In this paper, we obtain some boundedness of the n-dimensional fractional Hardy operators with rough kernels and their commutators on central Morrey spaces with variable exponents.
Citation: Chenchen Niu, Hongbin Wang. N-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents[J]. AIMS Mathematics, 2023, 8(5): 10379-10394. doi: 10.3934/math.2023525
[1] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[2] | Muhammad Asim, Ghada AlNemer . Results for fractional bilinear Hardy operators in central varying exponent Morrey space. AIMS Mathematics, 2024, 9(11): 29689-29706. doi: 10.3934/math.20241438 |
[3] | Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022 |
[4] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[5] | Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139 |
[6] | Heng Yang, Jiang Zhou . Compactness of commutators of fractional integral operators on ball Banach function spaces. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152 |
[7] | Mingquan Wei, Xiaoyu Liu . Sharp weak bounds for discrete Hardy operator on discrete central Morrey spaces. AIMS Mathematics, 2023, 8(2): 5007-5015. doi: 10.3934/math.2023250 |
[8] | Tianyang He, Zhiwen Liu, Ting Yu . The Weighted $ \boldsymbol{L}^{\boldsymbol{p}} $ estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041 |
[9] | Yanlong Shi, Xiangxing Tao . Rough fractional integral and its multilinear commutators on $ p $-adic generalized Morrey spaces. AIMS Mathematics, 2023, 8(7): 17012-17026. doi: 10.3934/math.2023868 |
[10] | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352 |
In this paper, we obtain some boundedness of the n-dimensional fractional Hardy operators with rough kernels and their commutators on central Morrey spaces with variable exponents.
The development of Morrey-type spaces has gradually become the mainstream of modern harmonic analysis [1,9], since the work of Torchinsky [21]. Some scholars established the λ-central BMO estimates of commutators of some operators on central Morrey spaces in [3,6,20], including some classical operators such as singular integral operators, fractional integral operators and Hardy operators. With the development of science and technology and the deepening of research content, people gradually find that the function spaces with variable exponents are also very important in harmonic analysis. As early as 1931, Orlicz [17] began to express and study the theory of variable Lebesgue space. Mizuta et al. [15] solved the boundedness of Hardy-Littlewood maximal operators on non-homogeneous central Morrey spaces with variable exponents. In [22], Wang et al. introduced the central BMO spaces with variable exponents and estimated the boundedness of commutators of Hardy operators and their adjoint operators on variable Lebesgue spaces. In particular, Fu et al. [7] gave the definitions of central Morrey spaces and λ-central BMO spaces with variable exponent. Moreover, the estimates of some integral operators and their commutators are given in [23,24].
In recent years, more and more people studied and developed the theory of Hardy operators. In [6], Fu gave the λ-central BMO estimates for commutators of n-dimensional Hardy operators on central Morrey spaces. And the boundedness of other Hardy-type operators and their commutators has also been discussed on different function spaces [2,8,10,11,13,18,19]. Inspired by the above references, in this paper, we aim to study the boundedness of n-dimensional fractional Hardy operators with rough kernels and their commutators on central Morrey spaces with variable exponents.
Let f be a locally integrable function in Rn and 0<β<n. Suppose that Sn−1 denote the unit sphere in Rn(n≥2) equipped with the normalized Lebesgue measure dσ=dσ(x′). The n-dimensional fractional Hardy operator with rough kernels and its adjoint operator can be defined by
HΩ,βf(x)=1|x|n−β∫|t|≤|x|Ω(x−t)f(t)dt, x ∈ Rn∖{0},H∗Ω,βf(x)=∫|t|>|x|1|t|n−βΩ(x−t)f(t)dt, x ∈ Rn∖{0}, | (1.1) |
where Ω∈Ls(Sn−1), 1≤s<∞, is homogenous of degree zero.
The commutators of HΩ,β and H∗Ω,β are defined by
HbΩ,βf=bHΩ,βf−HΩ,β(bf),Hb,∗Ω,βf=bH∗Ω,βf−H∗Ω,β(bf), | (1.2) |
with locally functions b on Rn.
Next, let us explain the outline of this article. In Section 2, we first briefly review some standard notations and lemmas in variable Lebesgue spaces and give the definitions of λ-central BMO spaces and central Morrey spaces with variable exponents. In Section 3, we will establish the boundedness for n-dimensional fractional Hardy operator with rough kernels and its adjoint operator on central Morrey spaces with variable exponents. In Section 4, we will demonstrate the boundedness for the commutators of n-dimensional fractional Hardy operator with rough kernels and its adjoint operator on central Morrey spaces with variable exponents.
In this section, we are going to introduce some basic properties of variable Lebesgue spaces and definitions related to the variable exponent function spaces. Throughout this article, we denote by |B| and χB the Lebesgue measure and characteristic function of a measurable set B⊂Rn, respectively, where
B={x∈Rn:|x|≤R}. |
Given an open set E⊂Rn, and a measurable function p(⋅): E⟶[1,∞), Lp(⋅)(E) denotes the set of measurable functions f on E such that for some λ>0,
∫E(|f(x)|λ)p(x)dx<∞. |
This set becomes a Banach function space when equipped with the Luxemburg-Nakano norm
‖f‖Lp(⋅)(E)=inf{λ>0:∫E(|f(x)|λ)p(x)dx≤1}. |
These spaces are referred to as variable Lp spaces, since they generalized the standard Lp spaces.
The space Lp(⋅)loc(E) is defined by
Lp(⋅)loc(E):={f:f∈Lp(⋅)(F)forallcompactsubsetsF⊂E}. |
Define P(E) to be the set of p(⋅): E⟶[1,∞) such that
p−=essinf{p(x):x∈E}>1,p+=esssup{p(x):x∈E}<∞, |
and p′(⋅) denotes the conjugate exponent of p(⋅) which satisfies
1p′(⋅)+1p(⋅)=1. |
Let B(E) be the set of p(⋅)∈ P(E) such that the Hardy-Littlewood maximal operator M defining
Mf=supR>01|Br|∫Br∩E|f|dy |
is bounded on Lp(⋅)(E), where
Br={y∈Rn:|x−y|<r}. |
In variable Lp spaces there are some important lemmas as follows.
Lemma 2.1. [4] Given an open set E⊂Rn. If p(⋅)∈ P(E) and satisfies
|p(x)−p(y)|≤C−log(|x−y|),|x−y|≤1/2, | (2.1) |
and
|p(x)−p(y)|≤Clog(|x|+e),|y|≥|x|, | (2.2) |
then p(⋅)∈ B(E), that is the Hardy-Littlewood maximal operator M is bounded on Lp(⋅)(E).
Lemma 2.2. [14] (Generalized Hölder's inequality) Let p(⋅)∈P(Rn). If f∈Lp(⋅)(Rn) and g∈Lp′(⋅)(Rn), then f, g are integrable on Rn and
∫Rn|f(x)g(x)|dx≤rp‖f‖Lp(⋅)(Rn)‖g‖Lp′(⋅)(Rn), |
where
rp=1+1/p–1/p+. |
Lemma 2.3. [12] Let p(⋅)∈B(Rn). Then there exists a constant 0<δ<1 and a positive constant C such that for all balls B in Rn and all measurable subsets S⊂B,
‖χB‖Lp(⋅)(Rn)‖χS‖Lp(⋅)(Rn)≤C|B||S|, | (2.3) |
and
‖χS‖Lp(⋅)(Rn)‖χB‖Lp(⋅)(Rn)≤C(|S||B|)δ. | (2.4) |
Lemma 2.4. [12] Suppose p(⋅)∈B(Rn). Then there exists a constant C>0 such that for all balls B in Rn,
1|B|‖χB‖Lp(⋅)(Rn)‖χB‖Lp′(⋅)(Rn)≤C. | (2.5) |
Lemma 2.5. [5] Let p(⋅)∈P(Rn) satisfy conditions (2.1) and (2.2) in Lemma 2.1. Then
‖χQ‖Lp(⋅)(Rn)≈{|Q|1p(x) if |Q|≤2n and x ∈ Q,|Q|1p(∞) if |Q| ≥ 1, |
for every cube (or ball) Q ∈ Rn, where
p(∞)=limx→∞p(x). |
Lemma 2.6. [5] Let p(⋅), q(⋅), s(⋅)∈P(Rn) be such that
1s(x)=1p(x)+1q(x), |
for almost every x∈Rn. Then
‖fg‖Ls(⋅)(Rn)≤C‖f‖Lp(⋅)(Rn)‖g‖Lq(⋅)(Rn), |
for f∈Lp(⋅)(Rn) and g∈Lq(⋅)(Rn).
Lemma 2.7. [16] If f∈Ls(Rn) and g∈Lq(⋅)(Rn), and
1s+1q(⋅)=1p(⋅), |
then we have
‖fg‖Lp(⋅)(Rn)≤C‖f‖Ls(Rn)‖g‖Lq(⋅)(Rn), |
where C is a positive constant independent of f and g.
Now we recall that the λ-central BMO space with variable exponent and the central Morrey space with variable exponent in [7] are defined as follows.
Definition 2.1. [7] Let p(⋅)∈P(Rn) and λ<1/n. The λ-central BMO space with variable exponent CBMOp(⋅),λ(Rn) is defined by
CBMOp(⋅),λ(Rn)={f∈Lp(⋅)loc(Rn):‖f‖CBMOp(⋅),λ(Rn)<∞}, |
where
‖f‖CBMOp(⋅),λ(Rn)=supR>0‖(f−fB(0,R))χB(0,R)‖Lp(⋅)(Rn)|B(0,R)|λ‖χB(0,R)‖Lp(⋅)(Rn). |
Definition 2.2. [7] Let p(⋅)∈P(Rn) and λ∈R. The central Morrey space with variable exponent ˙Bp(⋅),λ(Rn) is defined by
˙Bp(⋅),λ(Rn)={f∈Lp(⋅)loc(Rn):‖f‖˙Bp(⋅),λ(Rn)<∞}, |
where
‖f‖˙Bp(⋅),λ(Rn)=supR>0‖fχB(0,R)‖Lp(⋅)(Rn)|B(0,R)|λ‖χB(0,R)‖Lp(⋅)(Rn). |
Remark 2.1. Denote by CMOp(⋅),λ(Rn) and Bp(⋅),λ(Rn) the inhomogeneous versions of the λ-central BMO spaces and central Morrey spaces with variable exponents, which are defined, respectively, by taking the supremum over R≥1 in Definitions 2.1 and 2.2 instead of R>0 there.
Remark 2.2. Our results in this paper remain true for the inhomogeneous versions of λ-central BMO spaces and central Morrey spaces with variable exponents.
We begin this section by illustrating and proving Theorem 3.1, which present the boundedness of n-dimensional fractional Hardy operator with rough kernels and its adjoint operator on central Morrey spaces with variable exponents. Here and subsequently, for simplicity, we write 2kB with the same center as B and 2k times of its radius,
Ck=2kB∖2k−1B, |
for k∈Z.
Theorem 3.1. Let p(⋅)∈P(Rn) satisfy conditions (2.1) and (2.2) in Lemma 2.1. Suppose that Ω∈Ls(Sn−1) with s>p′(⋅).
(1) If λ2=λ1+βn and λ2+δ>0, then
‖HΩ,βf‖˙Bp(⋅),λ2(Rn)≤C‖f‖˙Bp(⋅),λ1(Rn). |
(2) If λ2=λ1+βn<0 and λ2+δ>0, then
‖H∗Ω,βf‖˙Bp(⋅),λ2(Rn)≤C‖f‖˙Bp(⋅),λ1(Rn). |
To start the proof of Theorem 3.1, we need the following lemma.
Lemma 3.1. [8] For x∈2kB,t∈2iB, we have
0≤|x−t|≤|x|+|2iB|1n≤2⋅|2kB|1n, |
and
∫Bi|Ω(x−t)|sdt≤∫2⋅|2kB|1n0∫Sn−1|Ω(x′)|sdσ(x′)rn−1dr≤C|2kB|. |
Proof of Theorem 3.1. Through the definition of HΩ,β and generalized Hölder's inequality to Lp(⋅) and Lp′(⋅) we have
|HΩ,βf(x)χB(x)|≤1|x|n−β|∫|t|≤|x|Ω(x−t)f(t)dt|⋅χB(x)≤C0∑k=−∞1|x|n−β|∫|t|≤|x|Ω(x−t)f(t)dt|⋅χCk(x)≤C0∑k=−∞|2kB|β−nn|∫2kBΩ(x−t)f(t)dt|⋅χCk(x)≤C0∑k=−∞|2kB|β−nn‖Ω(x−⋅)χ2kB(⋅)‖Lp′(⋅)(Rn)‖fχ2kB‖Lp(⋅)(Rn)⋅χCk(x). | (3.1) |
In view of the condition s>p′(⋅) and Ω∈Ls(Sn−1), set
1p′(⋅)=1s+1q(⋅), |
then by Lemmas 2.5, 2.7 and 3.1 we have
‖Ω(x−⋅)χ2kB(⋅)‖Lp′(⋅)(Rn)≤C‖Ω(x−⋅)χ2kB(⋅)‖Ls(Rn)‖χ2kB‖Lq(⋅)(Rn)≤C|2kB|1s‖χ2kB‖Lq(⋅)(Rn)≈C|2kB|1s|2kB|1q(⋅)=C|2kB|1p′(⋅)≈C‖χ2kB‖Lp′(⋅)(Rn). | (3.2) |
Taking the Lp(⋅)(Rn) norm on (3.1) both sides and using Minkowski inequality, then by Lemma 2.4, we write
‖HΩ,βfχB‖Lp(⋅)(Rn)≤C0∑k=−∞|2kB|β−nn‖χCk‖Lp(⋅)(Rn)‖Ω(x−⋅)χ2kB(⋅)‖Lp′(⋅)(Rn)‖fχ2kB‖Lp(⋅)(Rn)≤C0∑k=−∞|2kB|β−nn‖χCk‖Lp(⋅)(Rn)‖fχ2kB‖Lp(⋅)(Rn)‖χ2kB‖Lp′(⋅)(Rn)≤C0∑k=−∞|2kB|βn+λ1‖χCk‖Lp(⋅)(Rn)‖f‖˙Bp(⋅),λ1(Rn)1|2kB|‖χ2kB‖Lp′(⋅)(Rn)‖χ2kB‖Lp(⋅)(Rn)≤C‖f‖˙Bp(⋅),λ1(Rn)0∑k=−∞‖χ2kB‖Lp(⋅)(Rn)|2kB|λ2. |
Finally, by inequality (2.4), we can obtain
‖HΩ,βfχB‖Lp(⋅)(Rn)≤C‖f‖˙Bp(⋅),λ1(Rn)0∑k=−∞|2kB|λ2|B|λ2‖χ2kB‖Lp(⋅)(Rn)‖χB‖Lp(⋅)(Rn)|B|λ2‖χB‖Lp(⋅)(Rn)≤C‖f‖˙Bp(⋅),λ1(Rn)0∑k=−∞2nk(λ2+δ)|B|λ2‖χB‖Lp(⋅)(Rn)≤C‖f‖˙Bp(⋅),λ1(Rn)|B|λ2‖χB‖Lp(⋅)(Rn), |
where the fact λ2+δ>0 has been used in the last inequality.
Thus we have
‖HΩ,βf‖˙Bp(⋅),λ2(Rn)≤C‖f‖˙Bp(⋅),λ1(Rn). |
Next we prove the boundedness of adjoint n-dimensional fractional Hardy operator H∗Ω,β.
It can also be seen from the definition of H∗Ω,β and generalized Hölder's inequality to Lp(⋅) and Lp′(⋅), we have
|H∗Ω,βf(x)χB(x)|≤|∫|t|>|x|1|t|n−βΩ(x−t)f(t)dt|⋅χB(x)≤0∑k=−∞|∫|t|>|x|1|t|n−βΩ(x−t)f(t)dt|⋅χCk(x)≤0∑k=−∞∞∑j=k|∫Cj1|t|n−βΩ(x−t)f(t)dt|⋅χCk(x)≤0∑k=−∞∞∑j=k|2jB|β−nn|∫2jBΩ(x−t)f(t)dt|⋅χCk(x)≤C0∑k=−∞∞∑j=k|2jB|β−nn‖Ω(x−⋅)χ2jB(⋅)‖Lp′(⋅)(Rn)‖fχ2jB‖Lp(⋅)(Rn)⋅χCk(x). | (3.3) |
Using (3.2) and taking the Lp(⋅)(Rn) norm on (3.3) both sides, we can see that
‖H∗Ω,βfχB‖Lp(⋅)(Rn)≤C0∑k=−∞∞∑j=k|2jB|βn‖fχ2jB‖Lp(⋅)(Rn)1|2jB|‖χ2jB‖Lp′(⋅)(Rn)‖χCk‖Lp(⋅)(Rn)≤C0∑k=−∞∞∑j=k|2jB|βn‖f‖˙Bp(⋅),λ1(Rn)|2jB|λ11|2jB|‖χ2jB‖Lp(⋅)(Rn)‖χ2jB‖Lp′(⋅)(Rn)‖χCk‖Lp(⋅)(Rn)≤C‖f‖˙Bp(⋅),λ1(Rn)0∑k=−∞∞∑j=k|2jB|λ1+βn‖χCk‖Lp(⋅)(Rn)≤C‖f‖˙Bp(⋅),λ1(Rn)0∑k=−∞∞∑j=k|2jB|λ2‖χ2kB‖Lp(⋅)(Rn). |
Finally, through inequality (2.4), λ2<0 and λ2+δ>0, we can obtain
‖H∗Ω,βfχB‖Lp(⋅)(Rn)≤C‖f‖˙Bp(⋅),λ1(Rn)0∑k=−∞∞∑j=k|2jB|λ2|2kB|λ2|2kB|λ2|B|λ2‖χ2kB‖Lp(⋅)(Rn)‖χB‖Lp(⋅)(Rn)|B|λ2‖χB‖Lp(⋅)(Rn)=C‖f‖˙Bp(⋅),λ1(Rn)0∑k=−∞∞∑j=k2n(j−k)λ22kn(λ2+δ)|B|λ2‖χB‖Lp(⋅)(Rn)≤C‖f‖˙Bp(⋅),λ1(Rn)|B|λ2‖χB‖Lp(⋅)(Rn). |
Thus we have
‖H∗Ω,βf‖˙Bp(⋅),λ2(Rn)≤C‖f‖˙Bp(⋅),λ1(Rn). |
The proof of Theorem 3.1 is completed.
In Section 3 we have proved the boundedness of n-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents. In this section, we mainly prove the boundedness of their commutators on central Morrey spaces with variable exponents.
Theorem 4.1. Let p(⋅), p1(⋅), p2(⋅)∈P(Rn) satisfy conditions (2.1) and (2.2) in Lemma 2.1 with
1p(⋅)=1p1(⋅)+1p2(⋅). |
Suppose that Ω∈Ls(Sn−1), s>p′(⋅). If
b∈CBMOp2(⋅),λ2(Rn), λ=λ1+λ2+βn, |
and λ+δ>0, then
‖HbΩ,βf‖˙Bp(⋅),λ(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn). |
Proof. We decompose the integral as
|HbΩ,βf(x)χB(x)|≤|1|x|n−β∫|t|≤|x|Ω(x−t)(b(x)−b(t))f(t)dt|⋅χB(x)≤0∑k=−∞|1|x|n−β∫|t|≤|x|Ω(x−t)(b(x)−b(t))f(t)dt|⋅χCk(x)≤0∑k=−∞|1|x|n−β∫|t|≤|x|Ω(x−t)(b(x)−b2kB)f(t)dt⋅χCk(x)|+0∑k=−∞|1|x|n−β∫|t|≤|x|Ω(x−t)(b(t)−b2kB)f(t)dt⋅χCk(x)|=:D+E, | (4.1) |
where
D=0∑k=−∞|1|x|n−β∫|t|≤|x|Ω(x−t)(b(x)−b2kB)f(t)dt⋅χCk(x)|, |
and
E=0∑k=−∞|1|x|n−β∫|t|≤|x|Ω(x−t)(b(t)−b2kB)f(t)dt⋅χCk(x)|. |
Estimate D, firstly. By using generalized Hölder's inequality to Lp1(⋅) and Lp′1(⋅) we have
D≤0∑k=−∞1|x|n−β|∫|t|≤|x|Ω(x−t)f(t)dt⋅(b(x)−b2kB)χCk(x)|≤0∑k=−∞|2kB|β−nn|(b(x)−b2kB)χCk(x)|⋅|∫2kBΩ(x−t)f(t)dt|≤C0∑k=−∞|2kB|β−nn|(b(x)−b2kB)χCk(x)|⋅‖Ω(x−⋅)χ2kB(⋅)‖Lp′1(⋅)(Rn)‖fχ2kB‖Lp1(⋅)(Rn). |
In view of the condition s>p′(⋅)>p′1(⋅), we can take
1p′1(⋅)=1s+1q1(⋅). |
We note that Ω∈Ls(Sn−1), and using Lemma 2.4 and (3.2) to the term D, we can produce
D≤C0∑k=−∞|2kB|β−nn|(b(x)−b2kB)χCk(x)|⋅‖χ2kB‖Lp′1(⋅)(Rn)‖fχ2kB‖Lp1(⋅)(Rn)≤C0∑k=−∞|2kB|β−nn|(b(x)−b2kB)χCk(x)|⋅‖χ2kB‖Lp′1(⋅)(Rn)‖f‖˙Bp1(⋅),λ1(Rn)×‖χ2kB‖Lp1(⋅)(Rn)|2kB|λ1≤C0∑k=−∞|2kB|λ1+βn|(b(x)−b2kB)χCk(x)|⋅‖f‖˙Bp1(⋅),λ1(Rn). | (4.2) |
Taking the Lp(⋅)(Rn) norm on (4.2) both sides. Noting λ+δ>0 and
1p(⋅)=1p2(⋅)+1p1(⋅), |
by using Lemma 2.6 and inequality (2.4) we can obtain
‖D‖Lp(⋅)(Rn)≤C0∑k=−∞‖(b−b2kB)χ2kB‖Lp2(⋅)(Rn)‖f‖˙Bp1(⋅),λ1(Rn)|2kB|λ1+βn‖χ2kB‖Lp1(⋅)(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn)0∑k=−∞|2kB|λ2+λ1+βn‖χ2kB‖Lp2(⋅)(Rn)‖χ2kB‖Lp1(⋅)(Rn)=C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn)0∑k=−∞|2kB|λ|B|λ‖χ2kB‖Lp1(⋅)(Rn)‖χ2kB‖Lp2(⋅)(Rn)‖χB‖Lp(⋅)(Rn)|B|λ‖χB‖Lp(⋅)(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn)0∑k=−∞2nk(λ+δ)|B|λ‖χB‖Lp(⋅)(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn)|B|λ‖χB‖Lp(⋅)(Rn). |
Next, we simply estimate E, because its proof method is similar to D. In view of the condition s>p′(⋅), by
1p(⋅)=1p1(⋅)+1p2(⋅), |
we can get
1p′1(⋅)=1p′(⋅)+1p2(⋅)>1s+1p2(⋅). |
So we can take
1p′1(⋅)=1s+1p2(⋅)+1q2(⋅). |
Using generalized Hölder's inequality, Lemmas 2.4, 2.6 and 2.7 we have
E=0∑k=−∞|1|x|n−β∫|t|≤|x|Ω(x−t)(b(t)−b2kB)f(t)dt⋅χCk(x)|≤0∑k=−∞|2kB|β−nn|∫|t|≤|x|Ω(x−t)(b(t)−b2kB)f(t)dt⋅χCk(x)|≤C0∑k=−∞|2kB|β−nn‖Ω(x−⋅)(b(⋅)−b2kB)χCk‖Lp′1(⋅)(Rn)‖fχCk‖Lp1(⋅)(Rn)⋅χCk(x)≤C0∑k=−∞|2kB|β−nn‖Ω(x−⋅)χ2kB‖Ls(Rn)‖(b(⋅)−b2kB)χ2kB‖Lp2(⋅)(Rn)‖χ2kB‖Lq2(⋅)(Rn)×‖fχ2kB‖Lp1(⋅)(Rn)⋅χCk(x)≤C0∑k=−∞|2kB|β−nn|2kB|1s‖(b(⋅)−b2kB)χ2kB‖Lp2(⋅)(Rn)‖χ2kB‖Lq2(⋅)(Rn)‖fχ2kB‖Lp1(⋅)(Rn)⋅χCk(x)≤C0∑k=−∞|2kB|β−nn‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn)|2kB|λ1+λ2|2kB|1s×‖χ2kB‖Lp1(⋅)(Rn)‖χ2kB‖Lp2(⋅)(Rn)‖χ2kB‖Lq2(⋅)(Rn)⋅χCk(x)≤C0∑k=−∞|2kB|β−nn‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn)|2kB|λ1+λ2‖χ2kB‖Lp′1(⋅)(Rn)‖χ2kB‖Lp1(⋅)(Rn)⋅χCk(x)≤C‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)0∑k=−∞|2kB|βn+λ1+λ2⋅χCk(x). |
Taking the Lp(⋅)(Rn) norm on E both sides and using inequality (2.4),
λ=λ1+λ2+βn, |
and λ+δ>0, we can obtain
‖E‖Lp(⋅)(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn)0∑k=−∞|2kB|λ1+λ2+βn‖χCk‖Lp(⋅)(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn)0∑k=−∞|2kB|λ|B|λ‖χ2kB‖Lp(⋅)(Rn)‖χB‖Lp(⋅)(Rn)|B|λ‖χB‖Lp(⋅)(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn)0∑k=−∞2nk(λ+δ)|B|λ‖χB‖Lp(⋅)(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn)|B|λ‖χB‖Lp(⋅)(Rn). |
In summary, taking the Lp(⋅)(Rn) norm on (4.1) both sides and using Minkowski's inequality, we thus have established the following inequality if we combine the above estimates for D and E,
‖HbΩ,βfχB‖Lp(⋅)(Rn)≤‖D‖Lp(⋅)(Rn)+‖E‖Lp(⋅)(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn)|B|λ‖χB‖Lp(⋅)(Rn). |
Thus we have
‖HbΩ,βf‖˙Bp(⋅),λ(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn). |
The proof of Theorem 4.1 is completed.
Theorem 4.2. Let p(⋅), p1(⋅), p2(⋅)∈P(Rn) satisfy conditions (2.1) and (2.2) in Lemma 2.1 with
1p(⋅)=1p1(⋅)+1p2(⋅). |
Suppose that Ω∈Ls(Sn−1), s>p′(⋅). If
b∈CBMOp2(⋅),λ2(Rn), λ=λ1+λ2+βn<0, λ+δ>0, and 0≤λ2<1/n, |
then
‖Hb,∗Ω,βf‖˙Bp(⋅),λ(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn). |
Proof. We decompose the integral as follows
|Hb,∗Ω,βf(x)χB(x)|=|∫|t|>|x|1|t|n−βΩ(x−t)(b(x)−b(t))f(t)dt⋅χB(x)|≤0∑k=−∞|∫|t|>|x|1|t|n−βΩ(x−t)(b(x)−b(t))f(t)dt⋅χCk(x)|≤0∑k=−∞∞∑j=k|∫Cj1|t|n−βΩ(x−t)(b(x)−b(t))f(t)dt⋅χCk(x)|≤0∑k=−∞∞∑j=k|∫Cj1|t|n−βΩ(x−t)(b(x)−b2kB)f(t)dt⋅χCk(x)|+0∑k=−∞∞∑j=k|∫Cj1|t|n−βΩ(x−t)(b(t)−b2kB)f(t)dt⋅χCk(x)|=:F+G, | (4.3) |
where
F=0∑k=−∞∞∑j=k|∫Cj1|t|n−βΩ(x−t)(b(x)−b2kB)f(t)dt⋅χCk(x)|, |
and
G=0∑k=−∞∞∑j=k|∫Cj1|t|n−βΩ(x−t)(b(t)−b2kB)f(t)dt⋅χCk(x)|. |
For F, we follow a procedure similar to the estimate of Theorem 3.1.
F≤0∑k=−∞∞∑j=k|2jB|β−nn|∫CjΩ(x−t)f(t)dt|⋅|(b(x)−b2kB)χCk(x)|≤C0∑k=−∞∞∑j=k|2jB|β−nn‖Ω(x−⋅)χ2jB(⋅)‖Lp′1(⋅)(Rn)‖fχ2jB‖Lp1(⋅)(Rn)⋅|(b(x)−b2kB)χCk(x)|≤C0∑k=−∞∞∑j=k|2jB|β−nn‖χ2jB‖Lp′1(⋅)(Rn)‖fχ2jB‖Lp1(⋅)(Rn)⋅|(b(x)−b2kB)χCk(x)|≤C0∑k=−∞∞∑j=k|2jB|βn+λ1‖f‖˙Bp1(⋅),λ1(Rn)1|2jB|‖χ2jB‖Lp1(⋅)(Rn)‖χ2jB‖Lp′1(⋅)(Rn)|(b(x)−b2kB)χCk(x)|≤C0∑k=−∞∞∑j=k|2jB|βn+λ1‖f‖˙Bp1(⋅),λ1(Rn)|(b(x)−b2kB)χCk(x)|. | (4.4) |
Taking the Lp(⋅)(Rn) norm on (4.4) both sides. Noting
1p(⋅)=1p1(⋅)+1p2(⋅), |
λ=λ1+λ2+βn<0, |
and
λ+δ>0, |
by using Lemma 2.6 and inequality (2.4), we can obtain
‖F‖Lp(⋅)(Rn)≤C0∑k=−∞∞∑j=k|2jB|βn+λ1‖f‖˙Bp1(⋅),λ1(Rn)‖(b−b2kB)χCk‖Lp(⋅)(Rn)≤C0∑k=−∞∞∑j=k|2jB|βn+λ1‖f‖˙Bp1(⋅),λ1(Rn)‖(b−b2kB)χ2kB‖Lp2(⋅)(Rn)‖χ2kB‖Lp1(⋅)(Rn)≤C0∑k=−∞∞∑j=k|2jB|βn+λ1+λ2‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)×‖χ2kB‖Lp2(⋅)(Rn)‖χ2kB‖Lp1(⋅)(Rn)=C0∑k=−∞∞∑j=k|2jB|λ|2kB|λ|2kB|λ|B|λ‖χ2kB‖Lp2(⋅)(Rn)‖χ2kB‖Lp1(⋅)(Rn)‖χB‖Lp(⋅)(Rn)×‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)|B|λ‖χB‖Lp(⋅)(Rn)=C0∑k=−∞∞∑j=k2n(j−k)λ2nk(λ+δ)‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)|B|λ‖χB‖Lp(⋅)(Rn)≤C‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)|B|λ‖χB‖Lp(⋅)(Rn). |
For G, we decompose the integral appearing as follows
G≤0∑k=−∞∞∑j=k|∫Cj|2jB|β−nnΩ(x−t)(b(t)−b2kB)f(t)dt⋅χCk(x)|≤0∑k=−∞∞∑j=k|∫Cj|2jB|β−nnΩ(x−t)(b(t)−b2jB)f(t)dt⋅χCk(x)|+0∑k=−∞∞∑j=k|∫Cj|2jB|β−nnΩ(x−t)(b2jB−b2kB)f(t)dt⋅χCk(x)|=:G1+G2, |
where
G1=0∑k=−∞∞∑j=k|∫Cj|2jB|β−nnΩ(x−t)(b(t)−b2jB)f(t)dt⋅χCk(x)|, |
and
G2=0∑k=−∞∞∑j=k|∫Cj|2jB|β−nnΩ(x−t)(b2jB−b2kB)f(t)dt⋅χCk(x)|. |
We estimate G1 and G2 respectively. Before estimate G2, the following boundedness for |b2jB−b2kB| can be shown
|b2jB−b2kB|≤j−1∑m=k|b2m+1B−b2mB|≤Cj−1∑m=k‖b‖CBMOp2(⋅),λ2(Rn)|2m+1B|λ21|2m+1B|‖χ2m+1B‖Lp2(⋅)(Rn)‖χ2m+1B‖Lp′2(⋅)(Rn)≤Cj−1∑m=k‖b‖CBMOp2(⋅),λ2(Rn)|2m+1B|λ2≤C(j−k)‖b‖CBMOp2(⋅),λ2(Rn)|2jB|λ2. |
By generalized Hölder's inequality to p2(⋅) and p′2(⋅) and applying Lemma 2.4, we can found
G2=0∑k=−∞∞∑j=k|∫Cj|2jB|β−nnΩ(x−t)f(t)dt|⋅|b2jB−b2kB|⋅χCk(x)≤C0∑k=−∞∞∑j=k(j−k)|2jB|β−nn|∫CjΩ(x−t)f(t)dt|⋅‖b‖CBMOp2(⋅),λ2(Rn)|2jB|λ2⋅χCk(x)≤C0∑k=−∞∞∑j=k(j−k)|2jB|βn+λ2−1‖Ω(x−⋅)χ2jB(⋅)‖Lp′1(⋅)(Rn)‖fχ2jB‖Lp1(⋅)(Rn)‖b‖CBMOp2(⋅),λ2(Rn)⋅χCk(x)≤C0∑k=−∞∞∑j=k(j−k)|2jB|βn+λ2−1‖χ2jB‖Lp′1(⋅)(Rn)‖fχ2jB‖Lp1(⋅)(Rn)‖b‖CBMOp2(⋅),λ2(Rn)⋅χCk(x)≤C‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)0∑k=−∞∞∑j=k(j−k)|2jB|βn+λ1+λ2⋅χCk(x). |
Following the steps taken to estimate F and using inequality (2.4), λ<0 and λ+δ>0, we can obtain
‖G2‖Lp(⋅)(Rn)=C‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)0∑k=−∞∞∑j=k(j−k)|2jB|βn+λ1+λ2‖χCk‖Lp(⋅)(Rn)≤C‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)0∑k=−∞∞∑j=k(j−k)|2jB|βn+λ1+λ2‖χ2kB‖Lp(⋅)(Rn)=C‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)0∑k=−∞∞∑j=k(j−k)|2jB|λ|2kB|λ|2kB|λ|B|λ‖χ2kB‖Lp(⋅)(Rn)‖χB‖Lp(⋅)(Rn)|B|λ‖χB‖Lp(⋅)(Rn)=C‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)0∑k=−∞∞∑j=k(j−k)2n(j−k)λ2nk(λ+δ)|B|λ‖χB‖Lp(⋅)(Rn)≤C‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)|B|λ‖χB‖Lp(⋅)(Rn). |
Next, similar to the proof method of E in Theorem 4.1, we have
G1≤C0∑k=−∞∞∑j=k|2jB|βn−1‖Ω(x−⋅)(b(⋅)−b2jB)χCj‖Lp′1(⋅)(Rn)‖fχCj‖Lp1(⋅)(Rn)⋅χCk(x)≤C0∑k=−∞∞∑j=k|2jB|βn+λ1+λ2‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)⋅χCk(x). |
So we can take the Lp(⋅)(Rn) norm on G1 both sides. We write
‖G1‖Lp(⋅)(Rn)≤C0∑k=−∞∞∑j=k|2jB|βn+λ1+λ2‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)‖χCk‖Lp(⋅)(Rn)≤C‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)0∑k=−∞∞∑j=k|2jB|λ|2kB|λ|2kB|λ|B|λ‖χ2kB‖Lp(⋅)(Rn)‖χB‖Lp(⋅)(Rn)|B|λ‖χB‖Lp(⋅)(Rn)=C‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)0∑k=−∞∞∑j=k2n(j−k)λ2nk(λ+δ)|B|λ‖χB‖Lp(⋅)(Rn)≤C‖f‖˙Bp1(⋅),λ1(Rn)‖b‖CBMOp2(⋅),λ2(Rn)|B|λ‖χB‖Lp(⋅)(Rn). |
Finally, taking the Lp(⋅)(Rn) norm on (4.3) both sides and using Minkowski's inequality, we have established the following inequality if we combine the above estimates for F and G,
‖Hb,∗Ω,βfχB‖Lp(⋅)(Rn)≤‖F‖Lp(⋅)(Rn)+‖G‖Lp(⋅)(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn)|B|λ‖χB‖Lp(⋅)(Rn). |
Thus we have
‖Hb,∗Ω,βf‖˙Bp(⋅),λ(Rn)≤C‖b‖CBMOp2(⋅),λ2(Rn)‖f‖˙Bp1(⋅),λ1(Rn). |
The proof of Theorem 4.2 is completed.
In this article, we first establish the boundedness for n-dimensional fractional Hardy operator with rough kernels HΩ,β and its adjoint operator H∗Ω,β on central Morrey spaces with variable exponents. Furthermore, we prove that their commutators HbΩ,β and Hb,∗Ω,β are bounded on central Morrey spaces with variable exponents.
The authors are very grateful to the referees for their valuable comments. This work was supported by Shandong Provincial Natural Science Foundation (Grant No. ZR2022MA054) and National Natural Science Foundation of China (Grant Nos. 12271267, 11926343 and 11761026).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
A. Abdalmonem, A. Scapellato, Intrinsic square functions and commutators on Morrey-Herz spaces with variable exponents, Math. Meth. Appl. Sci., 44 (2021), 12408–12425. http://doi.org/10.1002/mma.7487 doi: 10.1002/mma.7487
![]() |
[2] |
A. O. Akdemir, M. T. Ersoy, H. Furkan, M. A. Ragusa, Some functional sections in topological sequence spaces, J. Funct. Spaces, 2022 (2022), 6449630. http://doi.org/10.1155/2022/6449630 doi: 10.1155/2022/6449630
![]() |
[3] | J. Alvarez, J. Lakey, M. Guzmán-Partida, Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures, Collect. Math., 51 (2000), 1–47. |
[4] | D. Cruz-Uribe, A. Fiorenza, C. Neugebauer, The maximal function on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238. |
[5] | L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011. http://doi.org/10.1007/978-3-642-18363-8 |
[6] | Z. Fu, λ-central BMO estimates for commutators of n-dimensional Hardy operators, J. Inequal. Pure Appl. Math., 9 (2008), 111. |
[7] |
Z. Fu, S. Lu, H. Wang, L. Wang, Singular integral operators with rough kernels on central Morrey spaces with variable exponent, Ann. Acad. Sci. Fenn. Math., 44 (2019), 505–522. http://doi.org/10.5186/aasfm.2019.4431 doi: 10.5186/aasfm.2019.4431
![]() |
[8] |
Z. Fu, S. Lu, F. Zhao, Commutators of n-dimensional rough Hardy operators, Sci. China Math., 54 (2011), 95–104. http://doi.org/10.1007/s11425-010-4110-8 doi: 10.1007/s11425-010-4110-8
![]() |
[9] |
V. S. Guliyev, M. N. Omarova, M. A. Ragusa, A. Scapellato, Regularity of solutions of elliptic equations in divergence form in modified local generalized Morrey spaces, Anal. Math. Phys., 11 (2021), 13. http://doi.org/10.1007/s13324-020-00433-9 doi: 10.1007/s13324-020-00433-9
![]() |
[10] |
A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funct. Spaces, 2021 (2021), 9705250. http://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
![]() |
[11] |
A. Hussain, M. Asim, F. Jarad, Variable λ-central Morrey space estimates for the fractional Hardy operators and commutators, J. Math., 2022 (2022), 5855068. http://doi.org/10.1155/2022/5855068 doi: 10.1155/2022/5855068
![]() |
[12] |
M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. http://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
![]() |
[13] |
S. Khalid, J. Pečarić, Generalizations of some Hardy-Littlewood-Pólya type inequalities and related results, Filomat, 35 (2021), 2811–2826. http://doi.org/10.2298/FIL2108811K doi: 10.2298/FIL2108811K
![]() |
[14] |
O. Kováčik, J. Rákosník, On spaces Lp(x) and Wk,p(x), Czech. Math. J., 41 (1991), 592–618. http://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
![]() |
[15] |
Y. Mizuta, T. Ohno, T. Shimomura, Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent, Hokkaido Math. J., 44 (2015), 185–201. http://doi.org/10.14492/hokmj/1470053290 doi: 10.14492/hokmj/1470053290
![]() |
[16] |
E. Nakai, Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 262 (2012), 3665–3748. http://doi.org/10.1016/j.jfa.2012.01.004 doi: 10.1016/j.jfa.2012.01.004
![]() |
[17] | W. Orlicz, ¨Uber konjugierte exponentenfolgen, Stud. Math., 3 (1931), 200–211. |
[18] |
S. Shi, Z. Fu, S. Lu, On the compactness of commutators of Hardy operators, Pac. J. Math., 307 (2020), 239–256. http://doi.org/10.2140/pjm.2020.307.239 doi: 10.2140/pjm.2020.307.239
![]() |
[19] |
S. Shi, S. Lu, Characterization of the central Campanato space via the commutator operator of Hardy type, J. Math. Anal. Appl., 429 (2015), 713–732. http://doi.org/10.1016/j.jmaa.2015.03.083 doi: 10.1016/j.jmaa.2015.03.083
![]() |
[20] |
Z. Si, λ-central BMO estimates for multilinear commutators of fractional integrals, Acta Math. Sin. Engl. Ser., 26 (2010), 2093–2108. http://doi.org/10.1007/s10114-010-9363-1 doi: 10.1007/s10114-010-9363-1
![]() |
[21] | A. Torchinsky, Real-variable methods in harmonic analysis, Academic Press, 1986. |
[22] | D. Wang, Z. Liu, J. Zhou, Z. Teng, Central BMO spaces with variable exponent, arXiv, 2017. https://doi.org/10.48550/arXiv.1708.00285 |
[23] |
H. Wang, J. Xu, Multilinear fractional integral operators on central Morrey spaces with variable exponent, J. Inequal. Appl., 2019 (2019), 311. http://doi.org/10.1186/s13660-019-2264-7 doi: 10.1186/s13660-019-2264-7
![]() |
[24] |
H. Wang, J. Xu, J. Tan, Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents, Front. Math. China, 15 (2020), 1011–1034. http://doi.org/10.1007/s11464-020-0864-7 doi: 10.1007/s11464-020-0864-7
![]() |