Research article

Numerical solution of fractional differential equations with temporal two-point BVPs using reproducing kernal Hilbert space method

  • Received: 07 September 2020 Accepted: 17 December 2020 Published: 20 January 2021
  • MSC : 34A08, 34B15, 46E22, 65R10

  • In this paper, the reproducing kernel Hilbert space method had been extended to model a numerical solution with two-point temporal boundary conditions for the fractional derivative in the Caputo sense, convergent analysis and error bounds are discussed to verify the theoretical results. Numerical examples are given to illustrate the accuracy and efficiency of the presented approach.

    Citation: Yassamine Chellouf, Banan Maayah, Shaher Momani, Ahmad Alawneh, Salam Alnabulsi. Numerical solution of fractional differential equations with temporal two-point BVPs using reproducing kernal Hilbert space method[J]. AIMS Mathematics, 2021, 6(4): 3465-3485. doi: 10.3934/math.2021207

    Related Papers:

  • In this paper, the reproducing kernel Hilbert space method had been extended to model a numerical solution with two-point temporal boundary conditions for the fractional derivative in the Caputo sense, convergent analysis and error bounds are discussed to verify the theoretical results. Numerical examples are given to illustrate the accuracy and efficiency of the presented approach.


    加载中


    [1] C. Li, D. Qian, Y. Chen, On Riemann-Liouville and Caputo derivatives, Discrete Dyn. Nat. Soc., 2011 (2011), 1-15.
    [2] R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal., 12 (2009), 299-318.
    [3] M. D. Ortigueira, L. Rodríguez-Germá, J. J. Trujillo, Complex Grünwald-Letnikov, Liouville, Riemann-Liouville, and Caputo derivatives for analytic functions, Commun. Nonlinear Sci., 16 (2011), 4174-4182. doi: 10.1016/j.cnsns.2011.02.022
    [4] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002
    [5] O. A. Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Soliton. Fract., 125 (2019), 163-170. doi: 10.1016/j.chaos.2019.05.025
    [6] J. Cresson, P. Inizan, Variational formulations of differential equations and asymmetric fractional embedding, J. Math. Anal. Appl., 385 (2012), 975-997. doi: 10.1016/j.jmaa.2011.07.022
    [7] G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Appl. Math. Lett, 22 (2009), 378-385. doi: 10.1016/j.aml.2008.06.003
    [8] B. S. H. Kashkari, M. I. Syam, Reproducing Kernel Method for Solving Nonlinear Fractional Fredholm Integrodifferential Equation, Complexity, 2018 (2018), 1-7.
    [9] O. A. Arqub, B. Maayah, Solutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm with error estimates, Neural Comput. Appl., 29 (2018), 1465-1479. doi: 10.1007/s00521-016-2484-4
    [10] A. K. Albzeirat, M. Z. Ahmad, S. M. Momani, B. Maayah, Numerical solution of second-order fuzzy differential equation of integer and fractional order using reproducing kernel Hilbert space method tools, Far East Journal of Mathematical Sciences, 101 (2017), 1327-1351. doi: 10.17654/MS101061327
    [11] Y. Ren, Y. Qin, R. Sakthivel, Existence results for fractional order semilinear integro-diffrential evolution equations with infinite delay, Integr. Equat. Oper. Th., 67 (2010), 33-49. doi: 10.1007/s00020-010-1767-x
    [12] L. Xu, X. Chu, H. Hu, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. doi: 10.1016/j.aml.2019.106000
    [13] L. Xu, H. Hu, F. Qin, Ultimate boundedness of impulsive fractional differential equations, Appl. Math. Lett., 62 (2016), 110-117. doi: 10.1016/j.aml.2016.06.011
    [14] X. Chu, L. Xu, H. Hu, Exponential quasi-synchronization of conformable fractional-order complex dynamical networks, Chaos Soliton. Fract., 144 (2020), 110268.
    [15] A. Berlinet, C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, Springer US, 2004.
    [16] B. Sriperumbudur, A. Gretton, K. Fukumizu, Hilbert space embeddings and metrics on probability measures, J. Mach. Learn. Res., 11 (2010), 1517--1561.
    [17] R. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586-1593. doi: 10.1016/j.camwa.2009.08.039
    [18] R. Almeida, A. B. Malinowska, A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys., 51 (2010), 1-12.
    [19] J. Lin, L. Rosasco, Generalization properties of doubly stochastic learning algorithms, J. Complexity, 47 (2018), 42-61. doi: 10.1016/j.jco.2018.02.004
    [20] O. A. Arqub, B. Maayah, Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator, Chaos Soliton. Fract., 117 (2018), 117-124. doi: 10.1016/j.chaos.2018.10.007
    [21] O. A. Arqub, Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions, Appl. Math. Comput., 73 (2007), 1243-1261.
    [22] M. Klimek, Stationarity-conservation laws for fractional differential equations with variable coefficients, J. Phys. A-Math. Gen., 35 (2002), 6675-6693. doi: 10.1088/0305-4470/35/31/311
    [23] H. Beyrami, T. Lotfi, K. Mahdiani, Stability and error analysis of the reproducing kernel Hilbert space method for the solution of weakly singular Volterra integral equation on graded mesh, Appl. Numer. Math., 120 (2017), 197-214. doi: 10.1016/j.apnum.2017.05.010
    [24] S. Javan, S. Abbasbandy, M. Araghi, Application of Reproducing Kernel Hilbert Space Method for Solving a Class of Nonlinear Integral Equations, Math. Probl. Eng., 2017 (2017), 1-10.
    [25] O. A. Arqub, M. Al-Smadi, N. Shawagfeh, Solving Fredholm integrodifferential equations using reproducing kernel Hilbert space method, Appl. Math. Comput., 219 (2013), 8938-8948.
    [26] M. Al-Smadi, O. A. Arqub, S. Momani, A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equations, Math. Probl. Eng., 2013 (2013), 1-10.
    [27] S. Bushnaq, B. Maayah, M. Ahmad, Reproducing kernel Hilbert space method for solving fredholm integrodifferential equations of fractional order, Italian Journal of Pure and Applied Mathematics, 36 (2016), 307-318.
    [28] A. AlHabees, B. Maayah, S. Bushnaq, Solving fractional proportional delay integrodifferential equations of first order by reproducing kernel Hilbert space method, Global Journal of Pure and Applied Mathematics, 12 (2016), 3499-3516.
    [29] S. Bushnaq, B. Maayah, S. Momani, A. Alsaedi, A reproducing kernel Hilbert space method for solving systems of fractional integrodifferential equations, Abstr. Appl. Anal., 2014 (2014), 1-6.
    [30] Z. Altawallbeh, M. Al-Smadi, R. Abu-Gdairi, Approximate solution of second-order integrodifferential equation of Volterra type in RKHS method, Int. Journal of Math. Analysis, 7 (2013), 2145-2160. doi: 10.12988/ijma.2013.36136
    [31] B. Maayah, S. Bushnaq, M. Ahmad, S. Momani, Computational method for solving nonlinear voltera integro-differential equations, J. Comput. Theor. Nanos., 13 (2016), 7802-7806. doi: 10.1166/jctn.2016.5642
    [32] O. A. Arqub, Reproducing kernel algorithm for the analytical-numerical solutions of nonlinear systems of singular periodic boundary value problems, Math. Probl. Eng., 2015 (2015), 1-13.
    [33] Z. Altawallbeh, M. Al-Smadi, I. Komashynska, A. Ateiwi, Numerical Solutions of Fractional Systems of Two-Point BVPs by Using the Iterative Reproducing Kernel Algorithm, Ukrainian Mathematical Journal, 70 (2018), 687-701. doi: 10.1007/s11253-018-1526-8
    [34] S. Bushnaq, B. Maayah, A. AlHabees, Application of multistep reproducing kernel Hilbert space method for solving giving up smoking model, International Journal of Pure and Applied Mathematics, 109 (2016), 311-324.
    [35] M. Inc, A. Akgùl, The reproducing kernel Hilbert space method for solving Troesch's problem, Journal of the Association of Arab Universities for Basic and Applied Sciences, 14 (2013), 19-27.
    [36] Z. Zhao, Y. Lin, J. Niu, Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems, Math. Model. Anal., 21 (2016), 466-477. doi: 10.3846/13926292.2016.1183240
    [37] X. Lù, M. Cui, Existence and numerical method for nonlinear third-order boundary value problem in the reproducing kernel space, Bound. Value Probl., 2010 (2010), 1-19. doi: 10.1155/2010/728101
    [38] B. Maayah, S. Bushnaq, A. Alsaedi, S. Momani, An efficient numerical method for solving chaotic and non-chaotic systems, J. Ramanujan Math. Soc., 33 (2018), 219-231.
    [39] B. Maayah, S. Bushnaq, S. Momani, O. A. Arqub, Iterative multistep reproducing kernel Hilbert space method for solving strongly nonlinear oscillators, Adv. Math. Phys., 2014 (2014), 1-7.
    [40] M. Al-Smadi, A. Freihat, H. Khalil, Numerical Multistep Approach for Solving Fractional Partial Differential Equations, Int. J. Comput. Meth., 14 (2017), 1-15.
    [41] S. Bushnaq, B. Maayah, S. M. Momani, O. A. Arqub, Analytical simulation of singular second-order, three points boundary value problems for fredholm operator using computational kernel algorithm, J. Comput. Theor. Nanos., 13 (2016), 7816-7824. doi: 10.1166/jctn.2016.5783
    [42] K. Moaddy, A. Freihat, M. Al-Smadi, E. Abuteen, I. Hashim, Numerical investigation for handling fractional-order Rabinovich-Fabrikant model using the multistep approach, Soft Comput., 22 (2018), 773-782. doi: 10.1007/s00500-016-2378-5
    [43] D. Morrison, J. Riley, J. Zancanaro, Multiple shooting method for two-point boundary value problems, Commun. ACM, 5 (1962), 613-614. doi: 10.1145/355580.369128
    [44] S. Filipov, I. Gospodinov, I. Faragó, Shooting-projection method for two-point boundary value problems, Appl. Math. Lett., 72 (2017), 10-15. doi: 10.1016/j.aml.2017.04.002
    [45] R. Russell, L. Shampine, A collocation method for boundary value problems, Numer. Math., 19 (1972), 1-28. doi: 10.1007/BF01395926
    [46] H. Liang, M. Stynes, Collocation Methods for General Caputo Two-Point Boundary Value Problems, J. Sci. Comput., 76 (2018), 390-425. doi: 10.1007/s10915-017-0622-5
    [47] R. P. Agarwal, Y. M. Chow, Finite-difference methods for boundary-value problems of differential equations with deviating arguments, Comput. Math. Appl., 12 (1986), 1143-1153. doi: 10.1016/0898-1221(86)90018-0
    [48] M. M. Chawla, C. P. Katti, Finite difference methods for two-point boundary value problems involving high order differential equations, BIT Numerical Mathematics, 19 (1979), 27-33. doi: 10.1007/BF01931218
    [49] A. Miele, R. Iyer, Modified quasilinearization method for solving nonlinear, two-point boundary-value problems, J. Math. Anal. Appl., 36 (1971), 674-692. doi: 10.1016/0022-247X(71)90048-5
    [50] R. Sylvester, F. Meyer, Two Point Boundary Problems by Quasilinearization, Journal of the Society for Industrial and Applied Mathematics, 13 (1965), 586-602. doi: 10.1137/0113038
    [51] O. A. Arqub, Z. Abo-Hammour, S. Momani, N. Shawagfeh, Solving singular two-point boundary value problems using continuous genetic algorithm, Abstr. Appl. Anal., 2012 (2012), 1-25.
    [52] Z. Abo-Hammour, M. Yusuf, N. Mirza, S. Mirza, Numerical solution of second-order, two-point boundary value problems using continuous genetic algorithms, Int. J. Numer. Meth. Eng., 61 (2004), 1219-1242. doi: 10.1002/nme.1108
    [53] H. Jaradat, Numerical solution of temporal two-point boundary value problems using continuous genetic algorithms, University of jordan, 2006.
    [54] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 1998.
    [55] K. Diethelm, The analysis of fractional differential equations, Springer Verlag, Berlin, Heidelberg, 2010.
    [56] C. Li, M. Cui, The exact solution for solving a class nonlinear operator equations in the reproducing kernel space, Appl. Math. Comput., 143 (2003), 393-399.
    [57] M. Cui, Y. Lin, Nonlinear Numerical Analysis in Reproducing Kernel Space, Nova Science Publishers, 2009.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2643) PDF downloads(140) Cited by(4)

Article outline

Figures and Tables

Figures(3)  /  Tables(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog