This paper presents a novel spatio-temporal meshless method (STMM) for solving the time fractional partial differential equations (TFPDEs) with variable coefficients based on the space-time metric. The main idea of the STMM is to directly approximate the solutions of fractional PDEs by using a multiquadric function with the space-time distance within a space-time scale framework. Compared with the existing methods, the present meshless STMM entirely avoids the difference approximation of fractional temporal derivatives and can be easily applied to complicated irregular geometries. Furthermore, both regular and irregular nodal distribution can be used without loss of accuracy. For these reasons, this new space-time meshless method could be regarded as a competitive alternative to the conventional numerical algorithms based on difference decomposition for solving the TFPDEs with variable coefficients. Numerical experiments confirm the ability and accuracy of the proposed methodology.
Citation: Xiangyun Qiu, Xingxing Yue. Solving time fractional partial differential equations with variable coefficients using a spatio-temporal meshless method[J]. AIMS Mathematics, 2024, 9(10): 27150-27166. doi: 10.3934/math.20241320
This paper presents a novel spatio-temporal meshless method (STMM) for solving the time fractional partial differential equations (TFPDEs) with variable coefficients based on the space-time metric. The main idea of the STMM is to directly approximate the solutions of fractional PDEs by using a multiquadric function with the space-time distance within a space-time scale framework. Compared with the existing methods, the present meshless STMM entirely avoids the difference approximation of fractional temporal derivatives and can be easily applied to complicated irregular geometries. Furthermore, both regular and irregular nodal distribution can be used without loss of accuracy. For these reasons, this new space-time meshless method could be regarded as a competitive alternative to the conventional numerical algorithms based on difference decomposition for solving the TFPDEs with variable coefficients. Numerical experiments confirm the ability and accuracy of the proposed methodology.
[1] | V. R. Hosseini, W. N. Zou, The peridynamic differential operator for solving time-fractional partial differential equations, Nonlinear Dyn., 109 (2022), 1823–1850. https://doi.org/10.1007/s11071-022-07424-4 doi: 10.1007/s11071-022-07424-4 |
[2] | Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001 |
[3] | J. C. Yu, Y. Q. Feng, On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conservation laws, Chaos Solitons Fract., 182 (2024), 114855. https://doi.org/10.1016/j.chaos.2024.114855 |
[4] | J. Lin, J. Bai, S. Reutskiy, J. Lu, A novel RBF-based meshless method for solving time-fractional transport equations in 2D and 3D arbitrary domains, Eng. Comput., 39 (2023), 1905–1922. https://doi.org/10.1007/s00366-022-01601-0 doi: 10.1007/s00366-022-01601-0 |
[5] | A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. https://doi.org/10.1016/j.jcp.2014.09.031 doi: 10.1016/j.jcp.2014.09.031 |
[6] | F. Mainardi, A. Mura, G. Pagnini, R. Gorenflo, Time-fractional diffusion of distributed order, J. Vibration Control, 14 (2008), 1267–1290. https://doi.org/10.1177/1077546307087452 doi: 10.1177/1077546307087452 |
[7] | S. C. Yi, H. G. Sun, A hybrided trapezoidal-difference scheme for nonlinear time-fractional fourth-order advection-dispersion equation based on Chebyshev spectral collocation method, Adv. Appl. Math. Mech., 11 (2019), 197–215. https://doi.org/10.4208/aamm.OA-2018-0045 doi: 10.4208/aamm.OA-2018-0045 |
[8] | M. Naber, Time fractional Schrödinger equation, J. Math. Phys., 45 (2004), 3339–3352. https://doi.org/10.1063/1.1769611 doi: 10.1063/1.1769611 |
[9] | I. Khan, N. A. Shah, Y. Mahsud, D. Vieru, Heat transfer analysis in a Maxwell fluid over an oscillating vertical plate using fractional Caputo-Fabrizio derivatives, Eur. Phys. J. Plus, 132 (2017), 1–12. https://doi.org/10.1140/epjp/i2017-11456-2 doi: 10.1140/epjp/i2017-11456-2 |
[10] | A. Mardani, M. R. Hooshmandasl, M. H. Heydari, C. Cattani, A meshless method for solving the time fractional advection-diffusion equation with variable coefficients, Comput. Math. Appl., 75 (2018), 122–133. https://doi.org/10.1016/j.camwa.2017.08.038 doi: 10.1016/j.camwa.2017.08.038 |
[11] | G. S. Teodoro, J. A. T. Machado, E. C. De Oliveira, A review of definitions of fractional derivatives and other operator, J. Comput. Phys., 388 (2019), 195–208. https://doi.org/10.1016/j.jcp.2019.03.008 |
[12] | W. Chen, H. G. Sun, X. C. Li, Fractional derivative modeling in mechanics and engineering, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-8802-7 |
[13] | C. Li, W. H. Deng, A new family of difference schemes for space fractional advection diffusion equation, Adv. Appl. Math. Mech., 9 (2017), 282–306. https://doi.org/10.4208/aamm.2015.m1069 doi: 10.4208/aamm.2015.m1069 |
[14] | W. K. Zahra, M. A. Nasr, Exponentially fitted methods for solving two-dimensional time fractional damped Klein-Gordon equation with nonlinear source term, Commun. Nonlinear Sci. Numer. Simul., 73 (2019), 177–194. https://doi.org/10.1016/j.cnsns.2019.01.016 doi: 10.1016/j.cnsns.2019.01.016 |
[15] | X. Q. Yue, W. P. Bu, S. Shu, M. H. Liu, S. Wang, Fully finite element adaptive AMG method for time-space Caputo-Riesz fractional diffusion equations, Adv. Appl. Math. Mech., 10 (2018), 1103–1125. https://doi.org/10.4208/aamm.OA-2018-0046 doi: 10.4208/aamm.OA-2018-0046 |
[16] | R. Roohi, M. H. Heydari, M. Aslami, M. R. Mahmoudi, A comprehensive numerical study of space-time fractional bioheat equation using fractional-order Legendre functions, Eur. Phys. J. Plus, 133 (2018), 412. https://doi.org/10.1140/epjp/i2018-12204-x doi: 10.1140/epjp/i2018-12204-x |
[17] | H. Q. Liu, F. J. Wang, A novel semi-analytical meshless method for the thickness optimization of porous material distributed on sound barriers, Appl. Math. Lett., 147 (2024), 108844. https://doi.org/10.1016/j.aml.2023.108844 doi: 10.1016/j.aml.2023.108844 |
[18] | L. Y. Lan, Z. Y. Zho, H. Q. Liu, X. Wei, F. J. Wang, An ACA-BM-SBM for 2D acoustic sensitivity analysis, AIMS Math., 9 (2024), 1939–1958. https://doi.org/10.3934/math.2024096 doi: 10.3934/math.2024096 |
[19] | G. Z. Wu, F. J. Wang, L. Qiu, Physics-informed neural network for solving Hausdorff derivative Poisson equations, Fractals, 31 (2023), 2340103. https://doi.org/10.1142/S0218348X23401035 doi: 10.1142/S0218348X23401035 |
[20] | H. Y. Hou, X. L. Li, A meshless superconvergent stabilized collocation method for linear and nonlinear elliptic problems with accuracy analysis, Appl. Math. Comput., 477 (2024), 128801. https://doi.org/10.1016/j.amc.2024.128801 doi: 10.1016/j.amc.2024.128801 |
[21] | X. L. Li, A weak Galerkin meshless method for incompressible Navier-Stokes equations, J. Comput. Appl. Math., 445 (2024), 115823. https://doi.org/10.1016/j.cam.2024.115823 doi: 10.1016/j.cam.2024.115823 |
[22] | X. L. Li, H. Y. Dong, The element-free Galerkin method for the nonlinear p-Laplacian equation, Comput. Math. Appl., 75 (2018), 2549–2560. https://doi.org/10.1016/j.camwa.2017.12.019 doi: 10.1016/j.camwa.2017.12.019 |
[23] | M. Abbaszadeh, M. Dehghan, Direct meshless local Petrov-Galerkin (DMLPG) method for time-fractional fourth-order reaction-diffusion problem on complex domains, Comput. Math. Appl., 79 (2020), 876–888. https://doi.org/10.1016/j.camwa.2019.08.001 doi: 10.1016/j.camwa.2019.08.001 |
[24] | A. Mirkhezri, MLPG method based on particular solution to identify a time-dependent boundary source for the time-fractional diffusion equation, Int. J. Comput. Math., 98 (2021), 657–670. https://doi.org/10.1080/00207160.2020.1777403 doi: 10.1080/00207160.2020.1777403 |
[25] | T. Jiang, X. C. Wang, J. J. Huang, J. L. Ren, An effective pure meshfree method for 1D/2D time fractional convection-diffusion problems on irregular geometry, Eng. Anal. Bound. Elem., 118 (2020), 265–276. https://doi.org/10.1016/j.enganabound.2020.06.008 doi: 10.1016/j.enganabound.2020.06.008 |
[26] | T. Jiang, X. C. Wang, J. L. Ren, J. J. Huang, J. Y. Yuan, A high-efficient accurate coupled mesh-free scheme for 2D/3D space-fractional convection-diffusion/Burgers' problems, Comput. Math. Appl., 140 (2023), 260–281. https://doi.org/10.1016/j.camwa.2022.10.020 doi: 10.1016/j.camwa.2022.10.020 |
[27] | Z. J. Fu, S. Reutskiy, H. G. Sun, J. Ma, M. A. Khan, A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains, Appl. Math. Lett., 94 (2019), 105–111. https://doi.org/10.1016/j.aml.2019.02.025 doi: 10.1016/j.aml.2019.02.025 |
[28] | C. M. Fan, C. H. Yang, M. H. Gu, Applications of the local RBF collocation method and the fictitious time integration method for Burgers' equations, Procedia Eng., 79 (2014), 569–574. https://doi.org/10.1016/j.proeng.2014.06.380 doi: 10.1016/j.proeng.2014.06.380 |
[29] | W. Z. Qu, A high accuracy method for long-time evolution of acoustic wave equation, Appl. Math. Lett., 98 (2019), 135–141. https://doi.org/10.1016/j.aml.2019.06.010 doi: 10.1016/j.aml.2019.06.010 |
[30] | W. Hu, Z. J. Fu, Z. C. Tang, Y. Gu, A meshless collocation method for solving the inverse Cauchy problem associated with the variable-order fractional heat conduction model under functionally graded materials, Eng. Anal. Bound. Elem., 140 (2022), 132–144. https://doi.org/10.1016/j.enganabound.2022.04.007 doi: 10.1016/j.enganabound.2022.04.007 |
[31] | L. Y. Qing, X. L. Li, Meshless analysis of fractional diffusion-wave equations by generalized finite difference method, Appl. Math. Lett., 157 (2024), 109204. https://doi.org/10.1016/j.aml.2024.109204 doi: 10.1016/j.aml.2024.109204 |
[32] | S. Reutskiy, The backward substitution method for multipoint problems with linear Volterra-Fredholm integro-differential equations of the neutral type, J. Comput. Appl. Math., 296 (2016), 724–738. https://doi.org/10.1016/j.cam.2015.10.013 doi: 10.1016/j.cam.2015.10.013 |
[33] | Y. H. Zhang, T. Rabczuk, J. Lin, J. Lu, C. S. Chen, Numerical simulations of two-dimensional incompressible Navier-Stokes equations by the backward substitution projection method, Appl. Math. Comput., 466 (2024), 128472. https://doi.org/10.1016/j.amc.2023.128472 doi: 10.1016/j.amc.2023.128472 |
[34] | Y. Gu, C. M. Fan, R. P. Xu, Localized method of fundamental solutions for large-scale modelling of two-dimensional elasticity problems, Appl. Math. Lett., 93 (2019), 8–14. https://doi.org/10.1016/j.aml.2019.01.035 doi: 10.1016/j.aml.2019.01.035 |
[35] | F. J. Wang, Y. Gu, W. Z. Qu, C. Z. Zhang, Localized boundary knot method and its application to large-scale acoustic problems, Comput. Methods Appl. Mech. Eng., 361 (2020), 112729. https://doi.org/10.1016/j.cma.2019.112729 doi: 10.1016/j.cma.2019.112729 |
[36] | C. Wang, F. J. Wang, Y. P. Gong, Analysis of 2D heat conduction in nonlinear functionally graded materials using a local semi-analytical meshless method, AIMS Math., 6 (2021), 12599–12618. https://doi.org/10.3934/math.2021726 doi: 10.3934/math.2021726 |
[37] | Z. J. Fu, Z. C. Tang, Q. Xi, Q. G. Liu, Y. Gu, F. J. Wang, Localized collocation schemes and their applications, Acta Mech. Sinica, 38 (2022), 422167. https://doi.org/10.1007/s10409-022-22167-x doi: 10.1007/s10409-022-22167-x |
[38] | X. T. Liu, H. G. Sun, Y. Zhang, Z. J. Fu, A scale-dependent finite difference approximation for time fractional differential equation, Comput. Mech., 63 (2019), 429–442. https://doi.org/10.1007/s00466-018-1601-x doi: 10.1007/s00466-018-1601-x |
[39] | Z. J. Fu, W. Chen, H. T. Yang, Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys., 235 (2013), 52–66. https://doi.org/10.1016/j.jcp.2012.10.018 doi: 10.1016/j.jcp.2012.10.018 |
[40] | M. Hamaidi, A. Naji, A. Charafi, Space-time localized radial basis function collocation method for solving parabolic and hyperbolic equations, Eng. Anal. Bound. Elem., 67 (2016), 152–163. https://doi.org/10.1016/j.enganabound.2016.03.009 doi: 10.1016/j.enganabound.2016.03.009 |
[41] | X. X. Yue, F. J. Wang, Q. S. Hua, X. Y. Qiu, A novel space-time meshless method for nonhomogeneous convection-diffusion equations with variable coefficients, Appl. Math. Lett., 92 (2019), 144–150. https://doi.org/10.1016/j.aml.2019.01.018 doi: 10.1016/j.aml.2019.01.018 |
[42] | J. J. Benito, Á. García, M. Negreanu, F. Ureña, A. M. Vargas, A novel spatio-temporal fully meshless method for parabolic PDEs, Mathematics, 10 (2022), 1–12. https://doi.org/10.3390/math10111870 doi: 10.3390/math10111870 |
[43] | J. Flores, A. García, M. Negreanu, E. Salete, F. Ureña, A. M. Vargas, A spatio-temporal fully meshless method for hyperbolic PDEs, J. Comput. Appl. Math., 430 (2023), 115194. https://doi.org/10.1016/j.cam.2023.115194 doi: 10.1016/j.cam.2023.115194 |
[44] | L. Qiu, X. D. Ma, Q. H. Qin, A novel meshfree method based on spatio-temporal homogenization functions for one-dimensional fourth-order fractional diffusion-wave equations, Appl. Math. Lett., 142 (2023), 108657. https://doi.org/10.1016/j.aml.2023.108657 doi: 10.1016/j.aml.2023.108657 |
[45] | W. Chang, C. S. Chen, W. Li, Solving fourth order differential equations using particular solutions of Helmholtz-type equations, Appl. Math. Lett., 86 (2018), 179–185. https://doi.org/10.1016/j.aml.2018.06.012 doi: 10.1016/j.aml.2018.06.012 |
[46] | C. S. Liu, A modified Trefftz method for two-dimensional Laplace equation considering the domain's characteristic length, Comput. Model. Eng. Sci., 21 (2007), 53–66. https://doi.org/10.3970/cmes.2007.021.053 doi: 10.3970/cmes.2007.021.053 |
[47] | L. Qiu, W. Chen, F. J. Wang, C. S. Liu, Q. S. Hua, Boundary function method for boundary identification in two-dimensional steady-state nonlinear heat conduction problems, Eng. Anal. Bound. Elem., 103 (2019), 101–108. https://doi.org/10.1016/j.enganabound.2019.03.004 doi: 10.1016/j.enganabound.2019.03.004 |
[48] | F. J. Wang, Q. S. Hua, C. S. Liu, Boundary function method for inverse geometry problem in two-dimensional anisotropic heat conduction equation, Appl. Math. Lett., 84 (2018), 130–136. https://doi.org/10.1016/j.aml.2018.05.004 doi: 10.1016/j.aml.2018.05.004 |
[49] | F. J. Wang, W. Chen, C. Z. Zhang, Q. S. Hua, Kansa method based on the Hausdorff fractal distance for Hausdorff derivative Poisson equations, Fractals, 26 (2018), 1850084. https://doi.org/10.1142/S0218348X18500846 doi: 10.1142/S0218348X18500846 |
[50] | M. Uddin, S. Haq, RBFs approximation method for time fractional partial differential equations, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4208–4214. https://doi.org/10.1016/j.cnsns.2011.03.021 doi: 10.1016/j.cnsns.2011.03.021 |
[51] | R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., 76 (1971), 1905–1915. https://doi.org/10.1029/JB076i008p01905 doi: 10.1029/JB076i008p01905 |
[52] | G. E. Fasshauer, Newton iteration with multiquadrics for the solution of nonlinear PDEs, Comput. Math. Appl., 43 (2002), 423–438. https://doi.org/10.1016/S0898-1221(01)00296-6 doi: 10.1016/S0898-1221(01)00296-6 |
[53] | R. Franke, Scattered data interpolation: tests of some methods, Math. Comput., 38 (1982), 181–200. https://doi.org/10.1090/S0025-5718-1982-0637296-4 doi: 10.1090/S0025-5718-1982-0637296-4 |
[54] | P. Zhuang, Y. T. Gu, F. Liu, I. Turner, P. K. D. V. Yarlagadda, Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method, Int. J. Numer. Methods Eng., 88 (2011), 1346–1362. https://doi.org/10.1002/nme.3223 doi: 10.1002/nme.3223 |