Citation: Yassamine Chellouf, Banan Maayah, Shaher Momani, Ahmad Alawneh, Salam Alnabulsi. Numerical solution of fractional differential equations with temporal two-point BVPs using reproducing kernal Hilbert space method[J]. AIMS Mathematics, 2021, 6(4): 3465-3485. doi: 10.3934/math.2021207
[1] | C. Li, D. Qian, Y. Chen, On Riemann-Liouville and Caputo derivatives, Discrete Dyn. Nat. Soc., 2011 (2011), 1-15. |
[2] | R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal., 12 (2009), 299-318. |
[3] | M. D. Ortigueira, L. Rodríguez-Germá, J. J. Trujillo, Complex Grünwald-Letnikov, Liouville, Riemann-Liouville, and Caputo derivatives for analytic functions, Commun. Nonlinear Sci., 16 (2011), 4174-4182. doi: 10.1016/j.cnsns.2011.02.022 |
[4] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002 |
[5] | O. A. Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Soliton. Fract., 125 (2019), 163-170. doi: 10.1016/j.chaos.2019.05.025 |
[6] | J. Cresson, P. Inizan, Variational formulations of differential equations and asymmetric fractional embedding, J. Math. Anal. Appl., 385 (2012), 975-997. doi: 10.1016/j.jmaa.2011.07.022 |
[7] | G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Appl. Math. Lett, 22 (2009), 378-385. doi: 10.1016/j.aml.2008.06.003 |
[8] | B. S. H. Kashkari, M. I. Syam, Reproducing Kernel Method for Solving Nonlinear Fractional Fredholm Integrodifferential Equation, Complexity, 2018 (2018), 1-7. |
[9] | O. A. Arqub, B. Maayah, Solutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm with error estimates, Neural Comput. Appl., 29 (2018), 1465-1479. doi: 10.1007/s00521-016-2484-4 |
[10] | A. K. Albzeirat, M. Z. Ahmad, S. M. Momani, B. Maayah, Numerical solution of second-order fuzzy differential equation of integer and fractional order using reproducing kernel Hilbert space method tools, Far East Journal of Mathematical Sciences, 101 (2017), 1327-1351. doi: 10.17654/MS101061327 |
[11] | Y. Ren, Y. Qin, R. Sakthivel, Existence results for fractional order semilinear integro-diffrential evolution equations with infinite delay, Integr. Equat. Oper. Th., 67 (2010), 33-49. doi: 10.1007/s00020-010-1767-x |
[12] | L. Xu, X. Chu, H. Hu, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. doi: 10.1016/j.aml.2019.106000 |
[13] | L. Xu, H. Hu, F. Qin, Ultimate boundedness of impulsive fractional differential equations, Appl. Math. Lett., 62 (2016), 110-117. doi: 10.1016/j.aml.2016.06.011 |
[14] | X. Chu, L. Xu, H. Hu, Exponential quasi-synchronization of conformable fractional-order complex dynamical networks, Chaos Soliton. Fract., 144 (2020), 110268. |
[15] | A. Berlinet, C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, Springer US, 2004. |
[16] | B. Sriperumbudur, A. Gretton, K. Fukumizu, Hilbert space embeddings and metrics on probability measures, J. Mach. Learn. Res., 11 (2010), 1517--1561. |
[17] | R. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586-1593. doi: 10.1016/j.camwa.2009.08.039 |
[18] | R. Almeida, A. B. Malinowska, A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys., 51 (2010), 1-12. |
[19] | J. Lin, L. Rosasco, Generalization properties of doubly stochastic learning algorithms, J. Complexity, 47 (2018), 42-61. doi: 10.1016/j.jco.2018.02.004 |
[20] | O. A. Arqub, B. Maayah, Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator, Chaos Soliton. Fract., 117 (2018), 117-124. doi: 10.1016/j.chaos.2018.10.007 |
[21] | O. A. Arqub, Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions, Appl. Math. Comput., 73 (2007), 1243-1261. |
[22] | M. Klimek, Stationarity-conservation laws for fractional differential equations with variable coefficients, J. Phys. A-Math. Gen., 35 (2002), 6675-6693. doi: 10.1088/0305-4470/35/31/311 |
[23] | H. Beyrami, T. Lotfi, K. Mahdiani, Stability and error analysis of the reproducing kernel Hilbert space method for the solution of weakly singular Volterra integral equation on graded mesh, Appl. Numer. Math., 120 (2017), 197-214. doi: 10.1016/j.apnum.2017.05.010 |
[24] | S. Javan, S. Abbasbandy, M. Araghi, Application of Reproducing Kernel Hilbert Space Method for Solving a Class of Nonlinear Integral Equations, Math. Probl. Eng., 2017 (2017), 1-10. |
[25] | O. A. Arqub, M. Al-Smadi, N. Shawagfeh, Solving Fredholm integrodifferential equations using reproducing kernel Hilbert space method, Appl. Math. Comput., 219 (2013), 8938-8948. |
[26] | M. Al-Smadi, O. A. Arqub, S. Momani, A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equations, Math. Probl. Eng., 2013 (2013), 1-10. |
[27] | S. Bushnaq, B. Maayah, M. Ahmad, Reproducing kernel Hilbert space method for solving fredholm integrodifferential equations of fractional order, Italian Journal of Pure and Applied Mathematics, 36 (2016), 307-318. |
[28] | A. AlHabees, B. Maayah, S. Bushnaq, Solving fractional proportional delay integrodifferential equations of first order by reproducing kernel Hilbert space method, Global Journal of Pure and Applied Mathematics, 12 (2016), 3499-3516. |
[29] | S. Bushnaq, B. Maayah, S. Momani, A. Alsaedi, A reproducing kernel Hilbert space method for solving systems of fractional integrodifferential equations, Abstr. Appl. Anal., 2014 (2014), 1-6. |
[30] | Z. Altawallbeh, M. Al-Smadi, R. Abu-Gdairi, Approximate solution of second-order integrodifferential equation of Volterra type in RKHS method, Int. Journal of Math. Analysis, 7 (2013), 2145-2160. doi: 10.12988/ijma.2013.36136 |
[31] | B. Maayah, S. Bushnaq, M. Ahmad, S. Momani, Computational method for solving nonlinear voltera integro-differential equations, J. Comput. Theor. Nanos., 13 (2016), 7802-7806. doi: 10.1166/jctn.2016.5642 |
[32] | O. A. Arqub, Reproducing kernel algorithm for the analytical-numerical solutions of nonlinear systems of singular periodic boundary value problems, Math. Probl. Eng., 2015 (2015), 1-13. |
[33] | Z. Altawallbeh, M. Al-Smadi, I. Komashynska, A. Ateiwi, Numerical Solutions of Fractional Systems of Two-Point BVPs by Using the Iterative Reproducing Kernel Algorithm, Ukrainian Mathematical Journal, 70 (2018), 687-701. doi: 10.1007/s11253-018-1526-8 |
[34] | S. Bushnaq, B. Maayah, A. AlHabees, Application of multistep reproducing kernel Hilbert space method for solving giving up smoking model, International Journal of Pure and Applied Mathematics, 109 (2016), 311-324. |
[35] | M. Inc, A. Akgùl, The reproducing kernel Hilbert space method for solving Troesch's problem, Journal of the Association of Arab Universities for Basic and Applied Sciences, 14 (2013), 19-27. |
[36] | Z. Zhao, Y. Lin, J. Niu, Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems, Math. Model. Anal., 21 (2016), 466-477. doi: 10.3846/13926292.2016.1183240 |
[37] | X. Lù, M. Cui, Existence and numerical method for nonlinear third-order boundary value problem in the reproducing kernel space, Bound. Value Probl., 2010 (2010), 1-19. doi: 10.1155/2010/728101 |
[38] | B. Maayah, S. Bushnaq, A. Alsaedi, S. Momani, An efficient numerical method for solving chaotic and non-chaotic systems, J. Ramanujan Math. Soc., 33 (2018), 219-231. |
[39] | B. Maayah, S. Bushnaq, S. Momani, O. A. Arqub, Iterative multistep reproducing kernel Hilbert space method for solving strongly nonlinear oscillators, Adv. Math. Phys., 2014 (2014), 1-7. |
[40] | M. Al-Smadi, A. Freihat, H. Khalil, Numerical Multistep Approach for Solving Fractional Partial Differential Equations, Int. J. Comput. Meth., 14 (2017), 1-15. |
[41] | S. Bushnaq, B. Maayah, S. M. Momani, O. A. Arqub, Analytical simulation of singular second-order, three points boundary value problems for fredholm operator using computational kernel algorithm, J. Comput. Theor. Nanos., 13 (2016), 7816-7824. doi: 10.1166/jctn.2016.5783 |
[42] | K. Moaddy, A. Freihat, M. Al-Smadi, E. Abuteen, I. Hashim, Numerical investigation for handling fractional-order Rabinovich-Fabrikant model using the multistep approach, Soft Comput., 22 (2018), 773-782. doi: 10.1007/s00500-016-2378-5 |
[43] | D. Morrison, J. Riley, J. Zancanaro, Multiple shooting method for two-point boundary value problems, Commun. ACM, 5 (1962), 613-614. doi: 10.1145/355580.369128 |
[44] | S. Filipov, I. Gospodinov, I. Faragó, Shooting-projection method for two-point boundary value problems, Appl. Math. Lett., 72 (2017), 10-15. doi: 10.1016/j.aml.2017.04.002 |
[45] | R. Russell, L. Shampine, A collocation method for boundary value problems, Numer. Math., 19 (1972), 1-28. doi: 10.1007/BF01395926 |
[46] | H. Liang, M. Stynes, Collocation Methods for General Caputo Two-Point Boundary Value Problems, J. Sci. Comput., 76 (2018), 390-425. doi: 10.1007/s10915-017-0622-5 |
[47] | R. P. Agarwal, Y. M. Chow, Finite-difference methods for boundary-value problems of differential equations with deviating arguments, Comput. Math. Appl., 12 (1986), 1143-1153. doi: 10.1016/0898-1221(86)90018-0 |
[48] | M. M. Chawla, C. P. Katti, Finite difference methods for two-point boundary value problems involving high order differential equations, BIT Numerical Mathematics, 19 (1979), 27-33. doi: 10.1007/BF01931218 |
[49] | A. Miele, R. Iyer, Modified quasilinearization method for solving nonlinear, two-point boundary-value problems, J. Math. Anal. Appl., 36 (1971), 674-692. doi: 10.1016/0022-247X(71)90048-5 |
[50] | R. Sylvester, F. Meyer, Two Point Boundary Problems by Quasilinearization, Journal of the Society for Industrial and Applied Mathematics, 13 (1965), 586-602. doi: 10.1137/0113038 |
[51] | O. A. Arqub, Z. Abo-Hammour, S. Momani, N. Shawagfeh, Solving singular two-point boundary value problems using continuous genetic algorithm, Abstr. Appl. Anal., 2012 (2012), 1-25. |
[52] | Z. Abo-Hammour, M. Yusuf, N. Mirza, S. Mirza, Numerical solution of second-order, two-point boundary value problems using continuous genetic algorithms, Int. J. Numer. Meth. Eng., 61 (2004), 1219-1242. doi: 10.1002/nme.1108 |
[53] | H. Jaradat, Numerical solution of temporal two-point boundary value problems using continuous genetic algorithms, University of jordan, 2006. |
[54] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 1998. |
[55] | K. Diethelm, The analysis of fractional differential equations, Springer Verlag, Berlin, Heidelberg, 2010. |
[56] | C. Li, M. Cui, The exact solution for solving a class nonlinear operator equations in the reproducing kernel space, Appl. Math. Comput., 143 (2003), 393-399. |
[57] | M. Cui, Y. Lin, Nonlinear Numerical Analysis in Reproducing Kernel Space, Nova Science Publishers, 2009. |