Research article

N-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents

  • Received: 28 October 2022 Revised: 13 February 2023 Accepted: 15 February 2023 Published: 28 February 2023
  • MSC : 42B20, 42B35

  • In this paper, we obtain some boundedness of the n-dimensional fractional Hardy operators with rough kernels and their commutators on central Morrey spaces with variable exponents.

    Citation: Chenchen Niu, Hongbin Wang. N-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents[J]. AIMS Mathematics, 2023, 8(5): 10379-10394. doi: 10.3934/math.2023525

    Related Papers:

    [1] Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
    [2] Muhammad Asim, Ghada AlNemer . Results for fractional bilinear Hardy operators in central varying exponent Morrey space. AIMS Mathematics, 2024, 9(11): 29689-29706. doi: 10.3934/math.20241438
    [3] Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
    [4] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
    [5] Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139
    [6] Heng Yang, Jiang Zhou . Compactness of commutators of fractional integral operators on ball Banach function spaces. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152
    [7] Mingquan Wei, Xiaoyu Liu . Sharp weak bounds for discrete Hardy operator on discrete central Morrey spaces. AIMS Mathematics, 2023, 8(2): 5007-5015. doi: 10.3934/math.2023250
    [8] Tianyang He, Zhiwen Liu, Ting Yu . The Weighted $ \boldsymbol{L}^{\boldsymbol{p}} $ estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041
    [9] Yanlong Shi, Xiangxing Tao . Rough fractional integral and its multilinear commutators on $ p $-adic generalized Morrey spaces. AIMS Mathematics, 2023, 8(7): 17012-17026. doi: 10.3934/math.2023868
    [10] Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352
  • In this paper, we obtain some boundedness of the n-dimensional fractional Hardy operators with rough kernels and their commutators on central Morrey spaces with variable exponents.



    The development of Morrey-type spaces has gradually become the mainstream of modern harmonic analysis [1,9], since the work of Torchinsky [21]. Some scholars established the λ-central BMO estimates of commutators of some operators on central Morrey spaces in [3,6,20], including some classical operators such as singular integral operators, fractional integral operators and Hardy operators. With the development of science and technology and the deepening of research content, people gradually find that the function spaces with variable exponents are also very important in harmonic analysis. As early as 1931, Orlicz [17] began to express and study the theory of variable Lebesgue space. Mizuta et al. [15] solved the boundedness of Hardy-Littlewood maximal operators on non-homogeneous central Morrey spaces with variable exponents. In [22], Wang et al. introduced the central BMO spaces with variable exponents and estimated the boundedness of commutators of Hardy operators and their adjoint operators on variable Lebesgue spaces. In particular, Fu et al. [7] gave the definitions of central Morrey spaces and λ-central BMO spaces with variable exponent. Moreover, the estimates of some integral operators and their commutators are given in [23,24].

    In recent years, more and more people studied and developed the theory of Hardy operators. In [6], Fu gave the λ-central BMO estimates for commutators of n-dimensional Hardy operators on central Morrey spaces. And the boundedness of other Hardy-type operators and their commutators has also been discussed on different function spaces [2,8,10,11,13,18,19]. Inspired by the above references, in this paper, we aim to study the boundedness of n-dimensional fractional Hardy operators with rough kernels and their commutators on central Morrey spaces with variable exponents.

    Let f be a locally integrable function in Rn and 0<β<n. Suppose that Sn1 denote the unit sphere in Rn(n2) equipped with the normalized Lebesgue measure dσ=dσ(x). The n-dimensional fractional Hardy operator with rough kernels and its adjoint operator can be defined by

    HΩ,βf(x)=1|x|nβ|t||x|Ω(xt)f(t)dt,  x  Rn{0},HΩ,βf(x)=|t|>|x|1|t|nβΩ(xt)f(t)dt,  x  Rn{0}, (1.1)

    where ΩLs(Sn1), 1s<, is homogenous of degree zero.

    The commutators of HΩ,β and HΩ,β are defined by

    HbΩ,βf=bHΩ,βfHΩ,β(bf),Hb,Ω,βf=bHΩ,βfHΩ,β(bf), (1.2)

    with locally functions b on Rn.

    Next, let us explain the outline of this article. In Section 2, we first briefly review some standard notations and lemmas in variable Lebesgue spaces and give the definitions of λ-central BMO spaces and central Morrey spaces with variable exponents. In Section 3, we will establish the boundedness for n-dimensional fractional Hardy operator with rough kernels and its adjoint operator on central Morrey spaces with variable exponents. In Section 4, we will demonstrate the boundedness for the commutators of n-dimensional fractional Hardy operator with rough kernels and its adjoint operator on central Morrey spaces with variable exponents.

    In this section, we are going to introduce some basic properties of variable Lebesgue spaces and definitions related to the variable exponent function spaces. Throughout this article, we denote by |B| and χB the Lebesgue measure and characteristic function of a measurable set BRn, respectively, where

    B={xRn:|x|R}.

    Given an open set ERn, and a measurable function p(): E[1,), Lp()(E) denotes the set of measurable functions f on E such that for some λ>0,

    E(|f(x)|λ)p(x)dx<.

    This set becomes a Banach function space when equipped with the Luxemburg-Nakano norm

    fLp()(E)=inf{λ>0:E(|f(x)|λ)p(x)dx1}.

    These spaces are referred to as variable Lp spaces, since they generalized the standard Lp spaces.

    The space Lp()loc(E) is defined by

    Lp()loc(E):={f:fLp()(F)forallcompactsubsetsFE}.

    Define P(E) to be the set of p(): E[1,) such that

    p=essinf{p(x):xE}>1,p+=esssup{p(x):xE}<,

    and p() denotes the conjugate exponent of p() which satisfies

    1p()+1p()=1.

    Let B(E) be the set of p() P(E) such that the Hardy-Littlewood maximal operator M defining

    Mf=supR>01|Br|BrE|f|dy

    is bounded on Lp()(E), where

    Br={yRn:|xy|<r}.

    In variable Lp spaces there are some important lemmas as follows.

    Lemma 2.1. [4] Given an open set ERn. If p() P(E) and satisfies

    |p(x)p(y)|Clog(|xy|),|xy|1/2, (2.1)

    and

    |p(x)p(y)|Clog(|x|+e),|y||x|, (2.2)

    then p() B(E), that is the Hardy-Littlewood maximal operator M is bounded on Lp()(E).

    Lemma 2.2. [14] (Generalized Hölder's inequality) Let p()P(Rn). If fLp()(Rn) and gLp()(Rn), then f, g are integrable on Rn and

    Rn|f(x)g(x)|dxrpfLp()(Rn)gLp()(Rn),

    where

    rp=1+1/p1/p+.

    Lemma 2.3. [12] Let p()B(Rn). Then there exists a constant 0<δ<1 and a positive constant C such that for all balls B in Rn and all measurable subsets SB,

    χBLp()(Rn)χSLp()(Rn)C|B||S|, (2.3)

    and

    χSLp()(Rn)χBLp()(Rn)C(|S||B|)δ. (2.4)

    Lemma 2.4. [12] Suppose p()B(Rn). Then there exists a constant C>0 such that for all balls B in Rn,

    1|B|χBLp()(Rn)χBLp()(Rn)C. (2.5)

    Lemma 2.5. [5] Let p()P(Rn) satisfy conditions (2.1) and (2.2) in Lemma 2.1. Then

    χQLp()(Rn){|Q|1p(x)    if |Q|2n and x  Q,|Q|1p()   if |Q|  1,

    for every cube (or ball) Q  Rn, where

    p()=limxp(x).

    Lemma 2.6. [5] Let p(), q(), s()P(Rn) be such that

    1s(x)=1p(x)+1q(x),

    for almost every xRn. Then

    fgLs()(Rn)CfLp()(Rn)gLq()(Rn),

    for fLp()(Rn) and gLq()(Rn).

    Lemma 2.7. [16] If fLs(Rn) and gLq()(Rn), and

    1s+1q()=1p(),

    then we have

    fgLp()(Rn)CfLs(Rn)gLq()(Rn),

    where C is a positive constant independent of f and g.

    Now we recall that the λ-central BMO space with variable exponent and the central Morrey space with variable exponent in [7] are defined as follows.

    Definition 2.1. [7] Let p()P(Rn) and λ<1/n. The λ-central BMO space with variable exponent CBMOp(),λ(Rn) is defined by

    CBMOp(),λ(Rn)={fLp()loc(Rn):fCBMOp(),λ(Rn)<},

    where

    fCBMOp(),λ(Rn)=supR>0(ffB(0,R))χB(0,R)Lp()(Rn)|B(0,R)|λχB(0,R)Lp()(Rn).

    Definition 2.2. [7] Let p()P(Rn) and λR. The central Morrey space with variable exponent ˙Bp(),λ(Rn) is defined by

    ˙Bp(),λ(Rn)={fLp()loc(Rn):f˙Bp(),λ(Rn)<},

    where

    f˙Bp(),λ(Rn)=supR>0fχB(0,R)Lp()(Rn)|B(0,R)|λχB(0,R)Lp()(Rn).

    Remark 2.1. Denote by CMOp(),λ(Rn) and Bp(),λ(Rn) the inhomogeneous versions of the λ-central BMO spaces and central Morrey spaces with variable exponents, which are defined, respectively, by taking the supremum over R1 in Definitions 2.1 and 2.2 instead of R>0 there.

    Remark 2.2. Our results in this paper remain true for the inhomogeneous versions of λ-central BMO spaces and central Morrey spaces with variable exponents.

    We begin this section by illustrating and proving Theorem 3.1, which present the boundedness of n-dimensional fractional Hardy operator with rough kernels and its adjoint operator on central Morrey spaces with variable exponents. Here and subsequently, for simplicity, we write 2kB with the same center as B and 2k times of its radius,

    Ck=2kB2k1B,

    for kZ.

    Theorem 3.1. Let p()P(Rn) satisfy conditions (2.1) and (2.2) in Lemma 2.1. Suppose that ΩLs(Sn1) with s>p().

    (1) If λ2=λ1+βn and λ2+δ>0, then

    HΩ,βf˙Bp(),λ2(Rn)Cf˙Bp(),λ1(Rn).

    (2) If λ2=λ1+βn<0 and λ2+δ>0, then

    HΩ,βf˙Bp(),λ2(Rn)Cf˙Bp(),λ1(Rn).

    To start the proof of Theorem 3.1, we need the following lemma.

    Lemma 3.1. [8] For x2kB,t2iB, we have

    0|xt||x|+|2iB|1n2|2kB|1n,

    and

    Bi|Ω(xt)|sdt2|2kB|1n0Sn1|Ω(x)|sdσ(x)rn1drC|2kB|.

    Proof of Theorem 3.1. Through the definition of HΩ,β and generalized Hölder's inequality to Lp() and Lp() we have

    |HΩ,βf(x)χB(x)|1|x|nβ||t||x|Ω(xt)f(t)dt|χB(x)C0k=1|x|nβ||t||x|Ω(xt)f(t)dt|χCk(x)C0k=|2kB|βnn|2kBΩ(xt)f(t)dt|χCk(x)C0k=|2kB|βnnΩ(x)χ2kB()Lp()(Rn)fχ2kBLp()(Rn)χCk(x). (3.1)

    In view of the condition s>p() and ΩLs(Sn1), set

    1p()=1s+1q(),

    then by Lemmas 2.5, 2.7 and 3.1 we have

    Ω(x)χ2kB()Lp()(Rn)CΩ(x)χ2kB()Ls(Rn)χ2kBLq()(Rn)C|2kB|1sχ2kBLq()(Rn)C|2kB|1s|2kB|1q()=C|2kB|1p()Cχ2kBLp()(Rn). (3.2)

    Taking the Lp()(Rn) norm on (3.1) both sides and using Minkowski inequality, then by Lemma 2.4, we write

    HΩ,βfχBLp()(Rn)C0k=|2kB|βnnχCkLp()(Rn)Ω(x)χ2kB()Lp()(Rn)fχ2kBLp()(Rn)C0k=|2kB|βnnχCkLp()(Rn)fχ2kBLp()(Rn)χ2kBLp()(Rn)C0k=|2kB|βn+λ1χCkLp()(Rn)f˙Bp(),λ1(Rn)1|2kB|χ2kBLp()(Rn)χ2kBLp()(Rn)Cf˙Bp(),λ1(Rn)0k=χ2kBLp()(Rn)|2kB|λ2.

    Finally, by inequality (2.4), we can obtain

    HΩ,βfχBLp()(Rn)Cf˙Bp(),λ1(Rn)0k=|2kB|λ2|B|λ2χ2kBLp()(Rn)χBLp()(Rn)|B|λ2χBLp()(Rn)Cf˙Bp(),λ1(Rn)0k=2nk(λ2+δ)|B|λ2χBLp()(Rn)Cf˙Bp(),λ1(Rn)|B|λ2χBLp()(Rn),

    where the fact λ2+δ>0 has been used in the last inequality.

    Thus we have

    HΩ,βf˙Bp(),λ2(Rn)Cf˙Bp(),λ1(Rn).

    Next we prove the boundedness of adjoint n-dimensional fractional Hardy operator HΩ,β.

    It can also be seen from the definition of HΩ,β and generalized Hölder's inequality to Lp() and Lp(), we have

    |HΩ,βf(x)χB(x)|||t|>|x|1|t|nβΩ(xt)f(t)dt|χB(x)0k=||t|>|x|1|t|nβΩ(xt)f(t)dt|χCk(x)0k=j=k|Cj1|t|nβΩ(xt)f(t)dt|χCk(x)0k=j=k|2jB|βnn|2jBΩ(xt)f(t)dt|χCk(x)C0k=j=k|2jB|βnnΩ(x)χ2jB()Lp()(Rn)fχ2jBLp()(Rn)χCk(x). (3.3)

    Using (3.2) and taking the Lp()(Rn) norm on (3.3) both sides, we can see that

    HΩ,βfχBLp()(Rn)C0k=j=k|2jB|βnfχ2jBLp()(Rn)1|2jB|χ2jBLp()(Rn)χCkLp()(Rn)C0k=j=k|2jB|βnf˙Bp(),λ1(Rn)|2jB|λ11|2jB|χ2jBLp()(Rn)χ2jBLp()(Rn)χCkLp()(Rn)Cf˙Bp(),λ1(Rn)0k=j=k|2jB|λ1+βnχCkLp()(Rn)Cf˙Bp(),λ1(Rn)0k=j=k|2jB|λ2χ2kBLp()(Rn).

    Finally, through inequality (2.4), λ2<0 and λ2+δ>0, we can obtain

    HΩ,βfχBLp()(Rn)Cf˙Bp(),λ1(Rn)0k=j=k|2jB|λ2|2kB|λ2|2kB|λ2|B|λ2χ2kBLp()(Rn)χBLp()(Rn)|B|λ2χBLp()(Rn)=Cf˙Bp(),λ1(Rn)0k=j=k2n(jk)λ22kn(λ2+δ)|B|λ2χBLp()(Rn)Cf˙Bp(),λ1(Rn)|B|λ2χBLp()(Rn).

    Thus we have

    HΩ,βf˙Bp(),λ2(Rn)Cf˙Bp(),λ1(Rn).

    The proof of Theorem 3.1 is completed.

    In Section 3 we have proved the boundedness of n-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents. In this section, we mainly prove the boundedness of their commutators on central Morrey spaces with variable exponents.

    Theorem 4.1. Let p(), p1(), p2()P(Rn) satisfy conditions (2.1) and (2.2) in Lemma 2.1 with

    1p()=1p1()+1p2().

    Suppose that ΩLs(Sn1), s>p(). If

    bCBMOp2(),λ2(Rn),  λ=λ1+λ2+βn,

    and λ+δ>0, then

    HbΩ,βf˙Bp(),λ(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn).

    Proof. We decompose the integral as

    |HbΩ,βf(x)χB(x)||1|x|nβ|t||x|Ω(xt)(b(x)b(t))f(t)dt|χB(x)0k=|1|x|nβ|t||x|Ω(xt)(b(x)b(t))f(t)dt|χCk(x)0k=|1|x|nβ|t||x|Ω(xt)(b(x)b2kB)f(t)dtχCk(x)|+0k=|1|x|nβ|t||x|Ω(xt)(b(t)b2kB)f(t)dtχCk(x)|=:D+E, (4.1)

    where

    D=0k=|1|x|nβ|t||x|Ω(xt)(b(x)b2kB)f(t)dtχCk(x)|,

    and

    E=0k=|1|x|nβ|t||x|Ω(xt)(b(t)b2kB)f(t)dtχCk(x)|.

    Estimate D, firstly. By using generalized Hölder's inequality to Lp1() and Lp1() we have

    D0k=1|x|nβ||t||x|Ω(xt)f(t)dt(b(x)b2kB)χCk(x)|0k=|2kB|βnn|(b(x)b2kB)χCk(x)||2kBΩ(xt)f(t)dt|C0k=|2kB|βnn|(b(x)b2kB)χCk(x)|Ω(x)χ2kB()Lp1()(Rn)fχ2kBLp1()(Rn).

    In view of the condition s>p()>p1(), we can take

    1p1()=1s+1q1().

    We note that ΩLs(Sn1), and using Lemma 2.4 and (3.2) to the term D, we can produce

    DC0k=|2kB|βnn|(b(x)b2kB)χCk(x)|χ2kBLp1()(Rn)fχ2kBLp1()(Rn)C0k=|2kB|βnn|(b(x)b2kB)χCk(x)|χ2kBLp1()(Rn)f˙Bp1(),λ1(Rn)×χ2kBLp1()(Rn)|2kB|λ1C0k=|2kB|λ1+βn|(b(x)b2kB)χCk(x)|f˙Bp1(),λ1(Rn). (4.2)

    Taking the Lp()(Rn) norm on (4.2) both sides. Noting λ+δ>0 and

    1p()=1p2()+1p1(),

    by using Lemma 2.6 and inequality (2.4) we can obtain

    DLp()(Rn)C0k=(bb2kB)χ2kBLp2()(Rn)f˙Bp1(),λ1(Rn)|2kB|λ1+βnχ2kBLp1()(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn)0k=|2kB|λ2+λ1+βnχ2kBLp2()(Rn)χ2kBLp1()(Rn)=CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn)0k=|2kB|λ|B|λχ2kBLp1()(Rn)χ2kBLp2()(Rn)χBLp()(Rn)|B|λχBLp()(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn)0k=2nk(λ+δ)|B|λχBLp()(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn)|B|λχBLp()(Rn).

    Next, we simply estimate E, because its proof method is similar to D. In view of the condition s>p(), by

    1p()=1p1()+1p2(),

    we can get

    1p1()=1p()+1p2()>1s+1p2().

    So we can take

    1p1()=1s+1p2()+1q2().

    Using generalized Hölder's inequality, Lemmas 2.4, 2.6 and 2.7 we have

    E=0k=|1|x|nβ|t||x|Ω(xt)(b(t)b2kB)f(t)dtχCk(x)|0k=|2kB|βnn||t||x|Ω(xt)(b(t)b2kB)f(t)dtχCk(x)|C0k=|2kB|βnnΩ(x)(b()b2kB)χCkLp1()(Rn)fχCkLp1()(Rn)χCk(x)C0k=|2kB|βnnΩ(x)χ2kBLs(Rn)(b()b2kB)χ2kBLp2()(Rn)χ2kBLq2()(Rn)×fχ2kBLp1()(Rn)χCk(x)C0k=|2kB|βnn|2kB|1s(b()b2kB)χ2kBLp2()(Rn)χ2kBLq2()(Rn)fχ2kBLp1()(Rn)χCk(x)C0k=|2kB|βnnbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn)|2kB|λ1+λ2|2kB|1s×χ2kBLp1()(Rn)χ2kBLp2()(Rn)χ2kBLq2()(Rn)χCk(x)C0k=|2kB|βnnbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn)|2kB|λ1+λ2χ2kBLp1()(Rn)χ2kBLp1()(Rn)χCk(x)Cf˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)0k=|2kB|βn+λ1+λ2χCk(x).

    Taking the Lp()(Rn) norm on E both sides and using inequality (2.4),

    λ=λ1+λ2+βn,

    and λ+δ>0, we can obtain

    ELp()(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn)0k=|2kB|λ1+λ2+βnχCkLp()(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn)0k=|2kB|λ|B|λχ2kBLp()(Rn)χBLp()(Rn)|B|λχBLp()(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn)0k=2nk(λ+δ)|B|λχBLp()(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn)|B|λχBLp()(Rn).

    In summary, taking the Lp()(Rn) norm on (4.1) both sides and using Minkowski's inequality, we thus have established the following inequality if we combine the above estimates for D and E,

    HbΩ,βfχBLp()(Rn)DLp()(Rn)+ELp()(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn)|B|λχBLp()(Rn).

    Thus we have

    HbΩ,βf˙Bp(),λ(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn).

    The proof of Theorem 4.1 is completed.

    Theorem 4.2. Let p(), p1(), p2()P(Rn) satisfy conditions (2.1) and (2.2) in Lemma 2.1 with

    1p()=1p1()+1p2().

    Suppose that ΩLs(Sn1), s>p(). If

    bCBMOp2(),λ2(Rn),  λ=λ1+λ2+βn<0,  λ+δ>0,  and  0λ2<1/n,

    then

    Hb,Ω,βf˙Bp(),λ(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn).

    Proof. We decompose the integral as follows

    |Hb,Ω,βf(x)χB(x)|=||t|>|x|1|t|nβΩ(xt)(b(x)b(t))f(t)dtχB(x)|0k=||t|>|x|1|t|nβΩ(xt)(b(x)b(t))f(t)dtχCk(x)|0k=j=k|Cj1|t|nβΩ(xt)(b(x)b(t))f(t)dtχCk(x)|0k=j=k|Cj1|t|nβΩ(xt)(b(x)b2kB)f(t)dtχCk(x)|+0k=j=k|Cj1|t|nβΩ(xt)(b(t)b2kB)f(t)dtχCk(x)|=:F+G, (4.3)

    where

    F=0k=j=k|Cj1|t|nβΩ(xt)(b(x)b2kB)f(t)dtχCk(x)|,

    and

    G=0k=j=k|Cj1|t|nβΩ(xt)(b(t)b2kB)f(t)dtχCk(x)|.

    For F, we follow a procedure similar to the estimate of Theorem 3.1.

    F0k=j=k|2jB|βnn|CjΩ(xt)f(t)dt||(b(x)b2kB)χCk(x)|C0k=j=k|2jB|βnnΩ(x)χ2jB()Lp1()(Rn)fχ2jBLp1()(Rn)|(b(x)b2kB)χCk(x)|C0k=j=k|2jB|βnnχ2jBLp1()(Rn)fχ2jBLp1()(Rn)|(b(x)b2kB)χCk(x)|C0k=j=k|2jB|βn+λ1f˙Bp1(),λ1(Rn)1|2jB|χ2jBLp1()(Rn)χ2jBLp1()(Rn)|(b(x)b2kB)χCk(x)|C0k=j=k|2jB|βn+λ1f˙Bp1(),λ1(Rn)|(b(x)b2kB)χCk(x)|. (4.4)

    Taking the Lp()(Rn) norm on (4.4) both sides. Noting

    1p()=1p1()+1p2(),
    λ=λ1+λ2+βn<0,

    and

    λ+δ>0,

    by using Lemma 2.6 and inequality (2.4), we can obtain

    FLp()(Rn)C0k=j=k|2jB|βn+λ1f˙Bp1(),λ1(Rn)(bb2kB)χCkLp()(Rn)C0k=j=k|2jB|βn+λ1f˙Bp1(),λ1(Rn)(bb2kB)χ2kBLp2()(Rn)χ2kBLp1()(Rn)C0k=j=k|2jB|βn+λ1+λ2f˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)×χ2kBLp2()(Rn)χ2kBLp1()(Rn)=C0k=j=k|2jB|λ|2kB|λ|2kB|λ|B|λχ2kBLp2()(Rn)χ2kBLp1()(Rn)χBLp()(Rn)×f˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)|B|λχBLp()(Rn)=C0k=j=k2n(jk)λ2nk(λ+δ)f˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)|B|λχBLp()(Rn)Cf˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)|B|λχBLp()(Rn).

    For G, we decompose the integral appearing as follows

    G0k=j=k|Cj|2jB|βnnΩ(xt)(b(t)b2kB)f(t)dtχCk(x)|0k=j=k|Cj|2jB|βnnΩ(xt)(b(t)b2jB)f(t)dtχCk(x)|+0k=j=k|Cj|2jB|βnnΩ(xt)(b2jBb2kB)f(t)dtχCk(x)|=:G1+G2,

    where

    G1=0k=j=k|Cj|2jB|βnnΩ(xt)(b(t)b2jB)f(t)dtχCk(x)|,

    and

    G2=0k=j=k|Cj|2jB|βnnΩ(xt)(b2jBb2kB)f(t)dtχCk(x)|.

    We estimate G1 and G2 respectively. Before estimate G2, the following boundedness for |b2jBb2kB| can be shown

    |b2jBb2kB|j1m=k|b2m+1Bb2mB|Cj1m=kbCBMOp2(),λ2(Rn)|2m+1B|λ21|2m+1B|χ2m+1BLp2()(Rn)χ2m+1BLp2()(Rn)Cj1m=kbCBMOp2(),λ2(Rn)|2m+1B|λ2C(jk)bCBMOp2(),λ2(Rn)|2jB|λ2.

    By generalized Hölder's inequality to p2() and p2() and applying Lemma 2.4, we can found

    G2=0k=j=k|Cj|2jB|βnnΩ(xt)f(t)dt||b2jBb2kB|χCk(x)C0k=j=k(jk)|2jB|βnn|CjΩ(xt)f(t)dt|bCBMOp2(),λ2(Rn)|2jB|λ2χCk(x)C0k=j=k(jk)|2jB|βn+λ21Ω(x)χ2jB()Lp1()(Rn)fχ2jBLp1()(Rn)bCBMOp2(),λ2(Rn)χCk(x)C0k=j=k(jk)|2jB|βn+λ21χ2jBLp1()(Rn)fχ2jBLp1()(Rn)bCBMOp2(),λ2(Rn)χCk(x)Cf˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)0k=j=k(jk)|2jB|βn+λ1+λ2χCk(x).

    Following the steps taken to estimate F and using inequality (2.4), λ<0 and λ+δ>0, we can obtain

    G2Lp()(Rn)=Cf˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)0k=j=k(jk)|2jB|βn+λ1+λ2χCkLp()(Rn)Cf˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)0k=j=k(jk)|2jB|βn+λ1+λ2χ2kBLp()(Rn)=Cf˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)0k=j=k(jk)|2jB|λ|2kB|λ|2kB|λ|B|λχ2kBLp()(Rn)χBLp()(Rn)|B|λχBLp()(Rn)=Cf˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)0k=j=k(jk)2n(jk)λ2nk(λ+δ)|B|λχBLp()(Rn)Cf˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)|B|λχBLp()(Rn).

    Next, similar to the proof method of E in Theorem 4.1, we have

    G1C0k=j=k|2jB|βn1Ω(x)(b()b2jB)χCjLp1()(Rn)fχCjLp1()(Rn)χCk(x)C0k=j=k|2jB|βn+λ1+λ2f˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)χCk(x).

    So we can take the Lp()(Rn) norm on G1 both sides. We write

    G1Lp()(Rn)C0k=j=k|2jB|βn+λ1+λ2f˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)χCkLp()(Rn)Cf˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)0k=j=k|2jB|λ|2kB|λ|2kB|λ|B|λχ2kBLp()(Rn)χBLp()(Rn)|B|λχBLp()(Rn)=Cf˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)0k=j=k2n(jk)λ2nk(λ+δ)|B|λχBLp()(Rn)Cf˙Bp1(),λ1(Rn)bCBMOp2(),λ2(Rn)|B|λχBLp()(Rn).

    Finally, taking the Lp()(Rn) norm on (4.3) both sides and using Minkowski's inequality, we have established the following inequality if we combine the above estimates for F and G,

    Hb,Ω,βfχBLp()(Rn)FLp()(Rn)+GLp()(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn)|B|λχBLp()(Rn).

    Thus we have

    Hb,Ω,βf˙Bp(),λ(Rn)CbCBMOp2(),λ2(Rn)f˙Bp1(),λ1(Rn).

    The proof of Theorem 4.2 is completed.

    In this article, we first establish the boundedness for n-dimensional fractional Hardy operator with rough kernels HΩ,β and its adjoint operator HΩ,β on central Morrey spaces with variable exponents. Furthermore, we prove that their commutators HbΩ,β and Hb,Ω,β are bounded on central Morrey spaces with variable exponents.

    The authors are very grateful to the referees for their valuable comments. This work was supported by Shandong Provincial Natural Science Foundation (Grant No. ZR2022MA054) and National Natural Science Foundation of China (Grant Nos. 12271267, 11926343 and 11761026).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] A. Abdalmonem, A. Scapellato, Intrinsic square functions and commutators on Morrey-Herz spaces with variable exponents, Math. Meth. Appl. Sci., 44 (2021), 12408–12425. http://doi.org/10.1002/mma.7487 doi: 10.1002/mma.7487
    [2] A. O. Akdemir, M. T. Ersoy, H. Furkan, M. A. Ragusa, Some functional sections in topological sequence spaces, J. Funct. Spaces, 2022 (2022), 6449630. http://doi.org/10.1155/2022/6449630 doi: 10.1155/2022/6449630
    [3] J. Alvarez, J. Lakey, M. Guzmán-Partida, Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures, Collect. Math., 51 (2000), 1–47.
    [4] D. Cruz-Uribe, A. Fiorenza, C. Neugebauer, The maximal function on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238.
    [5] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011. http://doi.org/10.1007/978-3-642-18363-8
    [6] Z. Fu, λ-central BMO estimates for commutators of n-dimensional Hardy operators, J. Inequal. Pure Appl. Math., 9 (2008), 111.
    [7] Z. Fu, S. Lu, H. Wang, L. Wang, Singular integral operators with rough kernels on central Morrey spaces with variable exponent, Ann. Acad. Sci. Fenn. Math., 44 (2019), 505–522. http://doi.org/10.5186/aasfm.2019.4431 doi: 10.5186/aasfm.2019.4431
    [8] Z. Fu, S. Lu, F. Zhao, Commutators of n-dimensional rough Hardy operators, Sci. China Math., 54 (2011), 95–104. http://doi.org/10.1007/s11425-010-4110-8 doi: 10.1007/s11425-010-4110-8
    [9] V. S. Guliyev, M. N. Omarova, M. A. Ragusa, A. Scapellato, Regularity of solutions of elliptic equations in divergence form in modified local generalized Morrey spaces, Anal. Math. Phys., 11 (2021), 13. http://doi.org/10.1007/s13324-020-00433-9 doi: 10.1007/s13324-020-00433-9
    [10] A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funct. Spaces, 2021 (2021), 9705250. http://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
    [11] A. Hussain, M. Asim, F. Jarad, Variable λ-central Morrey space estimates for the fractional Hardy operators and commutators, J. Math., 2022 (2022), 5855068. http://doi.org/10.1155/2022/5855068 doi: 10.1155/2022/5855068
    [12] M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. http://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
    [13] S. Khalid, J. Pečarić, Generalizations of some Hardy-Littlewood-Pólya type inequalities and related results, Filomat, 35 (2021), 2811–2826. http://doi.org/10.2298/FIL2108811K doi: 10.2298/FIL2108811K
    [14] O. Kováčik, J. Rákosník, On spaces Lp(x) and Wk,p(x), Czech. Math. J., 41 (1991), 592–618. http://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
    [15] Y. Mizuta, T. Ohno, T. Shimomura, Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent, Hokkaido Math. J., 44 (2015), 185–201. http://doi.org/10.14492/hokmj/1470053290 doi: 10.14492/hokmj/1470053290
    [16] E. Nakai, Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 262 (2012), 3665–3748. http://doi.org/10.1016/j.jfa.2012.01.004 doi: 10.1016/j.jfa.2012.01.004
    [17] W. Orlicz, ¨Uber konjugierte exponentenfolgen, Stud. Math., 3 (1931), 200–211.
    [18] S. Shi, Z. Fu, S. Lu, On the compactness of commutators of Hardy operators, Pac. J. Math., 307 (2020), 239–256. http://doi.org/10.2140/pjm.2020.307.239 doi: 10.2140/pjm.2020.307.239
    [19] S. Shi, S. Lu, Characterization of the central Campanato space via the commutator operator of Hardy type, J. Math. Anal. Appl., 429 (2015), 713–732. http://doi.org/10.1016/j.jmaa.2015.03.083 doi: 10.1016/j.jmaa.2015.03.083
    [20] Z. Si, λ-central BMO estimates for multilinear commutators of fractional integrals, Acta Math. Sin. Engl. Ser., 26 (2010), 2093–2108. http://doi.org/10.1007/s10114-010-9363-1 doi: 10.1007/s10114-010-9363-1
    [21] A. Torchinsky, Real-variable methods in harmonic analysis, Academic Press, 1986.
    [22] D. Wang, Z. Liu, J. Zhou, Z. Teng, Central BMO spaces with variable exponent, arXiv, 2017. https://doi.org/10.48550/arXiv.1708.00285
    [23] H. Wang, J. Xu, Multilinear fractional integral operators on central Morrey spaces with variable exponent, J. Inequal. Appl., 2019 (2019), 311. http://doi.org/10.1186/s13660-019-2264-7 doi: 10.1186/s13660-019-2264-7
    [24] H. Wang, J. Xu, J. Tan, Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents, Front. Math. China, 15 (2020), 1011–1034. http://doi.org/10.1007/s11464-020-0864-7 doi: 10.1007/s11464-020-0864-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1468) PDF downloads(78) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog