 − t)x

)
dt

≤ ζ

(
1
2

) ∫ 1

0
F(1, tx + (1 − t)y, ty + (1 − t)x) dt

+ ζ

(
1
2

) ∫ 1

0

F(0, tx + (1 − t)y,w(ty + (1 − t)x))
w′(ty + (1 − t)x)

dt,

which proves (3.2). �

Theorem 3.3. Let ζ ∈ C([0, 1]), ζ ≥ 0 and w(x) = x, x ∈ I. Let F : [0, 1] × I × I → R be such
that for all x, y ∈ I, the function F(·, x, y) : [0, 1] 3 t 7→ F(t, x, y) is differentiable on [0, 1]. Assume
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that |∂1F| ∈ Aζ,w

(
[0, 1] × I2

)
, where ∂1F is the partial derivative of F with respect to its first variable.

Then, for all x, y ∈ I, we have∣∣∣∣∣∣F(1, x, y) + F(0, x, y)
2

−

∫ 1

0
F(t, x, y) dt

∣∣∣∣∣∣
≤

(∫ 1

0
|2t − 1|ζ(t) dt

)
|∂1F(1, x, y)| + |∂1F(0, x, y)|

2
.

(3.4)

Proof. Let x, y ∈ I. For all c ∈ R, integrating by parts, we obtain∫ 1

0
F(t, x, y) dt =

[
(t + c)F(t, x, y)

]1
0 −

∫ 1

0
(t + c)∂1F(t, x, y) dt

= (c + 1)F(1, x, y) − cF(0, x, y) −
∫ 1

0
(t + c)∂1F(t, x, y) dt,

that is,

(c + 1)F(1, x, y) − cF(0, x, y) −
∫ 1

0
F(t, x, y) dt =

∫ 1

0
(t + c)∂1F(t, x, y) dt.

In particular, for c = −1
2 , we get

F(1, x, y) + F(0, x, y)
2

−

∫ 1

0
F(t, x, y) dt =

1
2

∫ 1

0
(2t − 1)∂1F(t, x, y) dt,

which implies that∣∣∣∣∣∣F(1, x, y) + F(0, x, y)
2

−

∫ 1

0
F(t, x, y) dt

∣∣∣∣∣∣ ≤ 1
2

∫ 1

0
|2t − 1||∂1F(t, x, y)| dt. (3.5)

On the other hand, since |∂1F| ∈ Aζ,w

(
[0, 1] × I2

)
, then for all t ∈ (0, 1), we have

|2t − 1||∂1F(t, x, y)| ≤ |2t − 1|ζ(t)|∂1F(1, x, y)| + |2t − 1|ζ(1 − t)|∂1F(0, x, y)|,

which implies after integration over t ∈ (0, 1) that∫ 1

0
|2t − 1||∂1F(t, x, y)| dt ≤

(∫ 1

0
|2t − 1|ζ(t) dt

)
|∂1F(1, x, y)|

+

(∫ 1

0
|2t − 1|ζ(1 − t) dt

)
|∂1F(0, x, y)|.

Remarking that ∫ 1

0
|2t − 1|ζ(t) dt =

∫ 1

0
|2t − 1|ζ(1 − t) dt,

we obtain ∫ 1

0
|2t − 1||∂1F(t, x, y)| dt ≤

(∫ 1

0
|2t − 1|ζ(t) dt

)
(|∂1F(1, x, y)| + |∂1F(0, x, y)|) . (3.6)

Finally, (3.4) follows from (3.5) and (3.6). �

We now study some special cases of the above results.
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3.1. The case of convex functions

From Theorems 3.1 and 3.2, we deduce the double Hermite-Hadamard inequality for convex
functions.

Corollary 3.1. Let f ∈ CV(I) and a, b ∈
◦

I (interior of I) with a < b. Then

f
(
a + b

2

)
≤

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
2

. (3.7)

Proof. From Proposition 2.1 (see also its proof), we know that F = F f ∈ Aζ,w

(
[0, 1] × I2

)
, where

F(t, x, y) = f (tx + (1 − t)y), t ∈ [0, 1], x, y ∈ I,

ζ(t) = t, 0 ≤ t ≤ 1,
w(x) = x, x ∈ I.

In this case, we have∫ 1

0
F(t, a, b) dt =

1
b − a

∫ b

a
f (x) dx, F(1, a, b) +

F(0, a,w(b))
w′(b)

= f (a) + f (b), Iζ =
1
2
.

Hence, (3.1) with x = a and y = b reduces to

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
2

. (3.8)

On the other hand, we have ∫ 1

0
F

(
1
2
, ta + (1 − t)b, tb + (1 − t)a

)
dt

=

∫ 1

0
f
(
ta + (1 − t)b + tb + (1 − t)a

2

)
dt

= f
(
a + b

2

)
and ∫ 1

0
F(1, ta + (1 − t)b, tb + (1 − t)a) dt

=

∫ 1

0

F(0, ta + (1 − t)b,w(tb + (1 − t)a))
w′(tb + (1 − t)a)

dt

=
1

b − a

∫ b

a
f (x) dx.

Then (3.2) with x = a and y = b reduces to

f
(
a + b

2

)
≤

1
b − a

∫ b

a
f (x) dx. (3.9)

Hence, from (3.8) and (3.9), we obtain (3.7). �
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From Theorem 3.3, we deduce the following result, which was previously established in [6].

Corollary 3.2. Let f : I → R be a differentiable function such that | f ′| ∈ CV(I). Let a, b ∈ I with
a < b. Then ∣∣∣∣∣∣a + b

2
−

1
b − a

∫ b

a
f (x) dx

∣∣∣∣∣∣ ≤ (b − a)(| f ′(a)| + | f ′(b)|)
8

. (3.10)

Proof. We consider the same functions F, ζ and w introduced in the proof of Corollary 3.1. For all
t ∈ [0, 1] and x, y ∈ I, we have

∂1F(t, x, y) = (x − y) f ′(tx + (1 − t)y).

Since | f ′| ∈ CV(I), then for all t ∈ [0, 1] and x, y ∈ I,

|∂1F(t, x, y)| ≤ |x − y|t| f ′(x)| + |x − y|(1 − t)| f ′(y)|
= ζ(t)|∂1F(1, x, y)| + ζ(1 − t)|∂1F(0, x, y)|,

which shows that |∂1F| ∈ Aζ,w([0, 1] × I2). On the other hand, we have∣∣∣∣∣∣F(1, a, b) + F(0, a, b)
2

−

∫ 1

0
F(t, a, b) dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣a + b
2
−

1
b − a

∫ b

a
f (x) dx

∣∣∣∣∣∣ (3.11)

and (∫ 1

0
|2t − 1|ζ(t) dt

)
|∂1F(1, a, b)| + |∂1F(0, a, b)|

2
=

(b − a)(| f ′(a)| + | f ′(b)|)
8

. (3.12)

Finally, from (3.4) with x = a and y = b, (3.11) and (3.12), we obtain (3.10). �

3.2. The case of s-convex functions in the second sense

From Theorems 3.1 and 3.2, we deduce the double Hermite-Hadamard inequality for s-convex
functions, which was previously obtained in [7].

Corollary 3.3. Let 0 < s ≤ 1, f ∈ K2
s (I) be a continuous function and a, b ∈ I with a < b. Then

2s−1 f
(
a + b

2

)
≤

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
s + 1

. (3.13)

Proof. From Proposition 2.2 (see also its proof), we know that F = F f ∈ Aζ,w

(
[0, 1] × I2

)
, where

F(t, x, y) = f (tx + (1 − t)y), t ∈ [0, 1], x, y ∈ I,

ζ(t) = ts, 0 ≤ t ≤ 1,
w(x) = x, x ∈ I.

In this case, we have∫ 1

0
F(t, a, b) dt =

1
b − a

∫ b

a
f (x) dx, F(1, a, b) +

F(0, a,w(b))
w′(b)

= f (a) + f (b), Iζ =
1

s + 1
.
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Hence, (3.1) with x = a and y = b reduces to

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
s + 1

. (3.14)

On the other hand, we have∫ 1

0
F

(
1
2
, ta + (1 − t)b, tb + (1 − t)a

)
dt = f

(
a + b

2

)
and ∫ 1

0
F(1, ta + (1 − t)b, tb + (1 − t)a) dt

=

∫ 1

0

F(0, ta + (1 − t)b,w(tb + (1 − t)a))
w′(tb + (1 − t)a)

dt

=
1

b − a

∫ b

a
f (x) dx.

Then (3.2) with x = a and y = b reduces to

2s−1 f
(
a + b

2

)
≤

1
b − a

∫ b

a
f (x) dx. (3.15)

Finally, from (3.14) and (3.15), we get (3.13). �

From Theorem 3.3, we deduce the following result, which was previously established in [20]
(Corollary 3.8 with r1 = 1).

Corollary 3.4. Let f : I → R be a differentiable function such that | f ′| ∈ K2
s (I) for some 0 < s ≤ 1.

Let a, b ∈ I with a < b. Then∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x) dx

∣∣∣∣∣∣ ≤ (s + 2−s)(b − a)(| f ′(a)| + | f ′(b)|)
2(s + 1)(s + 2)

. (3.16)

Proof. Let ζ(t) = ts, t ∈ [0, 1]. We consider the same functions F and w introduced in the proof of
Corollary 3.1. For all t ∈ [0, 1] and x, y ∈ I, we have

∂1F(t, x, y) = (x − y) f ′(tx + (1 − t)y).

Since | f ′| ∈ K2
s (I), then for all t ∈ [0, 1] and x, y ∈ I,

|∂1F(t, x, y)| ≤ |x − y|ts| f ′(x)| + |x − y|(1 − t)s| f ′(y)|
= ζ(t)|∂1F(1, x, y)| + ζ(1 − t)|∂1F(0, x, y)|,

which shows that |∂1F| ∈ Aζ,w([0, 1] × I2). On the other hand, we have∣∣∣∣∣∣F(1, a, b) + F(0, a, b)
2

−

∫ 1

0
F(t, a, b) dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣a + b
2
−

1
b − a

∫ b

a
f (x) dx

∣∣∣∣∣∣ , (3.17)

|∂1F(1, a, b)| + |∂1F(0, a, b)|
2

=
(b − a)(| f ′(a)| + | f ′(b)|)

2
,∫ 1

0
|2t − 1|ζ(t) dt =

∫ 1

0
|2t − 1|ts dt =

s + 2−s

(s + 1)(s + 2)
.

Then, from (3.4) with x = a and y = b, we obtain (3.16). �
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3.3. The case of m-convex functions

From Theorem 3.1, we deduce the following Hermite-Hadamard-type inequality for m-convex
functions, which was previously obtained in [5].

Corollary 3.5. Let 0 < m ≤ 1, f ∈ Km([0,∞)) and 0 ≤ a < b. We have

1
b − a

∫ b

a
f (x) dx ≤ min

 f (a) + m f
(

b
m

)
2

,
f (b) + m f

(
a
m

)
2

 . (3.18)

Proof. From Proposition 2.4 (see also its proof), we know that F = F f ∈ Aζ,w

(
[0, 1] × [0,∞)2

)
, where

F(t, x, y) = f (tx + (1 − t)y), t ∈ [0, 1], x, y ≥ 0,
ζ(t) = t, 0 ≤ t ≤ 1,

w(x) =
x
m
, x ≥ 0.

In this case, for all x, y ≥ 0 with x , y, we have∫ 1

0
F(t, x, y) dt =

1
y − x

∫ b

a
f (z) dz,

F(1, x, y) +
F(0, x,w(y))

w′(y)
= f (x) + m f

( y
m

)
.

Hence, (3.1) with x = a and y = b reduces to

1
b − a

∫ b

a
f (z) dz ≤

f (a) + m f
(

b
m

)
2

. (3.19)

We now apply (3.1) with x = b and y = a to obtain

1
b − a

∫ b

a
f (z) dz ≤

f (b) + m f
(

a
m

)
2

. (3.20)

Hence, from (3.19) and (3.20), we obtain (3.18). �

From Theorem 3.2, we deduce the following Hermite-Hadamard-type inequality for m-convex
functions, which was also previously obtained in [5].

Corollary 3.6. Let 0 < m ≤ 1 and f ∈ Km([0,∞)) be a continuous function. Let 0 ≤ a < b. We have

f
(
a + b

2

)
≤

1
b − a

∫ b

a

f (x) + m f
(

x
m

)
2

dx. (3.21)

Proof. We consider the same functions F, ζ and w introduced in the proof of Corollary 3.5. We have∫ 1

0
F

(
1
2
, ta + (1 − t)b, tb + (1 − t)a

)
dt = f

(
a + b

2

)
,
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0
F(1, ta + (1 − t)b, tb + (1 − t)a) dt =

1
b − a

∫ b

a
f (x) dx

and ∫ 1

0

F(0, ta + (1 − t)b,w(tb + (1 − t)a))
w′(tb + (1 − t)a)

dt = m
∫ 1

0
f
(
t

b
m

+ (1 − t)
a
m

)
dt

=
m

b − a

∫ b

a
f
( x
m

)
dx.

Then (3.2) with x = a and y = b reduces to (3.21). �

3.4. The case of (s,m)-convex functions

From Theorem 3.1, we deduce the following Hermite-Hadamard-type inequality for (s,m)-convex
functions, which was previously obtained in [4].

Corollary 3.7. Let 0 < s,m ≤ 1, f ∈ K2
s,m([0,∞)) and 0 ≤ a < b. Then

1
b − a

∫ b

a
f (x) dx ≤ min

 f (a) + m f
(

b
m

)
s + 1

,
f (b) + m f

(
a
m

)
s + 1

 . (3.22)

Proof. From Proposition 2.5, the function F = F f ∈ Aζ,w([0, 1] × [0,∞)2), where

F(t, x, y) = f (tx + (1 − t)y), t ∈ [0, 1], x, y ≥ 0,
ζ(t) = ts, 0 ≤ t ≤ 1,

w(x) =
x
m
, x ≥ 0.

In this case, for all x, y ≥ 0 with x , 0, we have∫ 1

0
F(t, x, y) dt =

1
y − x

∫ b

a
f (z) dz,

F(1, x, y) +
F(0, x,w(y))

w′(y)
= f (x) + m f

( y
m

)
,

Iζ =
1

s + 1
.

Hence, (3.1) with x = a and y = b reduces to

1
b − a

∫ b

a
f (z) dz ≤

f (a) + m f
(

b
m

)
s + 1

. (3.23)

Similarly, (3.1) with x = b and y = a reduces to

1
b − a

∫ b

a
f (z) dz ≤

f (b) + m f
(

a
m

)
s + 1

. (3.24)

Hence, (3.22) follows from (3.23) and (3.24). �
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Similarly, from Theorem 3.2, we obtain [4, Theorem 8] (with g ≡ 1).

Corollary 3.8. Let 0 < s,m ≤ 1 and f ∈ K2
s,m([0,∞)) be a continuous function. Let 0 ≤ a < b. Then

f
(
a + b

2

)
≤

1
b − a

∫ b

a

f (x) + m f
(

x
m

)
2s dx. (3.25)

Proof. We consider the same functions F, ζ and w introduced in the proof of Corollary 3.7. In this case,
we have ∫ 1

0
F

(
1
2
, ta + (1 − t)b, tb + (1 − t)a

)
dt = f

(
a + b

2

)
,∫ 1

0
F(1, ta + (1 − t)b, tb + (1 − t)a) dt =

1
b − a

∫ b

a
f (x) dx

and ∫ 1

0

F(0, ta + (1 − t)b,w(tb + (1 − t)a))
w′(tb + (1 − t)a)

dt = m
∫ 1

0
f
(
t

b
m

+ (1 − t)
a
m

)
dt

=
m

b − a

∫ b

a
f
( x
m

)
dx.

Hence, (3.2) with x = a and y = b reduces to (3.25). �

4. Conclusions

We generalized several kinds of convexity from the literature using an implicit inequality involving
three functions F : [0, 1] × I × I → R, ζ ∈ C(I) and w ∈ C1(I) with w(I) ⊂ I and w′ > 0, where I is
an interval of R. After studying some properties of this class of functions, we established new integral
inequalities unifying several Hermite-Hadamard-type inequalities from the literature.

It would be interesting to continue the study of this new class of functions. For instance, several
known inequalities from the literature (such as Jensen-type inequalities, Ostrowski-type inequalities,
Simpson-type inequalities) can be studied using the class of functionsAζ,w([0, 1] × I2).
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