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Abstract: For any real β let H2
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β if and only if the polynomials are dense in a certain Dirichlet space of the
domain ϕ(D) for 1/2 < β < 1. It follows that if the range of Cϕ is dense in H2
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1. Introduction

Let D be the unit disc in the complex plane C and H(D) be the space of all analytic functions on D.
For f ∈ H(D) we use

R f (z) = z
∂ f
∂z

(z)

to denote the radial derivative of f at z. If f (z) =
∑∞

k=0 akzk is the Taylor expansion of f , it is easy to
see that

R f (z) =

∞∑
k=1

kakzk.

More generally, for any real number β and any f ∈ H(D) with the Taylor expansion above, we define

Rβ f (z) =

∞∑
k=1

kβakzk

and call it the radial derivative of f of order β.
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It is clear that these fractional radial differential operators satisfy RαRβ = Rα+β. When β < 0,
the effect of Rβ on f is actually “integration” instead of “differentiation”. For example, radial
differentiation of order −3 is actually radial integration of order 3.

For β ∈ R, the Hardy-Sobolev space H2
β consists of all analytic functions f on D such that Rβ f

belongs to the classical Hardy space H2. It is clear that H2
β is a Hilbert space with the inner product

〈 f , g〉β = f (0)g(0) + 〈Rβ f ,Rβg〉H2 .

The induced norm in H2
β is then given by

‖ f ‖2β = | f (0)|2 + ‖Rβ f ‖2H2 .

Recall that H2 is the space of analytic functions f on D such that

‖ f ‖2H2 = sup
0<r<1

∫
T

| f (rζ)|2 dσ(ζ) < ∞,

where dσ is the normalized Lebesgue measure on the unit circle T = ∂D. It is well known that every
function f ∈ H2 has radial limits

f (ζ) = lim
r→1−

f (rζ)

for almost all ζ ∈ T. Moreover, the radial limit function f (ζ) above belongs to L2(T, dσ). The inner
product in H2 can then be written as

〈 f , g〉0 = 〈 f , g〉H2 =

∫
T

f (ζ)g(ζ) dσ(ζ),

and its induced norm on H2 is given by

‖ f ‖20 = ‖ f ‖2H2 =

∫
T

| f (ζ)|2 dσ(ζ).

It is well known that a function f ∈ H(D) belongs to H2 if and only if∫
D

|R f (z)|2(1 − |z|2) dA(z) < ∞,

where dA is the normalized area measure on D. See [22, 26, 27]. More generally, for any t > −1, we
consider the weighted area measure

dAt(z) = (t + 1)(1 − |z|2)t dA(z),

which is a probability measure on D. The spaces

A2
t = L2(D, dAt) ∩ H(D)

are called weighted Bergman spaces (with standard weights). When t = 0, we simply write A2 for
the ordinary Bergman spaces. The following result establishes a natural connection between Hardy-
Sobolev spaces and weighted Bergman spaces via fractional derivatives.
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Proposition 1. [6] Suppose β ∈ R and f ∈ H(D). Then the following conditions are equivalent.

(a) f ∈ H2
β .

(b) Rβ+1 f ∈ A2
1.

If N is a nonnegative integer with N > β, then the conditions above are also equivalent to

(c) RN f ∈ A2
2(N−β)−1.

Hardy-Sobolev spaces contain many classical analytic function spaces as special cases. For
example, H2

−1/2 is the Bergman space A2, H2
0 is the Hardy space H2, and H2

1/2 is the Dirichlet space
D consisting of analytic functions f on D such that

‖ f ‖2 = | f (0)|2 +

∫
D

| f ′(z)|2 dA(z) < ∞.

More generally, for any domain G ⊂ C and any positive measure dω on G, we will use A2(G, dω)
to denote the weighted Bergman space of analytic functions f on G such that∫

G
| f (z)|2 dω(z) < ∞.

Similarly, we use D(G, dω) for the weighted Dirichlet space of analytic functions f on G with∫
G
| f ′(z)|2 dω(z) < ∞.

When dω is ordinary area measure, we will simply write A2(G) and D(G).
Let ϕ : D → D be an analytic self-map D. For any Hilbert space H of analytic functions on D

we consider the composition operator Cϕ : H → H defined by Cϕ f = f ◦ ϕ. For β < 1/2, every
composition operator is bounded on H2

β . However, this is not so for β ≥ 1/2. For example, not every
composition operator is bounded on the Dirichlet space. There are conditions (in terms of Carleson
type measures, for example) that tell us exactly when Cϕ is bounded onD. See [11,20,29] for example.

The density of the range of a composition operator is an interesting problem. Bourdon and Roan
studied the problem for the Hardy space (see [3, 21]) and Cima raised the problem for the Dirichlet
space in [9]. In [7], we settled Cima’s problem completely:

Theorem 2. Suppose ϕ : D → D is analytic, non-constant, and G = ϕ(D). Then the following two
conditions are equivalent.

(i) Cϕ : D→ D is bounded and has dense range.
(ii) ϕ is univalent and the polynomials are dense in A2(G).

In [3], Bourdon proved the following result.

Theorem 3. If G = ϕ(D), where ϕ is a weak-star generator of H∞, then the polynomials are dense in
A2(G).

It is thus natural for us to consider the following problem.

AIMS Mathematics Volume 8, Issue 2, 2708–2719.
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Question 4. Does the density of polynomials in A2(G) imply that ϕ is a weak-star generator of H∞?

In general, the answer is no. In fact, Sarason gave a condition in [23] for ϕ to be a weak-star
generator of H∞, which combined with the Corollary 2 in that paper yields a bounded simply connected
domain G such that the polynomials are dense in A2(G) but any Riemann map ϕ : D → G is not a
weak-star generator of H∞; see [3, 17].

In Section 2, we will give a necessary and sufficient condition for composition operators to have
dense range on Hardy-Sobolev spaces. Our result shows that if ϕ is a univalent self-map of D, then the
density of polynomials in the weighted Dirichlet spaces

D
(
ϕ(D), (1 − |ϕ−1|2)1−2βdA

)
,

1
2
< β < 1,

implies that ϕ is a weak-star generator of H∞.
The density of the range of the composition operator Cϕ is relative to the cyclic vectors of the

multiplier Mβ
ϕ with symbol ϕ defined as Mβ

ϕ f = ϕ f for any f ∈ H2
β . In the last part of this paper, we

discuss the relations between the density of Cϕ on H2
β and the cyclic vectors of Mβ

ϕ for 1/2 < β < 1.
Thank you for your cooperation.

2. Weak-star generators and composition operators

In [17], S. N. Mergeljan and A. P. Talmadjan showed that if sufficiently many slits are put in the
unit disc then we can obtain a domain G such that the polynomials are dense in A2(G). By the Riemann
mapping theorem, there is an analytic homeomorphism ϕ : D → G, so Cϕ has dense range in D by
Theorem 2 but ϕ is not a weak-star generator of H∞ by Corollary 2 of [23]. However, the boundary of
the above domain is not a Jordan curve, the Riemann map may not be continuous up to the boundary,
and ϕ does not belong to the disc algebra A(D). Furthermore, ϕ < D1−2β for 1/2 < β < 1, where

D1−2β =
{
f ∈ H(D)| f ′ ∈ A2

1−2β

}
is the weighted Dirichlet space with the norm

‖ f ‖D1−2β =

[
| f (0)|2 +

∫
D

| f ′(z)|2(1 − |z|2)1−2βdA
] 1

2

.

Thus, for β < 1, Proposition 1 shows that f ∈ H2
β if and only if R f ∈ A2

1−2β and hence H2
β = D1−2β,

see [6] for more details.
The following result is due to P. Bourdon.

Proposition 5. (Corollary 3.7 in [3]) Let ϕ map D univalently onto G ⊂ D. If the polynomials are
dense in A2(G, (1 − |ϕ−1|2)dA), then Cϕ : H2 → H2 has dense range.

Proposition 5 extends a result of Roan [21] and supplies additional examples of composition
operators with dense range. As a special case of our next result, we see that the density of polynomials
in A2(G, (1 − |ϕ−1|2)dA) is also a necessary condition for the density of the range of Cϕ in H2

β , that is,
the converse of Bourdon’s result above is also true.

We will use the notion R(Cϕ) to denote the range of a composition operator. The space on which
Cϕ acts is usually obvious from the context, or it will be specified whenever there is a possibility for
confusion.

AIMS Mathematics Volume 8, Issue 2, 2708–2719.
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Theorem 6. Suppose β < 1 and ϕ is a non-constant analytic self-map of D. Then Cϕ has dense range
in H2

β = D1−2β if and only if ϕ is univalent and the polynomials are dense in D(G, (1 − |ϕ−1|2)1−2βdA),
where G = ϕ(D).

Proof. First assume that Cϕ has dense range inD1−2β. It is easy to see that ϕmust be univalent. In fact, if
there are z1, z2 ∈ D, z1 , z2, such that ϕ(z1) = ϕ(z2), then for any f ∈ D1−2β we have Cϕ f (z1) = Cϕ f (z2),
which clearly contradicts the assumption that the range of Cϕ is dense in D1−2β. To prove that the
polynomials are dense in D(G, (1 − |ϕ−1(z)|2)1−2βdA), fix any g0 ∈ D(G, (1 − |ϕ−1(z)|2)1−2βdA). Since
Cϕg0 ∈ D1−2β and Cϕ has dense range in D1−2β, we can find a sequence {pk} of polynomials such that
‖ Cϕpk − Cϕg0 ‖D1−2β→ 0 in D1−2β. This, by a change of variables, is equivalent to ‖pk − g0‖ → 0 in
D(G, (1 − |ϕ−1|2)1−2βdA).

Conversely, assume that ϕ is univalent and the polynomials are dense in the space D(G, (1 −
|ϕ−1|2)1−2β)2dA). It is clear that Cϕ is an invertible operator from D(G, (1 − |ϕ−1|2)1−2βdA) onto D1−2β,
with the inverse being Cϕ−1 . Thus, for any g ∈ D1−2β there is an f ∈ D(G, (1 − |ϕ−1|2)1−2βdA) such that
Cϕ f = g. Let {pk} be a sequence of polynomials such that pk → f in D(G, (1 − |ϕ−1|2)1−2βdA). Then,
by a change of variables again,

‖ Cϕpk − g ‖D1−2β=‖ Cϕpk −Cϕ f ‖D1−2β→ 0

in D1−2β. This shows that the range of Cϕ is dense in D1−2β. �

However, if the image ϕ(D) has infinite area, even if ϕ ∈ A2(D), then the polynomials may not be
dense in A2(ϕ(D)). Here is an example.

Let f (z) = 1/ 3
√

z be the principal branch of 1/ 3
√

z on C \ [0,+∞). Then the function

ϕ(z) = f (1 + z) =
1

3√1 + z

is analytic function on D. It is obvious that ϕ belongs to A2 and is univalent in the open unit disc, but
ϕ′ < A2, that is, the region ϕ(D) has infinite area. This implies that the polynomials are not dense in
A2(ϕ(D)). In fact, if

g(w) = ϕ−1(w) =
1

w3 − 1,

then g < A2(ϕ(D)), but g′ ∈ A2(ϕ(D)). However, g′ cannot be approximated by polynomials in
A2(ϕ(D)).

This example also implies that the Dirichlet space is not necessarily contained in the Bergman space
on a general domain in the complex plane. See [7] and additional references there.

Proposition 7. Suppose β < 1 and ϕ ∈ D1−2β is univalent. Then Cϕ is an invertible operator from
D(ϕ(D), (1−|ϕ−1|2)1−2βdA) ontoD1−2β with the inverse being Cϕ−1 . Moreover, Cϕ preserves the Dirichlet
semi-norms.

Proof. This follows from an easy change of variables. We leave the routine details to the interested
reader.

�

To further characterize the dense range of Cϕ onD1−2β and its relation to weak-star generator of H∞,
we still need the following lemmas.

AIMS Mathematics Volume 8, Issue 2, 2708–2719.
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Lemma 8. [23] A sequence {ψn}
∞
1 in H∞ converges weak-star to the function ψ if and only if it is

uniformly bounded and converges piontwise to ψ on D.

