In this paper, we first introduced a new class of generalized non-expansive mappings, which was larger than the class satisfying the condition $ B_{\gamma, \mu } $. Also, we proposed a new iterative process to approximate the fixed point of the mapping we introduced in this work, then we prove convergence theorems for these mappings by using our iteration process. Lastly, a numerical example was given to show the efficiency of this new iteration process. Our results were the extension and generalization of many known results in the literature in fixed point theory.
Citation: Thabet Abdeljawad, Nazli Kadioglu Karaca, Isa Yildirim, Aiman Mukheimer. Approximation of fixed points for a new class of generalized non-expansive mappings in Banach spaces[J]. AIMS Mathematics, 2024, 9(5): 11958-11974. doi: 10.3934/math.2024584
In this paper, we first introduced a new class of generalized non-expansive mappings, which was larger than the class satisfying the condition $ B_{\gamma, \mu } $. Also, we proposed a new iterative process to approximate the fixed point of the mapping we introduced in this work, then we prove convergence theorems for these mappings by using our iteration process. Lastly, a numerical example was given to show the efficiency of this new iteration process. Our results were the extension and generalization of many known results in the literature in fixed point theory.
[1] | T. Abdeljawad, K. Ullah, J. Ahmad, Iterative algorithm for mappings satisfying $B_{\gamma, \mu }$ condition, J. Funct. Space., 2020 (2020), 3492549. https://doi.org/10.1155/2020/3492549 doi: 10.1155/2020/3492549 |
[2] | M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesn., 66 (2014), 223–234. |
[3] | P. Agarwal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically non-expansive mappings, J. Nonlinear Convex A., 8 (2007), 61–79. |
[4] | J. Ahmad, K. Ullah, M. Arshad, Approximation of fixed points for a class of mappings satisfying property (CSC) in Banach spaces, Math. Sci., 15 (2021), 207–213. https://doi.org/10.1007/s40096-021-00407-3 doi: 10.1007/s40096-021-00407-3 |
[5] | M. U. Ali, T. Kamran, E. Karapinar, Fixed point of $\alpha $-$\varphi $-contractive type mappings in uniform spaces, Fixed Point Theory Appl., 2014 (2014), 150. https://doi.org/10.1186/1687-1812-2014-150 doi: 10.1186/1687-1812-2014-150 |
[6] | J. Ali, F. Ali, P. Kumar, Approximation of fixed points for Suzuki's generalized non-expansive mappings, Mathematics, 7 (2019), 522. https://doi.org/10.3390/math7060522 doi: 10.3390/math7060522 |
[7] | J. Ali, F. Ali, A new iterative scheme to approximating fixed points and the solution of a delay differential equation, J. Nonlinear Convex A., 9 (2020), 2151–2163. |
[8] | A. Aloqaily, N. Souayah, K. Matawie, N. Mlaiki, W. Shatanawi, A new best proximity point results in partial metric spaces endowed with a graph, Symmetry, 15 (2023), 611. https://doi.org/10.3390/sym15030611 doi: 10.3390/sym15030611 |
[9] | A. Amini-Harandi, M. Fakhar, H. R. Hajisharifi, Weak fixed point property for non-expansive mappings with respect to orbits in Banach spaces, J. Fixed Point Theory Appl., 18 (2016), 601–607. https://doi.org/10.1007/s11784-016-0310-3 doi: 10.1007/s11784-016-0310-3 |
[10] | K. Aoyama, F. Kohsaka, Fixed point theorem for $\alpha $ -non-expansive mappings in Banach spaces, Nonlinear Anal. Thero., 74 (2011), 4387–4391. https://doi.org/10.1016/j.na.2011.03.057 doi: 10.1016/j.na.2011.03.057 |
[11] | A. Betiuk-Pilarska, T. D. Benavides, The fixed point property for some generalized non-expansive mappings and renormingss, J. Math. Anal. Appl., 429 (2015), 800–813. https://doi.org/10.1016/j.jmaa.2015.04.043 doi: 10.1016/j.jmaa.2015.04.043 |
[12] | F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, P. Natl. Acad. Sci. USA, 53 (1965), 1272–1276. https://doi.org/10.1073/pnas.53.6.1272 doi: 10.1073/pnas.53.6.1272 |
[13] | P. Debnath, N. Konwar, S. Radenovic, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-4896-0 |
[14] | K. Dewangan, N. Gurudwan, J. Ahmad, A. Aloqaily, N. Mlaiki, Iterative approximation of common fixed points for edge-preserving quasi-non-expansive mappings in Hilbert spaces along with directed graph, J. Math., 2023 (2023), 6400676. https://doi.org/10.1155/2023/6400676 doi: 10.1155/2023/6400676 |
[15] | J. Garcia-Falset, E. Llorens-Fuster, T. Suzuki, Fixed point theory for a class of generalized non-expansive mappings, J. Math. Anal. Appl., 375 (2011), 185–195. https://doi.org/10.1016/j.jmaa.2010.08.069 doi: 10.1016/j.jmaa.2010.08.069 |
[16] | S. G. Georgiev, K. Zennir, Multiple fixed-point theorems and applications in the theory of ODEs, FDEs and PDEs, New York: Chapman and Hall/CRC, 2020. |
[17] | E. Hacıoǧlu, V. Karakaya, Some fixed point results for a multivalued generalization of generalized hybrid mappings in $CAT(\kappa)$-spaces, Konuralp Journal of Mathematics, 6 (2018), 26–34. |
[18] | R. Kannan, Fixed point theorems in reflexive Banach spaces, P. Am. Math. Soc., 38 (1973), 111–118. |
[19] | E. Karapinar, K. Tas, Generalised (C)-conditions and related fixed point theorems, Comput. Math. Appl., 61 (2011), 3370–3380. https://doi.org/10.1016/j.camwa.2011.04.035 doi: 10.1016/j.camwa.2011.04.035 |
[20] | W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Am. Math. Mon., 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345 |
[21] | E. Llorens-Fuster, E. Moreno-Galvez, The fixed point theory for some generalized non-expansive mappings, Abstr. Appl. Anal., 2011 (2011), 435686. https://doi.org/10.1155/2011/435686 doi: 10.1155/2011/435686 |
[22] | K. Mebarki, S. Georgiev, S. Djebali, K. Zennir, Fixed point theorems with applications, New York: Chapman and Hall/CRC, 2023. https://doi.org/10.1201/9781003381969 |
[23] | Z. Opial, Weak convergence of the sequence of successive approximations for non-expansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. |
[24] | R. Pandey, R. Pant, V. Rakocevic, R. Shukla, Approximating fixed points of a general class of non-expansive mappings in Banach spaces with applications, Results Math., 74 (2019), 7. https://doi.org/10.1007/s00025-018-0930-6 doi: 10.1007/s00025-018-0930-6 |
[25] | B. Patir, N. Goswami, V. N. Mishra, Some results on fixed point theory for a class of generalized non-expansive mappings, Fixed Point Theory Appl., 2018 (2018), 19. https://doi.org/10.1186/s13663-018-0644-1 doi: 10.1186/s13663-018-0644-1 |
[26] | Y. Rohen, N. Mlaiki, Tripled best proximity point in complete metric spaces, Open Math., 18 (2020), 204–210. https://doi.org/10.1515/math-2020-0016 doi: 10.1515/math-2020-0016 |
[27] | J. Schu, Weak and strong convergence to fixed points of asymptotically non-expansive mappings, B. Aust. Math. Soc., 43 (1991), 153–159. https://doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884 |
[28] | W. Shatanawi, P. Ariana, Best proximity point and best proximity coupled point in a complete metric space with (P)-property, Filomat, 29 (2015), 63–74 https://doi.org/10.2298/FIL1501063S doi: 10.2298/FIL1501063S |
[29] | J. V. D. C. Sousa, T. Abdeljawad, D. S. Oliveira, Mild and classical solutions for fractional evolution differential equation, Palestine Journal of Mathematics, 11 (2022), 229–242. |
[30] | T. Suzuki, Fixed point theorems and convergence theorems for some generalized non-expansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023 |
[31] | T. Suzuki, Strong convergence theorems for infinite families of non expansive mappings in general Banach spaces, Fixed Point Theory Appl., 2005 (2005), 685918. https://doi.org/10.1155/FPTA.2005.103 doi: 10.1155/FPTA.2005.103 |
[32] | D. Thakur, B. S. Thakur, M. Postolache, Convergence theorems for generalized non-expansive mappings in uniformly convex Banach spaces, Fixed Point Theory Appl., 2015 (2015), 144. https://doi.org/10.1186/s13663-015-0397-z doi: 10.1186/s13663-015-0397-z |
[33] | V. Todorcevic, Harmonic quasiconformal mappings and hyperbolic type metrics, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-22591-9 |
[34] | K. Ullah, M. Arshad, New iteration process and numerical reckoning fixed points in Banach spaces, U.P.B. Sci. Bull., Series A, 79 (2017), 113–122. |