Research article

Approximate solution of initial boundary value problems for ordinary differential equations with fractal derivative

  • Received: 04 January 2022 Revised: 11 April 2022 Accepted: 03 June 2022 Published: 27 June 2022
  • Fractal ordinary differential equations are successfully established by He's fractal derivative in a fractal space, and their variational principles are obtained by semi-inverse transform method.Taylor series method is used to solve the given fractal equations with initial boundary value conditions, and sometimes Ying Buzu algorithm play an important role in this process. Examples show the Taylor series method and Ying Buzu algorithm are powerful and simple tools.

    Citation: Yi Tian. Approximate solution of initial boundary value problems for ordinary differential equations with fractal derivative[J]. Mathematical Modelling and Control, 2022, 2(2): 75-80. doi: 10.3934/mmc.2022009

    Related Papers:

  • Fractal ordinary differential equations are successfully established by He's fractal derivative in a fractal space, and their variational principles are obtained by semi-inverse transform method.Taylor series method is used to solve the given fractal equations with initial boundary value conditions, and sometimes Ying Buzu algorithm play an important role in this process. Examples show the Taylor series method and Ying Buzu algorithm are powerful and simple tools.



    加载中


    [1] J. He, W. Hou, N. Qie, K. Gepreel, A. Shirazi, H. Mohammad-Sedighi, Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators, Facta Univ.-Ser. Mech., 19 (2021), 199–208. https://doi.org/10.22190/FUME201205002H doi: 10.22190/FUME201205002H
    [2] J. He, Q. Yang, C. He, Y. Khan, A simple frequency formulation for the tangent oscillator, Axioms, 10 (2021), 320. https://doi.org/10.3390/axioms10040320 doi: 10.3390/axioms10040320
    [3] N. Anjum, J. He, Q. Ain, D. Tian, Li-He's modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system, Facta Univ.-Ser. Mech., 4 (2021), 601–612. https://doi.org/10.22190/FUME210112025A doi: 10.22190/FUME210112025A
    [4] J. He, Y. El-Dib, The enhanced homotopy perturbation method for axial vibration of strings, Facta Univ.-Ser. Mech., 4 (2021), 735–750. https://doi.org/10.22190/FUME210125033H doi: 10.22190/FUME210125033H
    [5] M. Nadeem, J. He, He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics, J. Math. Chem., 59 (2021), 1234–1245. https://doi.org/10.1007/s10910-021-01236-4 doi: 10.1007/s10910-021-01236-4
    [6] M. Nadeem, J. He, Analysis of nonlinear vibration of nano/microelectromechanical system switch induced by electromagnetic force under zero initial conditions, Alex. Eng. J., 59 (2020), 4343–4352. https://doi.org/10.1016/j.aej.2020.07.039 doi: 10.1016/j.aej.2020.07.039
    [7] J. He, Lagrange crisis and generalized variational principle for 3D unsteady flow, International Journal of Numerical Methods for Heat and Fluid Flow, 30 (2020), 1189–1196. https://doi.org/10.1108/HFF-07-2019-0577 doi: 10.1108/HFF-07-2019-0577
    [8] J. He, C. Sun, A variational principle for a thin film equation, J. Math. Chem., 57 (2019), 2075–2081. https://doi.org/10.1007/s10910-019-01063-8 doi: 10.1007/s10910-019-01063-8
    [9] E. Bonyah, M. Yavuz, D. Baleanu, S. Kumar, A robust study on the listeriosis disease by adopting fractal-fractional operators, Alex. Eng. J., 61 (2022), 2016–2028. https://doi.org/10.1016/j.aej.2021.07.010 doi: 10.1016/j.aej.2021.07.010
    [10] P. Naik, Z. Eskandari, H. Shahkari, Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model, Mathematical Modelling and Numerical Simulation with Applications, 1 (2021), 95–101. https://doi.org/10.53391/mmnsa.2021.01.009 doi: 10.53391/mmnsa.2021.01.009
    [11] Z. Hammouch, M. Yavuz, N. Ozdemir, Numerical solutions and synchronization of a variable-order fractional chaotic system, Mathematical Modelling and Numerical Simulation with Applications, 1 (2021), 11–23. https://doi.org/10.53391/mmnsa.2021.01.002 doi: 10.53391/mmnsa.2021.01.002
    [12] R.Jena, S. Chakraverty, M.Yavuz, Two-Hybrid techniques coupled with an integral transformation for caputo time-fractional navier-stokes equations, Progress in Fractional Differentiation and Applications, 6 (2020), 201–213. https://doi.org/10.18576/pfda/060304 doi: 10.18576/pfda/060304
    [13] P. Kumar, V. Erturk, Dynamics of cholera disease by using two recentfractional numerical methods, Mathematical Modelling and Numerical Simulation with Applications, 1 (2021), 102–111. https://doi.org/10.53391/mmnsa.2021.01.010 doi: 10.53391/mmnsa.2021.01.010
    [14] B. Daşbaşl, Stability analysis of an incommensurate fractional-order SIR model, Mathematical Modelling and Numerical Simulation with Applications, 1 (2021), 44–55. https://doi.org/10.53391/mmnsa.2021.01.005 doi: 10.53391/mmnsa.2021.01.005
    [15] F. Ozkose, M. Senel, R. Habbireeh, Fractional-order mathematical modelling of cancercells-cancer stem cells-immune system interaction with chemotherapy, Mathematical Modelling and Numerical Simulation with Applications, 1 (2021), 67–83. https://doi.org/10.53391/mmnsa.2021.01.007 doi: 10.53391/mmnsa.2021.01.007
    [16] C. He, An introduction to an ancient Chinese algorithm and its modification, International Journal of Numerical Methods for Heat and Fluid Flow, 26 (2016), 2486–2491. https://doi.org/10.1108/HFF-09-2015-0377 doi: 10.1108/HFF-09-2015-0377
    [17] J. He, A simple approach to one-dimensional convection-diffusion equation and its fractional modification for E reaction arising in rotating disk electrodes, Electroanal. Chem., 854 (2019), 113565. https://doi.org/10.1016/j.jelechem.2019.113565 doi: 10.1016/j.jelechem.2019.113565
    [18] C. He, Y. Shen, F. Ji, J. He, Taylor series solution for fractal bratu-type equation arising in electrospinning process, Fractals, 28 (2020), 2050011. https://doi.org/10.1142/S0218348X20500115 doi: 10.1142/S0218348X20500115
    [19] J. He, A short review on analytical methods for a fully fourth-order nonlinear integral boundary value problem with fractal derivatives, International Journal of Numerical Methods for Heat and Fluid Flow, 30 (2020), 4933–4943. https://doi.org/10.1108/HFF-01-2020-0060 doi: 10.1108/HFF-01-2020-0060
    [20] J. He, F. Ji, Taylor series solution for Lane-Emden equation, J. Math. Chem., 57 (2019), 1932–1934. https://doi.org/10.1007/s10910-019-01048-7 doi: 10.1007/s10910-019-01048-7
    [21] J. He, X. Jin, A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube, Math. Method. Appl. Sci., (2020). https://doi.org/10.1002/mma.6321
    [22] J. He, Taylor series solution for a third order boundary value problem arising in Architectural Engineering, Ain Shams Eng. J., 11 (2020), 1411–1414. https://doi.org/10.1016/j.asej.2020.01.016 doi: 10.1016/j.asej.2020.01.016
    [23] J. He, S. Kou, H. Sedighi, An ancient Chinese algorithm for two-point boundary problems and its application to the Michaelis-Menten kinetics, Mathematical Modelling and Control, 1 (2021), 172–176. https://doi.org/10.3934/mmc.2021016 doi: 10.3934/mmc.2021016
    [24] R. Agarwal, D. O'Regan, Ordinary and partial differential equations: with special functions, fourier series, and boundary value problems, 1 Eds., New York: Springer-Verlag, 2009. https://doi.org/10.1007/978-0-387-79146-3
    [25] J. He, Fractal calculus and its geometrical explanation, Results Phys., 10 (2018), 272–276. https://doi.org/10.1016/j.rinp.2018.06.011 doi: 10.1016/j.rinp.2018.06.011
    [26] J. He, A tutorial review on fractal spacetime and fractional calculus, Int. J. Theor. Phys., 53 (2014), 3698–3718. https://doi.org/10.1007/s10773-014-2123-8 doi: 10.1007/s10773-014-2123-8
    [27] T. Ain, J. He, On two-scale dimension and its applications, Therm. Sci., 23 (2019), 1707–1712. https://doi.org/10.2298/TSCI190408138A doi: 10.2298/TSCI190408138A
    [28] J. He, F. Ji, Two-scale mathematics and fractional calculus for thermodynamics, Therm. Sci., 23 (2019), 2131–2133. https://doi.org/10.2298/TSCI1904131H doi: 10.2298/TSCI1904131H
    [29] E. Hacloglu, F. Gursoy, S. Maldar, Y. Atalan, G. Milovanovic, Iterative approximation of fixed points and applications to two-point second-order boundary value problems and to machine learning, Appl. Numer. Math., 167 (2021), 143–172. https://doi.org/10.1016/j.apnum.2021.04.020 doi: 10.1016/j.apnum.2021.04.020
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1839) PDF downloads(100) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog