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1. Introduction

The p-adic theory of functions plays an essential role in p-adic probability, p-adic quantum
mechanics, p-adic partial differential equations, and p-adic harmonic analysis (see [2, 9, 18, 21, 23,
35, 36]). Recently, the theory of p-adic operators has garnered attention within the mathematics
community. Regarding the p-adic fields, Volosivets [37] introduced the Hausdorff operator as follows:

HuaH = | wOfA0xdr, x€ Q€ L@, (L.1)

P
where A(?) is an n X n invertible matrix for almost everywhere ¢ in the support of ¢. The author studied
conditions that imply the boundedness of the operator H, 4 on the p-adic Hardy space H I(QZ) and
the p-adic BMO space BMO(Q)). Also, they obtained relations among the operator H, 4 and p-adic
Fourier transform. Let us consider that ¢ € M(Z;,C), Y(@) = e(t)xey (1), and A(t) = n1l,, for
t = (t,t,....1,). Then, the operator H, 4 reduces to the p-adic Hardy—Littlewood average operator
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HE" [30],
H e = [ ofed, xe

Zp

This relationship highlights how Hausdorff operators encompass existing p-adic operators like
the Hardy-Littlewood average operator, potentially offering a broader framework for analyzing their
properties. In 2021, Dung and Duong [10] established some sufficient conditions for the boundedness
of the operators H), 4 on weighted Triebel-Lizorkin spaces, two weighted Morrey spaces, and Morrey—
Herz spaces. By observing a special case matrix A(t) = diag[s(t), ..., s(t)], the sharp bounds of the
operators H,, 4 are given on Morrey spaces and Morrey—Herz spaces with power weights. As some
applications, the authors achieved several new p-adic Hardy—Hilbert type inequalities.

It is well known that the boundedness of some operators plays a crucial role in the regularity
properties of the solution of some equations. Another role in the boundedness of solutions can be
found in the works [3,26,40-42]. On p-adic fields, the solution of some pseudo-differential equations
is strongly related to the operator H;, ! For instance, Kochubei [22] investigated the following Cauchy

problem:

(1.2)

Day(lxlp) = g(lxlp)’ X € Qp’
y(0) =0,

where D, @ > 0, is the Vladimirov operator introduced in [36] and g is a continuous function, such
that

> 1g(p)l < oo, ifa# 1 oor Y ilg(p) < oo, ifa = 1.
i=1 i=1

The solution y of Eq (1.2) is given by

Y = I(g)(x) = A, f (b= ule™ = luls™) gw)du

ulp<I|xl,
= Il (M2 00 = H ' g()

where A, = 11_;% L @1(t) = Ap|L — 157", and @y (r) = A,tl3~". From this, we see that the regularity of
the solution of the Eq (1.2) depends on the boundedness of H%' and HZ,'.

One of the most significant operators for solving several issues in the theory of singular integral
operators and partial differential equations is the Hardy-Littlewood maximal operator (see [17, 32]).
Moreover, the study of weighted inequalities for Hardy—Littlewood maximal operator on function
spaces is an interesting problem in harmonic analysis (see [8, 15]). On the p-adic fields, the Hardy-

Littlewood maximal operator M for any locally integrable f is given by

M(f)(x) = sup

yEZ

1
[ . e g, (13)
By(x)

Y

In 2009, Kim [24] proved that the operator M is of weak type (1, 1) on Ll(Q;’,). Using the p-adic
version of the Marcinkiewicz interpolation theorem, the operator M is a bounded operator of L(Q))
into L1(Q)) in Theorem 1.1 [24]. On the local fields (a generalization of the p-adic fields), Chuong
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and Hung [7] obtained that |[M||.4(w)—L4(w) 18 finite if and only if w is a Muckenhoupt weight. From the
Fefferman—Stein inequality on p-adic Lebesgue spaces, Volosivets [38] gave sufficient conditions for
the boundedness of the operator M on the generalized Morrey space L“(Q}). On the other hand, we
see that |[H”(f)(-)] < M(f)(-). Here, the p-adic Hardy operator H” is defined by

H(f)(x) =

1
p f f)du, x e Q) \{0}.
|X|p Jutl p <1,
Under the above inequality, the Hardy operator can characterize a broader set of function spaces
compared to the Hardy—Littlewood maximal operator.
Let f € L (R"). Then, f is said to be in BMO(R") if the seminorm given by

loc

1
”f“BMO(R“) = sgp 1B| flf(“) — faldu < oo,
B

where the supremum is taken over balls B € R" and f3 = % f f(uw)du.

B
The maximal commutator operator was proposed by Garcia-Cuerva et al. [16]. It is defined as
follows:

1
D) = )

f Ib(x) = bl f (w)ldu, x €R",
B, (x)

where b € M(R",C). In studying commutators of singular integral operators with BMO symbols, the
operator C,, plays an important role (see [16,25,31]). The authors [16] stated the following theorem.

Theorem 1. Let p € (1, ). Then, the operator Cy, is bounded on LP(R") if and only if b € BMO(R").

For the natural extension, the p-adic maximal commutator operator is defined by

1
Cpp(f)(x) := sup — f Ib(x) — bl f(Wldu, x € Q).
174 ) 2%

B (x)

From Theorem 1, the study of the boundedness of the p-adic maximal commutator operators C,;, on
general p-adic function spaces of Lebesgue spaces needs to be posed.

In 1995, Lu and Yang [27] introduced the two weighted Herz spaces I'(g’[(wl, w,) and Kg’[(wl, wy).
In the case w; =,w,; =1, @ = 0, and £ = ¢, it is obvious that Kf}’f(wl, wy) = L1(R™). On the local fields,
the authors [28] presented the block decomposition of Herz spaces and obtained the boundedness of
the sublinear operators, generated by the operator M. As the applications of the block decomposition
theory, Dung et al. [11] established the boundedness of the operator M and the operator Hy, 4 on two
weighted p-adic Herz spaces. In particular, the authors gave necessary and sufficient conditions for the
continuity of the operator 7‘[@ 4 on two weighted Herz spaces Kiﬁl,wz(QZ) with power weights.

Additionally, the theory of function spaces with variable exponents has certain crucial applications
in electronic fluid mechanics, elasticity, recovery of graphics, partial differential equations, and
harmonic analysis (see [1,4,5,12-14,29,33,34]). By extending the results in [1] and [27], Wang [39]
established the block decomposition for the Herz spaces with two variable exponents. The authors
of [43] just recently introduced the local block space with variable exponent €38, ,.,(R"). As a natural
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development, we research the block decomposition for the p-adic Herz spaces with two variable
exponents and the p-adic local block spaces with variable exponent.
Motivated by the above, we obtain some results as follows:

1) We establish some inequalities for the boundedness of the operator M on the p-adic
nonhomogeneous Herz space K;’((f))’ﬁ(QZ) and the p-adic local block space LBM(.)(QZ).
2) The boundedness of the operator C,,, with a symbol belonging to BMO;(Q7) space on the p-adic

9.0
nonhomogeneous Herz space K0

q(.)’w(Q’;) is discussed. Moreover,

C n al-), n < b r ny.
ICpellgeere g0ty S IIbllamozay)

3) We show some sufficient conditions for the boundedness of the operator H, 4 on the p-adic
homogeneous Herz space K;y((f))”‘i(Q;) and the p-adic local block space LBM(.)(Q;).
4) As consequence, we obtain the boundedness of the operators H”, H,", and 77 on the spaces

(OX4 ().l
K;(.)’M(Q;)a KZ(-),w(Q’;?)’ and LBu,q(')(QZ)~
The following is the structure of our paper. Section 2 is preliminaries. Our main results are given
and proved in Section 3. Finally, a conclusion is stated in Section 4.

2. Some notations and definitions

On the field of rational numbers Q with a prime number p, we define

0, ifu =0,

|ul, = . m. .
"\ p, otherwise u = p?— withm,n }p,y € Z.
n

The field Q, arises as a result of the completion of the field Q with the norm | - |,. Then,
() lul, > 0, for allu € Q,;
(i) lul, =0 © u =0;
(ii1) |uvl, = lulylvl,, for allu,v € Q,;
(iv) lu + v, < max(|ulp, |v|,), for allu,v € Q,, and |u + v|, = max(|ul,, |[v|,) with |u], # |v],.
For n € N*, the space Q; is defined as {u = (uy, ...,u,) : u; € Q,,i = 1,...,n}, and equipped with the
norm defined by

u|, = max |u;l,. 2.1
ul, = max ], @.1)

We set Q’;* = QZ \ {0}, Q; =Q, \ {0}, and Z, = {ueQ,:0<ul, <1}

Let Bu(a) = {u € Q) : lu—al, < p*}, Sw(@) = {u € Q2 : ju - al, = p*}, By = By(0), and S = §4(0),
for all k € Z. Moreover, let y; be the characteristic function of the sphere S .

Corollary 2. (see Corollaries 1 in [36]) If b € Bi(a), then Bi(a) = Bi(b).

The normalization of the Haar measure on Q7 is given by

fdu:IBolz 1.

By
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Let us denote |U| as the Haar measure of a measurable subset U C Q. For any a € Q) and k € Z,
we have |Bi(a)l = p™ and S k(a)l = p™(1 — p™).

Denote by M(V,F) the set of all measurable functions f(-) : V — F and D(V,F) the collection
of all functions g(-) : V — F. Besides, the set W(Q;) comprises all nonnegative weighted functions
defined on Q). For any w belonging to the set W(Q7) and any measurable set U, we define

w(U) ::fw(u)du.
U

For r € (0, ), the space L"(Q)) := {f e M(V,C) : [FAZEEAIRS oo}. Here,

1l = ([Qn If(u)lrdu)l/r.

Given that f belongs to the space L! (Q}), we have

f(uwdu = lim f fldu = lim > f f(u)du.
Qg a—00 Ba a—00 Sy

—oo<y<a

The space L' (V) := {f e M(V,C): Ifxullr @y < oo, U CV, Ucompact}.

loc
The definitions above are referred to in [21,36]. Next, we recall the p-adic Lebesgue with variable

exponent (see [5, 6]).
We define the set P(Q}):={q € M@Q%, (1,0)) : g-,q+ € (1, 00)}. Simultaneously,

g- = essinfyeqrg(u) and g, = ess SUP,eq q(u).
For ¢(-) € P(Q}), f € M(Q),,C), and y € (0, ), we put
q(u)
Fatfn= [ ('f fy”)') du.

n
Q@

For ¢(-) € P(Q}), the space L1(Q}) := {f € M(Q},C) : Fyy(f/y) < oo, for somey € (0, oo)}. A
norm on L10(Q) is given by

1fllza0gy = inf {y € (0, 00) : Fyiy (f/) < 1.

Lemma 3. Let g(-) € P(Q),) and f € LQ(')(Q;’,). Then, we have

< -, C ), i <

”f”Lq(‘)(QZ) 2 min{c"%, C"%}, otherwise.

Proof. Let us put 7 = max{Cq%,Cq%} and v = min{Cq%,Cq%}. Then, we have C < 7% and C < 7%-.

Consequently,
max{ ! L} < 1. 2.3)

T4+ T4- C
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By similar arguments as above,

In case F,,(f) < C, by (2.3), we have max{ } f |f(w)|?“du < 1. This leads to

9+ 19—

Fo(mn)= [

@

qu)

S du < 1.

Thus, by ||f/7ll a0y = inf {y € (0,00) : Fo,((£/7)/y) < 1}, we see that ||f/7ll g, < 1. Then,

L €1
”f”Lq(-)(Q?)) < maX{C‘/— s Ca }

In case F,,(f) > C, by (2.4), we infer min {U% L} f |f(w)|““du > 1. Hence,

*[0‘27}

Besides, for all y € (0, c0) and Fq(.)((f/v)/y) < 1, we have

oot
min sy T (.
f)/‘]+ fyq— Q

Thus, mln{ il } < 1. This gives y € [1; o). Accordingly,

q(u)

S du > 1.

v

q(u)
SO g < 1.
v

”f/U”L‘K‘)(QZ) = inf {7 € (0, 00) : Fq(.)((f/l})/)/) < 1}

inf {y € [1,00) : Fooo((f/0)/7) < 1}
1.

\%

Therefore,

. 1 1
”f”th)(Q}z’) > min{C4,C }.

For g(-) € £(Q7), the function ¢'(-) is defined by

— + = 1.

q¢)  q'()

(2.4)

The space LE"(Q}) := {f € M(@},C) : || f||LZ<.) o < oo} with ¢() € P(Q}) and w € W(Q?). Here,

”f”LZf')(Q;) = ”fw”Lq(-)(Q;)'
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The space LQ(loc(Q”*) = { fe M(Q ,O): fyu € LZ)(')(QZ), UcQyUu compact}.

The set C;*(Q}) := {@ € DQLLR) : le(u) - a(0)] § ———, Yu € Q3}.
log (e + lul,")
1
The set C24(Q%) := {a € DQ5.R) : la(u) - el < Togte T 1AL’ Vu e Qpf with lim a(u) = a € R,
P up—)oo
The set Ci5(Q}) = {@ € D@}, R) : law) = aW)| < gy Yo v+ lu =], < 1} Then, we denote

LH(Q}) := C3(@p) N CE@p).

Let us give the p-adic welghted Herz spaces with variable exponents (see [20]).
Definition 1. Let a(-) € L°°(Q") N D(Q},R), € € (0,00), g(-) € PQ)), w € W(Q}). The p-adic
homogeneous Herz space Kq( N w(Q”) is defined by

-a()€

n q() N
K (@) = {f €L, 1(Q): ||f”1‘<3<(f>),'i(QZ) < Oo}

1/t
_ aO)in £y, 116
with [fll s o = ( P q()(Q,,,)) -

Definition 2. Ler a(-) € L*(Q)) N D(Q),R), £ € (0,), q(-) € PQ)), w € W(Q)). The p-adic
nonhomogeneous Herz space KOt (Q}) is defined by

q().w

a()f n q() nEy .
Ko@) = {f € Ly 1oc(@p) t Ifll e o < °°}

1/¢
with || ]| KLy = (Z IO fxall” a()/anBOHLq()(Qn ) :

Lq( )(Qn

Definition 3. ( [27,39]) Let g(-) € P(Q}), a(-) € L¥(Q}) N Céog(QZ) N Ci‘gg(QZ), a(0), @ € (0, 00),
w E W(QZ), and b(-) € M(Q",C). We say that b(-) is a central (a(-), q(+), w)-block if there exists k € Z
such that

(i) supp(b) C By,

. afn a(0), ifk < 0,
(i1) ||b||Lq<')(Qg) < W(Br) ™" with ay =

o, Otherwise.

Definition 4. ( [27,39]) Let q(-) € P(Q}), a(-) € L¥(Q}) N Cff;g(Q;), e € (0,00), w € W(Q)), and
b(-) € M(Q", C). We say that b(-) is a central (a(-), q(-), w)-block of restricted type if there exists k € N
satisfying

(i) supp(b) C By,
(ii) ”bHLq(')(QZ) < w(Bk)—%o/n.

From the results in [27] and [39], we develop the following theorems.
Theorem 4. Let £ € (0, 1], g(-) € P(Q)), a(-) € L¥(Q})) N Cff,g(QZ), Ao € (0, ), and w(x) = leg with

B € (—n, ). We see that f € K(‘;(()):; Q5) if and only if

AIMS Mathematics Volume 9, Issue 8, 23060-23087.
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f= i by,
%=0

where ), |4|? < oo, and each by is a central (a(-), g(-), w)- block of restricted type with the support in
k=0
B;.. Moreover,

- 1/¢
~ 7 4
”f”K;’((;L(Q’;) ~ ll’lf {Z || } s
k=0

where the infimum is taken over all decomposition of f as above.

Theorem 5. Let £ € (0,1, g(-) € (@), a(-) € L¥(Q}) N CE(@1) N C#(Q7), and w(x) = |xf, with
B € (—n, 00). We see that f € Ka(')’[(Q;) if and only if

q()w
f= Z Aiby,

kezZ

where ) [P < oo, and each by is a central (a(:), g(-), w)- block with the support in B;. Moreover,
keZ

1/¢
. ¢
I fllgeoreayy =~ inf {Z A } :
keZ

where the infimum is taken over all decomposition of f as above.
Following [43], we present the definition of p-adic local block space with variable exponent

LBu,q(-) (QZ)

Definition 5. Let g € M(Q7, (0, 0)), u € M((0, %), (0, 0)), and b € M(Q},,C). We say that b() is a
local (u, L1Y)-block if it is supported in By, k € N, and

1
bl|raony £ ——.
1611 o0y )

The space LB, (Q}) := {Z Aeby 2 Y |Ak] < o0 and by is a local (u,L‘f('))-block}. A norm of this
k=0 i=0

space is given by

1/ NlzB, 4@ = inf {Z |l = f = Z Aiby a.e.}.
%=0 k=0

Definition 6. Let g € M(Q", (0, )) and u € M((0, ), (0, 00)). If there exists a constant C > 0 such
that

C < u(p"), for allk € N, (2.5)

sl < Cu(ph), forallk € Z \ N, (2.6)

AIMS Mathematics Volume 9, Issue 8, 23060-23087.
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[

Dy Bl a0 cqny
Z m B L” f WP < Cu(pby, for allk € Z. 2.7)
Bk+/+l L1 (Qn

Then, we say that u € LW, (Q}).
By similar arguments as in the proof of [43, Theorem 4], we have the following result.

Theorem 6. Let g € M(Q},(0,0)) and u € LW, ,(Q)). Then, we have LB, ,,(Q}) C 10C(Q”)
Moreover, LB, 4(Q}) is a Banach space.

The set MB(Q)) := {q(-) € P(Q}) : M is bounded on L‘I(')(QZ)}. By using Lemmas 1 and 2 in
paper [19], we obtain an important lemma below.

Lemma 7. Assume that q(-) € MB(QY).

(i) If B is a ball in Q7, then we have

|L\/B||Lq(->(Q7, |B|
s llzooan |S I’

(i1) Forall a € Q; and k € Z, we have

for all measurable subsets S C B.

ok
I B llao@pl siall s o = P

Proof. Let us take a ball B = By, (xp) and a measurable subset S C B. For all x € B,

1 1 S
M(xs)(x) 2 —— s Mldy = — f besOdy = B
pe Bl Js

Biy0) |B|

Thus,
Bci{xe QZ : M(ys)(x) > A/2}, forall A € (0,|S1/|B)).
Byq(-) € SJE%(QZ), we have that the operator M is of weak type (g(-), g(-)). Clearly, for all f € LQ(')(QZ)
and A € (0, o0),
A rean:mnwsalloas < N lloay-
Consequently, for all A € (0,|S1/|B|),

A
Slsllzoey < Sliegpmus wsaillzogy S heslloag-
Hence, for all A € (0, |S|/|B)),
Iy Bll Lo ) < !
s llzaoay ~

We choose A = 2|f3|| Then, the proof of the section (i) of Lemma 7 is finished.

Now, we prove the section (ii) of this lemma. First, by ¢g(-) € W%(QZ), we obtain the following
inequality.
18X 8lleony S 11fxBllzaoy, for all balls Band f € L1(Q)). (2.8)
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1
Here, |f|5 = B fB |fO)ldy.

Indeed, we take a ball B = By, (xo) arbitrarily. For all x € B, by Corollary 2, we get B = By, (x).

Hence, for all x € B,

1 1
o= [ ooy =2 [ oty < Mxa)
1Bl S, 0 P I

This gives
|flexs(x) < M(fx5)(x), for allx € Q.
As a consequence, by ¢(-) € MB(QY),
A lsxBllLoo@n < IM(Fxplloqs S I xslleoqy)-
Therefore, the inequality (2.8) is valid. Next, for all Bx(a), by the inequality (2.8),

1
m|LYBk(a)||Lq<-><Q">||XBk<a>|| 14O

|B @ )lllXBk(a)”L‘IU(Q”) -Sup f |f X Bywldx ||f||Lq<>(Q”) = 1}

= Il sl sup{lflsi@ : Il < 1)
= SUP{|||f i Be@llraoy) * I1f 1oy < 1}

< SuP{”fXBk(a)||Lq<->(Q;) : ||f||Lq<->(Q;',) < 1}
< 1.

~

From this, we estimate
k
¥ Be@ll a0 @ Il Buall 4o s p™.
Besides, by using the Holder inequality,
k
P = ||/\/Bk(a)||Ll(Q;;> < ||/\/Bk(a)||Ltz(->(Q7,)|l/\/Bk(a)|| L O@y’

Certainly, by (2.9) and (2.10), we finish the proof of the section (ii) of this lemma.

(2.9)

(2.10)

O

From the inequality (18) in the paper [20, Theorem 5], we finish the proof of the following lemma.

Lemma 8. [f q(-) € P(Q,) N LH(Q)), then,

I ellzaor gy < p*e= for any k € N.
Proof. For any k € Nand x € §4, by g(-) € LH(Q;),

logplxlp

klg(x) = geol = log, ¥, lq(x) = gl 5 Jor s S
90 = gl = log, 41y 1900 = gl 5 {or s

AIMS Mathematics Volume 9, Issue 8, 23060-23087.
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Hence,
k(ge — q(x)) < C,

where the positive constant C is independent of k € N and x € S. In addition, by using the hypothesis
q(-) € P(Q,) N LH(Q)), it is clearly understood that g., € (1, 00). Accordingly,

pCMas phn < pkna@las for any k € Nandx € Sy. (2.11)
For any k € N, by (2.11), we estimate

(x)
X))\ xi(x) 1
Fatulp) = [ ( ) dr= [ 2O e [ e
q @ pkn/qm 2 pknq(x)/qm s pknq(X)/qm

n
P

: f
= 1ldx < 1.
p—Cn/qoopkn S,

Based on the above inequality and Lemma 3, one has

“/Yk/pkn/quLll(J(Q;D < 1, forany k € N.

Hence, the proof of Lemma 8 is completed. O

Definition 7. Let f € L, (Q"), and r € (1, ), and set

loc

1 1/r
1/ lzmoz@y = su —fl (w) = fpl'du)
Flsmoray) Bcg(lng F(u) = fol'du)

where the supremum is taken over all balls Q and B with B ¢ Q c Q). The space BMO(Q)) is defined
by
BMO(@}) = {f € L (@}) : Ifllsmoray < o).

3. The main results

In 2023, the authors of [11] studied the boundedness of Hardy—Littlewood maximal functions on
p-adic Herz spaces through the block decomposition. Continuing to use the block decomposition
technique for p-adic Herz spaces with variable exponents, we obtain the following theorem. Moreover,
we hope that the following theorem will provide readers with ideas for the proof in the p-adic field
without using the knowledge that weighted Herz spaces are interpolating spaces between Lebesgue
weight spaces.

Theorem 9. Ler ¢ € (0,1], g(-) € B(Q)) N LH(Q)), g = g+, a(-) € L™(Q}) N Clof,g(QZ) such that
Ao € (0,n —n/q,) . Assume that w(x) = I)clf7 with B € (—n, 00). Then, we have that M is bounded on

Kj((f))ﬁ(QZ). Moreover,

”M”K‘Y((')"' ) < Cl,f-

Q=Ko (@
L, if { =0,

©o 1/¢
Here, C,; := K ‘) with K, =
o= ( 2K C7 | presasapt — 1y, if £ e T

¢=0
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Proof. For any f € K**" K(Q’;), by Theorem 4,

q()w
f= dbi
k=0

. b 1/¢ . .
with ( > I/lklf) < fI K704 (- Here, for each k € N, b, is a central (a(-), g(+), w)-block of restricted
k=0 qOwt=p

type where
supp(bx) € By and ”bk”Lq(-)(Q;) < w(By)™*/",

For any k € N, M(b;) is composed as follows:

M(bo) = X -MB) + D Xk Mbo) = D" N
=1 ¢=0

Then,
supp(Np, ) C Biay.
By q()) € %(Q;), one has

INollzso @y < IMDOllzao@r) S 1bklzaoqr)
S W(B) ™" := Kow(By) ™.

For any £ € Z*, by considering x € S, and r € Z with p(p - 1) > p',
BF(X) N Bk =0.

Thus, by supp(by) C B,
rez

1
N (%) = Xir ()M (Bi)(X) = Yy (X) Sup f N |bi(1)|dt
X)NBy

1
= Xk+(X)  sup  — f by (0)\dt
B (x)NBy.

reZ: p '(pf H<pr

S f Ibr(o)ldt.

Consequently, by the Holder inequality, Lemma 7 and ||b||z«s,) S @(By) ™/,

INpy el < |le+g||Lq<>(Q,,)lm(§—”bk”m()(3k)“IHLq e
Ik ¢llzsor @) ~awin___ P
< ma)(Bk) TN
p(ps - 1) Bl Looan)

< 1 ||Xk+§||Lq<->(Q;§) (w(BkJr;) )am /n
T (pf-1y I Bl © w(Bk)
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Note that, by Lemma 3, Lemma 8 and ¢., = ¢,

On k o0

S =p
Iy Bellzao@n) pknlas

On the other hand, by w(x) = |xf,,
(w(Bk‘F() )Q’w/l’l _ é'am
w(By) '
From these, for any k € N and € Z*,
pg“(n/q++am) .y .y
1N, ¢l o) S Ww(3k+g) ol = Kew(Biag) ™", (3.5)

By defining ka,_( = Ny, ;/K;, for any { € N. Combining this with (3.1),
M) = > Ke Ny
(=0

Moreover, by (3.2)—(3.5),
||ka,§||m<->(@;) < w(Bk+g)_a°°/n and Supp(ﬁhk,g) C By

Namely, for any { € N, ka,{ is a central (a(-), g(-), w)-block of restricted type. Hence, in view of
Theorem 4,

”M(bk)HKZ(())Z(Qﬁ) < Cl,f- (36)

Case ¢ = 1. By the condition @, + n/q, —n <0,

(+D(n/gitae)(H¢ _ 1)
l. p (p 1) — Qoo+ /q+—n < 1.

gi’g p((”/‘h‘*“m)(p(‘*’l — 1)"

Thus, by the D’ Alembert criterion for convergence of series,

Cl,l = Z |K§| < 00,
=0

Case ¢ € (0, 1). By letting v such that v > (1 —£)/¢{, using the Holder inequality and the D’ Alembert
criterion for convergence of series,

Cie= (i |Kg|€)1/€ < i{y.Kg +1 < oo.
=1

{=0

Consequently, by the inequality (3.6),

1Ml ) S Cre < oo, forallk € N.
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This leads to
HMNWWWMZWW@)WW
q(),w
1/¢
ZWWMM%W)
=~ Cl,f”f”[(;’((.'))’ﬁ(@l;))a
which ends the proof of this theorem. O

According to the ideas from the proof of [43, Theorem 5], the following theorem gives some
sufficient conditions for the boundedness of Hardy-Littlewood maximal functions on p-adic local
block spaces with variable exponent. The following theorem and Theorem 9 provide some evaluations
for the regularity of the solution of some p-adic equations.

Theorem 10. Let g € M(Q", (1, 0)) and u € M((0, ), (0,00)). If g € %(QZ) and u € LW, ,(Q5),
then M is bounded on LB, 4. (Q}). Moreover,

||M||LBu,q<«><Qg>—’LBu,qo)(Q;’,) S Coe

IIXBk||Lq’<-)(Q;;) u(p]”{)
”XBH;”L‘I/(‘)(QZ). u(p*)

Here, C,, := . KZ with Kj =1, and K} =
(=0

; ,forall l € Z*.

Proof. Let us give f € LB, 4,(Q}), by the definition of the local block space with variable exponent,

£=> Ab
k=0
with 3 |4 < [1flls, @) and for each k € N, by is a local (u, L?))-block such that
k=0

by) C By and ||bi||pe0@0ny £ ——.
supp(by) C By and [|bgll Loy ()

By composing as (3.1),

MB)() = ) Np o).
=0
Here, Ny, o = x5, M(by), and Ny, ; = xiscM(by), forall { € Z*.
As g(-) € B(Q)),
1

1 \
||ka,0||Lq(-)(Q';) < ”bk”LLI(‘)(Q;;) < u() =K, s (3.7)

AIMS Mathematics Volume 9, Issue 8, 23060-23087.
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For any { € Z", by the inequality (3.4), the Holder inequality and Lemma 7 (ii),

1
INb sy < ll/\/k+§||Lq(')(QZ)m”bk”Lq(')(Q;)“XBk“Lq'(-)(Q;g)

< |IXBk+g | |L‘1(')(Q;',) Pkn ”bk | |L‘1(')(Q:’,) | IXBk | |Lq’(')(Q'pl)

IWalro@n w(pt+) 1

- |L¥Bk+{||L4'(')(Q;). M(Pk) .u(kar'()
1

Note that, u € Lqu(.)(QZ), it is clear to see that C,,, < co. Next, let us set as follows:

N,
) —I?f Lif K} #0,
ka,{ = 4 A
0, otherwise.

This gives
MG = D Ny = Y KiN;, 0.
£=0 £=0

On the other hand, for any ¢ € N, by (3.7), (3.8) and supp(N;k’ () C By, we have that N;k’ ; is a local
(u, L19)-block. Thus,

IM (BB, (@) S Cous forallk € N,

This leads to
M | 5w |
M Pl < || 2 b eol], o,
< > 1Mo
= LBug»(Q})
S Collf ||L3u,q<_)(Q;§).
Hence, the proof of this theorem is concluded. O

As a consequence, we immediately have the following two results.

Corollary 11. If the assumptions of Theorem 9 hold, then H? is bounded on K;’((.'))’f;(QZ). Moreover,

||7‘{p||K"1’(<">)’f)(Qrpl)_>K”(')v‘ @) < Cl £

q()w
Here, C,, is defined in Theorem 9.
Corollary 12. Let the assumptions of Theorem 10 hold. Then, we have that H? is bounded on
LB, 4 ). Moreover,
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NH?|Lg < Cou

waO@) 7 LBugoyap)

Here, C,,, is defined in Theorem 10.

Theorem 13. Let 6 € (0, 1) and r € (max(y%, 1), o). If b € BM O:(QZ), then we have

My(Cpp(MNC) < bllssoray-(My () + M), for all f € L, (R").

Here, M;g(x) := [M(Igl5)(X)]l/5-

Proof. Let x € Q, and fix a ball Bi(xo) with k € Z and x € By(xp). We setup f = fi + fo, where
Ji = fxBuxo) and fo = fxBi(x,)- Thus, for any y € Q,

Cop(N) < M((b = b)) J1)) + M((D = bp,(x,)) [2)) + |b(Y) = bp, x| M f(y).
This leads to

1/6

! I
G | Conora) (g [ w@-bnpmora)

By(xo) By (x0)

1
(o5 f IM((b = b)) IONdy)

By(xo)

1
+(om f b)Y ~ bao P FG)Ydy) "
By (x0)

Z:I1+I2+[3. (39)

By Theorem 1.1 in the paper [24], we have that M is a bounded operator from LI(Q;) to LI’W(QZ).
This implies that

ki

N
f M((b = by O dy = f M((b = b f1) (O dr

Bi(x0) 0

pkn
< ( sup 100 = by @) ( [ rar)
0

O<t<pkn
S pkn(_6+1)||(b - ka(XO))fllil(Bk(xo))'
Besides, by applying Corollary 2, we obtain Bi(xy) = Bi(x). Combining this with the Holder inequality,
1
I s P 1bG) = b, lf WAy
B (xo)
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<

pt‘”( f o )_bBNﬂ)'rdy)l/r'( f |f(y)|"dy)1/r/

By (xo) By(xo)
< [1bllsamozay-Mr (f)().
Next, for any y € By(x), by using Corollary 2 again, we also have
Bi(x0) = Bi(x) = Bi(y).

Consequently, for any y € Bi(xo),

B;(y) € Bz(x)witha > kand a € Z.
Indeed, let z € B;(y),

[z = 21, < max {lz = ¥, |2 =, < max {p, pt} < p'.

This leads to z € B;(x). Hence, the relation (3.11) is right. Thus,

L= | plkn f (sup - f 16) = by lf ) dy)

acZ P
Bi(x0) Ba(y)NB(x0)
1 f 1 5 s
: sup — | |b(2) = byl f(2)ldz) d
{pkn (&EZ,&ZI:;HI pan By (x0) f ) y}
By(x0) Ba(y)
1 f 1 5 s
: sup  —— | |b(2) = bl f(2)ldz) d
{Pk" (an,agwl Yt Bollf ) y}
Bk(x()) Ba(x)
1
< sup — [ 1b@) - bywllf@ldz.
aeZazk+1 P e

Moreover, for any a € Z with @ > k + 1, by using the Holder inequality as in (3.10),

1
p&n

f 1b(z) = bp, |l f(2ldz < 11bllBmoz@s-Mr (f)(X).

Ba(x)

This implies that
I < |bllpmoray)- My (f)(x).

(3.10)

(3.11)

(3.12)

To estimate 73, we use the Holder inequality with v = r/(r — ) € (1, 00), and Bi(xo) = Bi(x) as

follows:

1 , 1/e6y) ;1
Lis (o5 [ 0 =bnest” )" (5 [ wagoay

Bi(xo) Bi(x)
< Ibllsmoray)-Mey(M f)(x).
By oy € (0, 1), it is clear to see that Ms, (M f)(x) < M? f(x). From these,
T3 < |Ibllsmorny-M*(f)(x).
Therefore, in view of (3.11) and (3.12), the proof of the theorem is finished.

)1/(5)’)

(3.13)

O
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Since C,,(f)(-) < Ms(C,;(f))(-), Theorem 13 guarantees the following result.
Corollary 14. Let r € (1,00) and b € BMO,(Q}). Then,

Cp(NC) < bllsmorap (M (H)C) + MP(f)()), for all f € L}, (Qb).

From [5, Proposition 2.18] and the definition of the p-adic Herz spaces with variable exponents, we
immediately have the following property.

Lemma 15. Let € € (1, ), g(-) € P(QZ), é£e(1/q-,0), and a(-) € L“(Q;). Then, we have
3
0 WAl gy = WM,
) Il gy = Mg

£q()w

By using Corollary 14, Lemma 15, and Theorem 9, we achieve the following theorem. To prove
the following theorem, we rely on the estimation of the p-adic maximal operator M. Furthermore,
attentive readers see that we need to use the properties of the p-adic fields (such as Corollary 2) in the
proof.

Theorem 16. Let ¢ € (0,1], q(-) € B(Q,) N LH(Q)), re(1,q.), q0)/r € B(Q}), 9o = g+, and
a(-) € L¥(@Q)) N Cfff,g(QZ) such that a., € (0,n/r" —n/q,). Assume that w(x) = lef, with B € (—n, o)

and b € BMO(Q}) . Then, C),, is bounded on KZ(())i(QZ). Moreover,

2 177
”Cpb”K“()f(Qn)_)Kz(())i(Qn) S (C 1.0 + Cl €/r')”b”BM0;(Q7’)'
Here, C, ¢ is defined in Theorem 9.
Proof. By Corollary 14, we have
2

||Cp,b(f)||K;Y(())£(Q;) < ”b”BMOZ(Q;';)(”Mr’(f)”[(;’(())i(Q;) + ”M (f)”[(;’((;i(Qrpl)) (314)

Besides, by Theorem 9,
2 2

In addition, by Lemma 15 and Theorem 9, we obtain

r\nl/
||Mr/(f)||[<‘q’((l‘)),ﬁ(@rg) = ”M(lflr l :(),/ o

q()/r/ (@)
1/r 1/
<L
q()/' W
l/r

1[/, ”f“K“()f(Qn

From the above estimation, by using the inequalities (3.14) and (3.15), the proof of this theorem is
concluded. O
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To present the next result, we set

n/qs n/q- )

Kang() = max{|detA™ (1) 0 |deta™ @]
Pa(Q) ={u e P@Q)): u(A' (1)) = u(-), for a.e.t € supp()}.

Very recently, the authors of [11] established the boundedness of the Hausdorff operators on p-adic
Herz spaces. Expanding this work, we state the two following theorems about the boundedness of the
Hausdorff operators on p-adic Herz spaces and p-adic local block spaces with variable exponent. As a
consequence, the two following theorems contribute to the regularity of the solution of the Eq (1.2).

Theorem 17. Let g(-) € P4(Q2), a() € L*(@)NCZ@)NCH(QL), B € (—n, ), a(0) = e, € (0, 00),
and w(x) = |x|’f,. Assume that £ € (0,1), o > (1 =€)/, and

Ly = f WD Kang OIAT O max{llog, A~ Oll,1, 1}d1 < oo
Q)l

Then, H,, 4 is bounded on K“( ) f ,(Q). Moreover,

[ Hy

KO @R o) < La—oye-

q().w

Here, Lu_oye = [ WOKrnaOIAT Ol ™" max{llog, A" ),|1=0/, 1}dt.
Qn

Proof. Forany f € K"(())Z;(Q’;), by Theorem 5,

o0 1/¢
where ( > |/lk|f) S N fllgecrne @y and for k € Z, by 1s a central (a(-), g(-), w)-block such that
k=—oco 4.0\ ep

supp(bx) C By and ”bk”Lq(-)(Q;) < w(By) /",

Thus,

[0e]

[HuatHE| < ) 1 fQ WONb A = Y I H b)),

k=—00 P k=—00

Next, we compose

Hya(bi)(x) = f [ ONlbi(A()x)dt = Z f W(Dlbi(A)x)|dt

= a1 gyl =pi

= Z Ry p, j(0)- (3.16)

j:—oo
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By supp(b) C By, and A7), = p/,
supp(hy.ap,.;) € Bisj. (3.17)
By the Minkowski inequality,

Wy a0l L00@p) S f W OIlbe (A Loy dt.

A=t DIl =p?

For > 0, we obtain

bu(A . b )z
[y [ g g0

n n
@ Q
gD\ 7@
3 f(m ROl k(z>|) i

n
%

Thus, {[De(A®©).)| g5 S KangO[el| - This leads to

Py 000y S f WO g Ol 01 (3.18)
1A= D)ll,=p/

On the other hand, by using [|bxl|Ls @) < @( By) /",

W(Bys )
”bk”qu(Q;) NS ( a)(B;:;

oo /N .
) (B ) = pIE (B )
From these, we have

g oy Moy s ( f WO Fr g OIAT OIEdt)o( By )"

1A=L Oll,=p’
:= hjw(Bys )" (3.19)
h ,
i WA if by # 0,
Let us put fiy 4 p,,; = h;
0, otherwise.

Combining this with (3.16),
77¢,A(bk) = Z Ry .-

j==eo

Note that, by (3.17) and (3.19), ilw,A,bk,j is a central (a(+), g(+), w)-block. Hence, by Theorem 5,

H b 1/
4
I w,A( k)”K;(;o(J(QZ) < ( E |hj| ) )

j:—oo
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By using £ € (0, 1), o > (1 — £)/{, and the Holder inequality,
(D) s > 1y +ho
Jj== JEZ\(0)

s > f WOIK g DIA™ DOIE =" log A~ 1), |7 di+

JEENON a1y, =pi

' f WO K png OIA DI dt

”A_I(t)”pzl

< L.
According to the above estimation, for any k € Z,
||7‘{¢/,A(bk)||1€;’<f;>,’f;(@;) < Ly

This gives

IHyaW ey < | Z AH GO o

q0)w
1/¢
< (3 LA s )

j— q()w

< Lo-”f”](:;(())i((@;)

Combining this with the dominated convergence theorem of Lebesgue,

||7"[¢1A| a(())i(Qn) Ka()f(Qn L(l—é’)/€~

q().w

Theorem 18. Let g(-) € Pa(Qy) and u € LW,,(@Q))- If

M= fllﬂ(l)IWA,n,q(t)max{l, AT (D)I[3}dt < oo,
Q
then, Hy, 4 is bounded on LBu,q(.)(Q;). Moreover,

[ Hya| <M.

LBlL,q(<) (Q; ) _)LBu,q(-) (Q;’;)

Proof. Let f € LBu,q(.)(QZ). From the definition of the local block space with variable exponent,

f= i AkCrs
=0
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with 3 || < [1flls, ). and for k € N, ¢ is a local (u, L*)-block such that
k=0

1
supp(cy) C By and ||ck||Lq<»>(erg) < s

Based on the above arguments, one has

[Hy (OIS Y WD Hinr, ()

k=0 =0

Here

Hy p.0,j(X) = f W (Dllex(AD)x)ldt,

(3.20)

with Vo = (1€ Q) : A7 0|, < 1}, and V; = {r € Q : [A™'(1)ll, = p’} for any j € Z*. It is clear to see

that
supp(Hy.a.c..j) C Biej-
By estimating as in (3.18) and using |lcxl| a0 gy < ﬁ,

u(p+i ) ) 1
u(pt) —u(pkiy’

Hy a0, llLso@y) < flt/'(t)IWAnq(t)

VI
By applying u € LW,,(Q}) and Lemma 7 (i), for any j € N,

u(pk+j) < H/\/Bk+j||L"(')(QZ) < |Bk+j| _
u(pt) = |I/YBk||Lq(->(Q;) T B

Jjn

Thus, for any j € N,

1
Vs < f O Omax( 1A~ O )
1
Hy i
o WL i d; # 0,
By setting Hy 4 ,.; = d;
0, otherwise.

Then,
Z Hy g i() = Z diHyac. ()
j=0 J=0

Hence, by (3.21) and (3.22), I:L,,,A,Ck, jis alocal (u, L90)-block. Consequently, we deduce

Il Z Hy a0 jllLB, g @) S Z Id;| = M, for allk € N.

J=0 J=0

(3.21)

(3.22)
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In view of the above inequality, by using (3.20), we obtain

IHy s Pl < | D10 D Honas)|,,
=0 u,q(~)(Qp)

J=0

< S Hyner)|
=0 =0 k ) FBuqo(@)
< MISIILB, 0 @p)-

This completes the proof of this theorem. O

For simplicity of notation in the following two results, we write

PQ)) = {ueP@):ut") = u(-), fora.e.r € supp(p)}.

Consequently, by Theorems 17 and 18, we establish the boundedness of Hardy—Littlewood average
operators on the spaces K;’((,')),ﬁ(Q;) and the spaces LBM(.)(Q;).

Corollary 19. Let g(-) € P.(Q"), a(-) € L™(Q)NCEQ)HNCEQL), B € (—n, ), a(0) = aw, € (0, 00),
and w(x) = |x|’f,. Ifte0,1),0> -0/t and

N, = f (1. le,"4~ %" max {|Tog, [f],|7, 1}dt < oo,

Zp

then, H" is bounded on K;’((,'))f;(Q;). Moreover,

pny ., .
||7_(¢ “KZ;((A)),ﬁ(Q")—’K;())’[(QZ) < N(l_g)/g.

P D)W

Here, Na-oye = [ le@llel," ¢~ max {|log, |#l,|"=0/", 1} dt.
Z*

P

Corollary 20. Ler q() € P.(Q)) and u € LW,,(Q}). If

M, = f|¢(t)|.|t|;”/q‘”dt < 00,
z,

then, H;" is bounded on LB, 4,(Q}). Moreover,

P
”7—{80 ||LBu,q(-)(QZ)—’LBu,q(.)(Q’;) < Ml.

Let G be a nonnegative function on R2. Assume that G is a homogeneous function of degree —1.
Then, the p-adic Hardy-Hilbert type integral operator is defined by

TP)(x) = f Gl ) F )y, x € Q.
Qp
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By setting y = tx, the p-adic Hardy-Hilbert operator is rewritten as follows:

TP()(x) = f G, ) Fx)dr.
Qy

Consequently, the p-adic Hardy-Hilbert operator 77 is a special case of the operator H 5, 4 by choosing
n=1,A@) =t,and y(r) = G(1,],). Besides, we define

H(Q,) = {u e P(Q,) : u(t™") = u(), for a.e.t € supp(G(L.|- )}

In view of Theorems 17 and 18, we obtain the boundedness of the Hardy-Hilbert operator 77 on

the space K%;{ﬁ((@p), and the space LB, ,,(Q)).

Corollary 21. Let q(-) € H(Q,), a(-) € L“(Qp)ﬂng(Qp)ﬂC}fg(Qp), B e (—1,00), a(0) = s € (0, ),
and w(x) = |x|'18,. Ifte0,1),0> -0/t and

Nog = f G(1,Itl,).Jel, /4% max {|log, Ifl,|”, 1} dt < oo,
b7

then, 77 is bounded on I'(Z((_'))ﬁ(Qp). Moreover,

Tl s@mrisian S No-oree:

Here, Nii-ocq = f G, Itl,).Jel, ==+ D max {|Tog, It], "=/, 1} d.
Q
Corollary 22. Let q(-) € H(Q,) and u € LW,,(Q,). If

Mig = fg(l, l1l,). 18,174~ dr < oo,
@

then, 77 is bounded on LB, ,,(Q,). Moreover,

|77 ||LBu,q(A)(Qp)—>LBu,q<A)(Qp) S Mg.

4. Conclusions

This paper aims to investigate some inequalities for the boundedness of the Hardy-Littlewood
maximal operators, the maximal commutator operators, the Hausdorft operators, the Hardy-Littlewood
average operators, the Hardy—Hilbert operators on p-adic Herz spaces, and p-adic local block spaces
with variable exponents. Theorems 9, 10, and 16—18 are the main and important results.

As a natural development, we discuss some future works as follows:

1) The study of sharp bounds for the boundedness of the above operators on p-adic Herz spaces and
p-adic local block spaces with variable exponents is an open problem.

2) By establishing extrapolation theorems, we hope to obtain some new results for the boundedness of
the above p-adic operators.

3) From Theorems 9, 10, 17, and 18 in this paper, we will research the regularity of the solution of
some p-adic equations.
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