Lemma 9. Mergelyan’s Theorem [24] If K is a compact subset of the plane whose complement is
connected, then every complex function that is continuous on K and analytic on its (topological)
interior can be uniformly approximated on K by polynomials.

It follows from Proposition 7 that if 1/2 < β < 1 and ϕ ∈ D1−2β is univalent, then

ϕ−1 ∈ D(ϕ(D), (1 − |ϕ−1(z)|2)1−2βdA).

A standard argument shows that the operators from Proposition 7 satisfy

C∗
ϕ−1 K̃w = Kϕ−1(w), C∗ϕKz = K̃ϕ(z),

where K̃w(u) = K̃(u,w) and Kz(v) = K(v, z) are the reproducing kernels of D(ϕ(D), (1 − |ϕ−1|2)1−2βdA)
at w ∈ ϕ(D) and of D1−2β at z ∈ D, respectively. Since K(w, z) is continuous on D × D, we know that
K̃(u, v) is also continuous on ϕ(D) × ϕ(D). Hence each function f in D(ϕ(D), (1 − |ϕ−1|2)1−2βdA) is
continuous on ϕ(D) by properties of the reproducing kernel. In particular, ϕ−1 is continuous on ϕ(D).
Furthermore, by Lemma 9, ϕ−1 can be uniformly approximated on ϕ(D) by polynomials.

Proposition 10. Suppose 1/2 < β < 1 and ϕ is a univalent analytic self-map of D with ϕ ∈ D1−2β.
Then Lat(Mβ

ϕ) = Lat(Mβ
z ), where Mβ

ϕ and Mβ
z are multiplication operators on the weighted Bergman

space A2
1−2β , and Lat(Mβ

ϕ) and Lat(Mβ
z ) are their invariant subspace lattices.

Proof. Since ϕ ∈ D1−2β, it is clear that Mβ
ϕ is bounded on A2

1−2β. Lemma 9 implies that there is a
sequence {pk} of polynomials such that pk(z)→ ϕ−1(z) uniformly onD, and this implies that pk(ϕ(z))→
z uniformly on D. Thus∫

D

|(pk(ϕ)(z) − z)g(z)|2(1 − |z|2)1−2βdA(z)→ 0, g ∈ A2
1−2β.

This shows that Mβ
pk(ϕ) converges to Mβ

z in the weak operator topology. Hence, Lat(Mβ
ϕ) ⊂ Lat(Mβ

z ).
The reversed inclusion is obvious, so we have Lat(Mβ

ϕ) = Lat(Mβ
z ). �

Corollary 11. Suppose 1/2 < β < 1 and ϕ is a univalent analytic self-map of D with ϕ ∈ D1−2β. Then
Cϕ has dense range in D1−2β if and only if H∞(ϕ(D)) is dense in A2(ϕ(D), (1 − |ϕ−1|2)1−2βdA).

Proof. This is a direct consequence of Theorem 6, because every bounded analytic function can be
approximated by polynomials in the norm topology of A2(ϕ(D), (1 − |ϕ−1|2)1−2βdA). �

Theorem 12. Suppose 1/2 < β < 1 and ϕ is an analytic self-map of D such that Cϕ is bounded on
D1−2β. If R(Cϕ) is dense in D1−2β, then ϕ is a weak-star generator of H∞.

Proof. For any f ∈ D1−2β there is a sequence {pk} of polynomials such that

‖Cϕpk − f ‖D1−2β → 0.

Note that
|pk(ϕ)(z) − f (z)| = |〈pk(ϕ) − f ,Kz〉| ≤ ‖pk(ϕ) − f ‖D1−2β‖Kz‖D1−2β ,

AIMS Mathematics Volume 8, Issue 2, 2708–2719.
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where Kz is the reproducing kernel of D1−2β at z. Since 1/2 < β < 1, the function z 7→ ‖Kz‖D1−2β =
√

K(z, z) is bounded on D. Thus, pk(ϕ)(z) converges uniformly to f (z). Furthermore, ‖pk(ϕ)− f ‖∞ → 0
as k → ∞.

If f ∈ H∞, then for any 0 < r < 1, fr(z) = f (rz) ∈ D1−2β. Choose rn ∈ (0, 1) such that rn → 1 as

n → ∞, then frn

w∗
−−→ f in H∞ by the dominated convergence theorem. For any n, there is a sequence

of polynomials {p(n)
k } such that ‖p(n)

k (ϕ) − frn‖∞ → 0 as k → ∞. Hence, we may find subsequence {kn}

such that p(n)
kn

(ϕ)
w∗
−−→ f in H∞. It follows that

{Cϕpk : pk is a polynomial} = {pk(ϕ) : pk is a polynomial}

is weak-star dense in H∞. �

It is clear that if Cϕ maps H2
β to itself and 1/2 < β < 1, then ϕ ∈ H2

β ⊂ A(D). If β ≥ 1, then z < D1−2β,
so the polynomials cannot be dense inD1−2β. In this case, we need to consider higher order derivatives.

From the discussion above, we see that the density of polynomials in D(ϕ(D), (1 − |ϕ−1|2)1−2βdA)
for 1/2 < β < 1 implies that ϕ is a weak-star generator of H∞. On the other hand, ϕ being a weak-star
generator of H∞ implies that the polynomials are dense in the Dirichlet spaces D and D(ϕ(D), (1 −
|ϕ−1|2)1−2βdA) for all β ≤ 1/2.

It is intriguing for us to find some relationship between the density of R(Cϕ) on two different spaces
D1−2β1 and D1−2β2 for 1/2 < β1, β2 < 1. We already know that if Cϕ has dense range in D1−2β for
some 1/2 < β < 1, then ϕ must be a weak-star generator of H∞, which implies that ϕ is univalent on
the closed unit disc D. However, this does not imply that the polynomials are dense in D(ϕ(D), (1 −
|ϕ−1|2)1−2βdA) for all 1/2 < β < 1. In fact, for any given 1/2 < β1 < β2 < 1 we can find an analytic
self-map of D such that ϕ ∈ D1−2β1 \ D1−2β2 . Then the polynomials are not dense in D(ϕ(D), (1 −
|ϕ−1|2)1−2β2dA) but they are dense in D(ϕ(D), (1 − |ϕ−1|2)1−2β1dA). Hence, there exists an analytic self-
map ϕ of D such that Cϕ has dense range in D1−2β1 but does not have dense range in D1−2β2 . This
also shows that ϕ being a weak-star generator of H∞ does not imply that polynomials are dense in
D(ϕ(D), (1 − |ϕ−1|2)1−2βdA) for all 1/2 < β < 1.

It is well-known that if ϕ is a weak-star generator of H∞, then the polynomials are dense in the
Bergman space A2(ϕ(D)), but the converse is not true in general. The following theorem gives a
condition for the converse to hold for certain analytic self-maps of D.

Theorem 13. Suppose 1/2 < β < 1 and ϕ ∈ D1−2β is an analytic map-self of D such that the
polynomials are dense in A2(ϕ(D)). Then the following statements are equivalent to each other:

(i) {Cϕp : p is a polynomial} is dense in A2
1−2β.

(ii) ϕ is a weak-star generator of H∞.
(iii) ϕ is univalent on the open unit disc.

Proof. If {Cϕp : p is a polynomial} is dense in A2
1−2β, then ϕ is clearly univalent on D by the beginning

of the proof of Theorem 6. This shows that (i) implies (iii).
To prove that (iii) implies (ii), assume that ϕ ∈ D1−2β is univalent on the open unit disc. Then ϕ is

also univalent on the closed unit disc by Corollary 3.5 in [3] and the continuity of ϕ on D. Thus, ϕ−1

is continuous on ϕ(D). By Lemma 9, there is a sequence {pk} of polynomials such that pk converges

AIMS Mathematics Volume 8, Issue 2, 2708–2719.
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uniformly to ϕ−1. Then pk ◦ ϕ converges uniformly to f (z) = z. This implies that ϕ is a weak-star
generator of H∞ since z is the weak-star generator of H∞.

Finally, let us assume that (ii) holds. Then for any f ∈ H∞ there exists a sequence {pk} of
polynomials such that pk(ϕ(z))ϕ(z) → f (z) pointwise on D and {‖pk‖∞} is bounded. By the dominated
convergence theorem, we have ‖Cϕpk − f ‖A2

1−2β
→ 0 as k → ∞. This shows that (ii) implies (i) and

completes the proof of the theorem. �

3. Cyclic vectors and composition operators

Choosing β = 0 and β = ±1/2 in Theorem 6, we see that, for univalent functions ϕ : D→ D, R(Cϕ)
is dense in A2(D) if and only if the polynomials are dense in A2(ϕ(D), (1 − |ϕ−1|2)2dA), R(Cϕ) is dense
in H2(D) if and only if the polynomials are dense in A2(ϕ(D), (1 − |ϕ−1|2)dA) (see [3]), and R(Cϕ) is
dense in D if and only if the polynomials are dense in A2(ϕ(D)) (see [7]).

Closely related to these discussions, we mention the following result of Hedberg from [25].

Theorem 14. If f is in the Bergman space A2 and if f is the derivative of a univalent function, then f
is a cyclic vector for A2. Equivalently, if ϕ ∈ D is univalent, then H∞(ϕ(D)) is dense in A2(ϕ(D)).

The proof of Theorem 14 in [25] is quite technical. If ϕ is univalent and (ϕ−1)′ can be approximated
by polynomials on ϕ(D), we will give a simpler proof for the density of H∞(ϕ(D)) in A2(ϕ(D)). The
above condition about (ϕ−1)′ seems natural because, as the (normalized) area of D = ϕ−1(ϕ(D)), we
have ∫

ϕ(D)
|(ϕ−1)′|2dA = 1.

Thus, (ϕ−1)′ ∈ A2(ϕ(D)).

Proposition 15. Suppose ϕ is an analytic self-map of D and ϕ ∈ D. Then the function z belongs to
R(Cϕ) in D if and only if ϕ is univalent and (ϕ−1)′ can be approximated by polynomials in A2(ϕ(D)).

Proof. If ϕ is univalent and there is a sequence {pk} of polynomials such that∫
ϕ(D)
|(pk − (ϕ−1)′)(w)|2dA(w)→ 0,

then ∫
ϕ(D)
|(pk − (ϕ−1)′)(w)|2dA(w)

=

∫
D

|pk(ϕ(z)) − (ϕ−1)′(ϕ(z))|2|ϕ′(z)|2dA(z)

=

∫
D

|pk(ϕ(z))ϕ′(z) − (ϕ−1)′(ϕ(z))ϕ′(z)|2dA(z)

=

∫
D

|pk(ϕ(z))ϕ′(z) − 1|2dA(z)→ 0

as k → ∞. Write
qk(z) =

∫ z

0
pk(u)du, k ≥ 1.

AIMS Mathematics Volume 8, Issue 2, 2708–2719.
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Then qk is also a polynomial for each k and

(Cϕqk)′(z) =

(∫ ϕ(z)

0
pk(u)du

)′
= pk(ϕ(z))ϕ′(z).

Thus ∫
D

|(Cϕqk)′ − 1|2dA(z)→ 0, k → ∞,

so the function z belongs to R(Cϕ) in D.
Conversely, if the function z is in the closure of R(Cϕ) in D, then ϕ is obviously univalent (see

the beginning of the proof of Theorem 6), and reversing the calculations above implies that there is a
sequence {pk} of polynomials such that∫

ϕ(D)
|(pk − (ϕ−1)′)(w)|2dA(w)→ 0

as k → ∞. This ends the proof. �

The following result gives a simpler proof for Hedberg’s theorem (i.e., Theorem 14) under an
additional assumption.

Proposition 16. Suppose ϕ is an analytic self-map of D and ϕ ∈ D. If the function z belongs to R(Cϕ)
in D, then H∞(ϕ(D)) is dense in A2(ϕ(D)).

Proof. Assume f̃ ∈ A2(ϕ(D)). Once again, z ∈ R(Cϕ) implies that ϕ is univalent. Thus, there is an
f ∈ A2(D) such that

f̃ (w) = f (ϕ−1(w))(ϕ−1)′(w).

Let pk be the k-th partial sum of the Taylor series of f . Then

‖pk − f ‖A2 → 0, k → ∞.

By the formula of changing variables,

‖(pk ◦ ϕ
−1)(ϕ−1)′ − f̃ ‖A2(ϕ(D)) → 0, k → ∞.

Since z ∈ R(Cϕ), it follows from Proposition 15 that there is a sequence {qn} of polynomials such that
qn converges to (ϕ−1)′ in A2(ϕ(D)). For any ε > 0 choose K0 such that

‖(pk ◦ ϕ
−1)(ϕ−1)′ − f̃ ‖A2(ϕ(D)) <

ε

2
for k ≥ K0.

Choose a positive integer N such that

‖(pK0 ◦ ϕ
−1)(qn − (ϕ−1)′)‖A2(ϕ(D)) <

ε

2
for n ≥ N.

Then for n ≥ N we have

‖(pK0 ◦ ϕ
−1)qn − f̃ ‖A2(ϕ(D))

≤ ‖(pK0 ◦ ϕ
−1)qn − pK0 ◦ ϕ

−1(ϕ−1)′‖A2(ϕ(D))

+ ‖pK0 ◦ ϕ
−1(ϕ−1)′ − f̃ ‖A2(ϕ(D)) < ε.

This shows that H∞(ϕ(D)) is dense in A2(ϕ(D)). �

AIMS Mathematics Volume 8, Issue 2, 2708–2719.
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Theorem 17. Suppose 1/2 < β < 1 and ϕ is a univalent analytic self-map of D with ϕ ∈ D1−2β. If Cϕ

has dense range in D1−2β, then ϕ′ is a cyclic vector for both Mβ
z and Mβ

ϕ on D1−2β.

Proof. Define
Eϕ : A2(ϕ(D), (1 − |ϕ−1|2)1−2βdA)→ A2

1−2β

by
Eϕ( f )(z) = ( f ◦ ϕ)(z)ϕ′(z).

Similarly, define
Eϕ−1 : A2

1−2β → A2(ϕ(D), (1 − |ϕ−1|2)1−2βdA)

by
Eϕ−1( f )(w) = ( f ◦ ϕ−1)(w)(ϕ−1)′(w).

Direct calculation shows that both Eϕ and Eϕ−1 are isometric operators and

EϕEϕ−1 = IA2
1−2β
, Eϕ−1 Eϕ = IA2(ϕ(D),(1−|ϕ−1 |2)1−2βdA),

are identity operators. Thus, for any function f ∈ A2
1−2β there is a function f̃ ∈ A2(ϕ(D), (1 −

|ϕ−1|2)1−2βdA) such that f (z) = f̃ (ϕ(z))ϕ′(z).
Assume {pk} is a sequence of polynomials such that∫

ϕ(D)
|pk(w) − f̃ (w)|2(1 − |ϕ−1|2)1−2βdA(w)→ 0, k → ∞.

Then ∫
D

|pk(ϕ)(z)ϕ′(z) − f (z)|2(1 − |z|2)1−2βdA(z)

=

∫
D

|pk(ϕ)(z)ϕ′(z) − f̃ (ϕ(z))ϕ′(z)|2(1 − |z|2)1−2βdA(z)

=

∫
D

|pk(ϕ(z)) − f̃ (ϕ(z))|2|ϕ′(z)|2(1 − |z|2)1−2βdA(z)

=

∫
ϕ(D)
|pk(w) − f̃ (w)|2(1 − |ϕ−1|2)1−2βdA(w)→ 0

as k → ∞. Note pk(ϕ)(z)ϕ′(z) = pk(Mϕ)(ϕ′)(z), this shows that ϕ′ is a cyclic vector of Mϕ on D1−2β. By
Proposition 10, ϕ′ is also a cyclic vector of Mz on D1−2β. �

4. Conclusions

In this paper, we show that Cϕ has dense range in H2
β if and only if the polynomials are dense in

a certain Dirichlet space D(G, (1 − |ϕ−1|2)1−2βdA) for 1/2 < β < 1(see Theorem 6). It follows that
if the range of Cϕ is dense in H2

β , then ϕ is a weak-star generator of H∞(see Theorems 12 and 13).
Moreover, the relation between the density of the range of Cϕ and the cyclic vector of the multiplier
Mβ

ϕ is studied(see Theorem 17).
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