Research article Special Issues

An efficient data-driven approximation to the stochastic differential equations with non-global Lipschitz coefficient and multiplicative noise

  • Received: 16 January 2024 Revised: 12 March 2024 Accepted: 20 March 2024 Published: 27 March 2024
  • MSC : 62M45, 60H35, 82C32

  • This paper studied the numerical approximation of the stochastic differential equations driven by non-global Lipschitz drift coefficient and multiplicative noise. An efficient data-driven method, called extended continuous latent process flow, was proposed for the underlying problem. Compared with the piecewise construction of a variational posterior process used in the classical continuous latent process flow developed by Deng et al. [13], the principle idea of our method was to derive a variational lower bound by constructing a posterior latent process conditional on all information over the whole time interval to maximize the log-likelihood generated by the observations, which reduces the computational cost and, thus, provides a convenient way to approximate the considered equation. Particularly, our new method showed a better approximation to the underlying equation than the classical drift-$ \theta $ discretization scheme through numerical error comparison. Numerical experiments were finally reported to demonstrate the effectiveness and generalization performance of the proposed method.

    Citation: Xiao Qi, Tianyao Duan, Huan Guo. An efficient data-driven approximation to the stochastic differential equations with non-global Lipschitz coefficient and multiplicative noise[J]. AIMS Mathematics, 2024, 9(5): 11975-11991. doi: 10.3934/math.2024585

    Related Papers:

  • This paper studied the numerical approximation of the stochastic differential equations driven by non-global Lipschitz drift coefficient and multiplicative noise. An efficient data-driven method, called extended continuous latent process flow, was proposed for the underlying problem. Compared with the piecewise construction of a variational posterior process used in the classical continuous latent process flow developed by Deng et al. [13], the principle idea of our method was to derive a variational lower bound by constructing a posterior latent process conditional on all information over the whole time interval to maximize the log-likelihood generated by the observations, which reduces the computational cost and, thus, provides a convenient way to approximate the considered equation. Particularly, our new method showed a better approximation to the underlying equation than the classical drift-$ \theta $ discretization scheme through numerical error comparison. Numerical experiments were finally reported to demonstrate the effectiveness and generalization performance of the proposed method.



    加载中


    [1] Y. Ait-Sahalia, Testing continuous-time models of the spot interest rate, Rev. Financ. Stud., 9 (1996), 385–426. https://doi.org/10.1093/rfs/9.2.385 doi: 10.1093/rfs/9.2.385
    [2] A. Alfonsi, Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process, Stat. Probabil. Lett., 83 (2013), 602–607. https://doi.org/10.1016/j.spl.2012.10.034 doi: 10.1016/j.spl.2012.10.034
    [3] A. Andersson, R. Kruse, Mean-square convergence of the BDF2-Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition, BIT, 57 (2017), 21–53. https://doi.org/10.1007/s10543-016-0624-y doi: 10.1007/s10543-016-0624-y
    [4] N. Anwar, I. Ahmad, A. K. Kiani, M. Shoaib, M. A. Z. Raja, Euler-Maruyama and Kloeden-Platen-Schurz computing paradigm for stochastic vector-borne plant epidemic model, Waves Random Complex, (2023), 1–23. https://doi.org/10.1080/17455030.2022.2152908 doi: 10.1080/17455030.2022.2152908
    [5] N. Anwar, I. Ahmad, A. K. Kiani, M. Shoaib, M. A. Z. Raja, Novel intelligent predictive networks for analysis of chaos in stochastic differential SIS epidemic model with vaccination impact, Math. Comput. Simul., 219 (2024), 251–283. https://doi.org/10.1016/j.matcom.2023.12.024 doi: 10.1016/j.matcom.2023.12.024
    [6] N. Anwar, I. Ahmad, A. K. Kiani, M. Shoaib, M. A. Z. Raja, Novel neuro-stochastic adaptive supervised learning for numerical treatment of nonlinear epidemic delay differential system with impact of double diseases, Int. J. Model. Simul., (2024), 1–23. https://doi.org/10.1080/02286203.2024.2303577 doi: 10.1080/02286203.2024.2303577
    [7] W. Beyn, E. Isaak, R. Kruse, Stochastic C-stability and B-consistency of explicit and implicit Euler-type schemes, J. Sci. Comput., 67 (2016), 955–987. https://doi.org/10.1007/s10915-015-0114-4 doi: 10.1007/s10915-015-0114-4
    [8] W. Beyn, E. Isaak, R. Kruse, Stochastic C-stability and B-consistency of explicit and implicit Milstein-type schemes, J. Sci. Comput., 70 (2017), 1042–1077. https://doi.org/10.1007/s10915-016-0290-x doi: 10.1007/s10915-016-0290-x
    [9] A. Caterini, R. Cornish, D. Sejdinovic, A. Doucet, Variational inference with continuouslyindexed normalizing flows, Uncertainty in Artificial Intelligence, pages 44–53, PMLR, 2021. Available from: https://proceedings.mlr.press/v161/caterini21a.html
    [10] J. Chassagneux, A. Jacquier, I. Mihaylov, An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients, SIAM J. Financ. Math., 7 (2016), 993–1021. https://doi.org/10.1137/15M1017788 doi: 10.1137/15M1017788
    [11] J. Cui, J. Hong, D. Sheng, Convergence in density of splitting AVF scheme for stochastic Langevin equation, arXiv preprint arXiv: 1906.03439, (2019). https://doi.org/10.48550/arXiv.1906.03439
    [12] M. B. Dadfar, J. Geer, C. M. Andersen, Perturbation analysis of the limit cycle of the free van der Pol equation, SIAM J. Appl. Math., 44 (1984), 881–895. https://doi.org/10.1137/0144063 doi: 10.1137/0144063
    [13] R. Deng, M. A. Brubaker, G. Mori, A. Lehrmann, Continuous latent process flows, Adv. Neural Inf. Process. Syst., 34 (2021), 5162–5173. Available from: https://proceedings.neurips.cc/paper/2021/hash/2983e3047c0c730d3b7c022584717f3f-Abstract.html
    [14] R. Deng, B. Chang, M. A. Brubaker, G. Mori, A. Lehrmann, Modeling continuous stochastic processes with dynamic normalizing flows, Advances in Neural Information Processing Systems, 33: 7805–7815, 2020. Available from: https://proceedings.neurips.cc/paper/2020/hash/58c54802a9fb9526cd0923353a34a7ae-Abstract.html
    [15] S. Gan, Y. He, X. Wang, Tamed Runge-Kutta methods for SDEs with super-linearly growing drift and diffusion coefficients, Appl. Numer. Math., 152 (2020), 379–402. https://doi.org/10.1016/j.apnum.2019.11.014 doi: 10.1016/j.apnum.2019.11.014
    [16] Q. Guo, W. Liu, X. Mao, R. Yue, The truncated Milstein method for stochastic differential equations with commutative noise, J. Comput. Appl. Math., 338 (2018), 298–310. https://doi.org/10.1016/j.cam.2018.01.014 doi: 10.1016/j.cam.2018.01.014
    [17] D. J. Higham, X. Mao, A. M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal., 40 (2002), 1041–1063. https://doi.org/10.1137/S0036142901389530 doi: 10.1137/S0036142901389530
    [18] M. Hutzenthaler, A. Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients, American Mathematical Society, 2015. https://doi.org/10.1090/memo/1112
    [19] M. Hutzenthaler, A. Jentzen, On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with nonglobally monotone coefficients, Ann. Probab., 48 (2020), 53–93. https://www.jstor.org/stable/26922909
    [20] M. Hutzenthaler, A. Jentzen, P. E. Kloeden, Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients, P. Roy. Soc. A-Math. Phy., 467 (2011), 1563–1576. https://doi.org/10.1098/rspa.2010.0348 doi: 10.1098/rspa.2010.0348
    [21] M. Hutzenthaler, A. Jentzen, X. Wang, Exponential integrability properties of numerical approximation processes for nonlinear stochastic differential equations, Math. Comput., 87 (2018), 1353–1413. http://dx.doi.org/10.1090/mcom/3146 doi: 10.1090/mcom/3146
    [22] C. Kelly, Gabriel. J. Lord, F. Sun, Strong convergence of an adaptive time-stepping Milstein method for SDEs with monotone coefficients, BIT, 63 (2023), 33. https://doi.org/10.1007/s10543-023-00969-9 doi: 10.1007/s10543-023-00969-9
    [23] P. Kidger, On neural differential equations, arXiv preprint arXiv: 2202.02435, 2022, https://doi.org/10.48550/arXiv.2202.02435
    [24] C. Kumar, S. Sabanis, On Milstein approximations with varying coefficients: the case of superlinear diffusion coefficients, BIT, 59 (2023), 929–968. https://doi.org/10.1007/s10543-019-00756-5 doi: 10.1007/s10543-019-00756-5
    [25] A. L. Lewis, Option valuation under stochastic volatility ii, Finance Press, 2009. Available from: https://financepress.com/wp-content/uploads/2016/06/Lewis.Vol2_.TOC_.pdf
    [26] X. Li, T. K. Wong, R. Chen, D. K. Duvenaud, Scalable gradients and variational inference for stochastic differential equations, In Symposium on Advances in Approximate Bayesian Inference, pages 1–28. PMLR, 2020. Available from: https://proceedings.mlr.press/v118/li20a
    [27] X. Li, G. Yin, Explicit Milstein schemes with truncation for nonlinear stochastic differential equations: Convergence and its rate, J. Comput. Appl. Math., 374 (2020), 112771. https://doi.org/10.1016/j.cam.2020.112771 doi: 10.1016/j.cam.2020.112771
    [28] G. J. Lord, C. E. Powell, T. Shardlow, An introduction to computational stochastic PDEs, Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781139017329 doi: 10.1017/CBO9781139017329
    [29] X. Mao, Stochastic differential equations and applications, Elsevier, 2007.
    [30] X. Mao, The truncated Euler–Maruyama method for stochastic differential equations, J. Comput. Appl. Math., 290 (2015), 370–384. https://doi.org/10.1016/j.cam.2015.06.002 doi: 10.1016/j.cam.2015.06.002
    [31] X. Mao, Convergence rates of the truncated Euler–Maruyama method for stochastic differential equations, J. Comput. Appl. Math., 296 (2016), 362–375. https://doi.org/10.1016/j.cam.2015.09.035 doi: 10.1016/j.cam.2015.09.035
    [32] X. Mao, L. Szpruch, Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients, J. Comput. Appl. Math., 238 (2013), 14–28. https://doi.org/10.1016/j.cam.2012.08.015 doi: 10.1016/j.cam.2012.08.015
    [33] X. Mao, L. Szpruch, Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients, Stochastics, 85 (2013), 144–171. https://doi.org/10.1080/17442508.2011.651213 doi: 10.1080/17442508.2011.651213
    [34] G. N. Milstein, M. V. Tretyakov, Stochastic numerics for mathematical physics, volume 39. Springer, 2004. https://doi.org/10.1007/978-3-030-82040-4
    [35] A. Neuenkirch, L. Szpruch, First order strong approximations of scalar SDEs defined in a domain, Numer. Math., 128 (2014), 103–136. https://doi.org/10.1007/s00211-014-0606-4 doi: 10.1007/s00211-014-0606-4
    [36] B. Oksendal, Stochastic differential equations: An introduction with applications, Springer Science & Business Media, 2013.
    [37] M. Opper, Variational inference for stochastic differential equations, Ann. Phys.-Berlin, 531 (2019), 1800233. https://doi.org/10.1002/andp.201800233 doi: 10.1002/andp.201800233
    [38] M. V. Tretyakov, Z. Zhang, A fundamental mean-square convergence theorem for SDEs with locally lipschitz coefficients and its applications, SIAM J. Numer. Anal., 51 (2013), 3135–3162. https://doi.org/10.1137/120902318 doi: 10.1137/120902318
    [39] X. Wang, Mean-square convergence rates of implicit Milstein type methods for SDEs with nonLipschitz coefficients, Adv. Comput. Math., 49 (2023), 37. https://doi.org/10.1007/s10444-023-10034-2 doi: 10.1007/s10444-023-10034-2
    [40] X. Wang, S. Gan, The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients, J. Differ. Equ. Appl., 19 (2013), 466–490. https://doi.org/10.1080/10236198.2012.656617 doi: 10.1080/10236198.2012.656617
    [41] X. Wang, J. Wu, B. Dong, Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition, BIT, 60 (2020), 759–790. https://doi.org/10.1007/s10543-019-00793-0 doi: 10.1007/s10543-019-00793-0
    [42] J. Yao, S. Gan, Stability of the drift-implicit and double-implicit Milstein schemes for nonlinear SDEs, Appl. Math. Comput., 339 (2018), 294–301. https://doi.org/10.1016/j.amc.2018.07.026 doi: 10.1016/j.amc.2018.07.026
    [43] Z. Zhang, H. Ma, Order-preserving strong schemes for SDEs with locally Lipschitz coefficients, Appl. Numer. Math., 112 (2017), 1–16. https://doi.org/10.1016/j.apnum.2016.09.013 doi: 10.1016/j.apnum.2016.09.013
    [44] X. Zong, F. Wu, G. Xu, Convergence and stability of two classes of theta-Milstein schemes for stochastic differential equations, J. Comput. Appl. Math., 336 (2018), 8–29. https://doi.org/10.1016/j.cam.2017.12.025 doi: 10.1016/j.cam.2017.12.025
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(258) PDF downloads(31) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog