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1. Introduction

If the traceless Ricci tensor of an n-dimensional Riemannian manifold (M, g) is identically zero,
then manifold is termed Einstein. According to the classical Schur’s lemma, the scalar curvature
of an Einstein manifold of dimension ≥ 3 has to be constant. De Lellis and Topping recently
demonstrated [1] that if a closed Riemannian manifolds (M, g) ( n ≥ 3) has a non-negative Ricci
curvature, then ∫

M

(R − R)2dvg ≤
4n(n − 1)
(n − 2)2

∫
M

∣∣∣∣∣Ric −
R

n
g
∣∣∣∣∣2 dvg. (1.1)

The average of R on the Riemannian manifolds (M, g) is indicated by the symbol R. Furthermore, if
and only if (M, g) is Einstein, then the equality holds for (1.1).
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According to convention, a Riemannian manifold (M, g) is said to be closed if and only if it is
compact and boundary free. In [2], Cheng established an almost-Schur lemma for closed manifolds
with a Ricci curvature bounded from below by a negative constant, thereby generalizing the findings of
De Lellis and Topping [1]. In other words, Cheng found a Schur-type inequality where the coefficient
depended on both the Laplace operator and the Ricci curvature. The results for the (0, 2)-symmetric
tensor were also expanded upon by Cheng [3], who provided an application for the k-scalar curvatures
for closed locally conformally flat manifolds and the r-th mean curvatures of closed hypersurfaces in
the space form. Regarding the latest studies conducted in this area, go to [4–6] and the associated
references.

However, in contrast, the Ricci flow was studied by Hamilton in [7]. The Ricci soliton and Yamabe
soliton, are the limit solutions of the Ricci flow.

The construction of Ricci-Yamabe solitons (RYS ) from a Ricci-Yamabe geometric flow [8] was
discussed by Siddiqi et al. [9]. The Ricci-Yamabe flow of the form (δ, ε) is another name for this.
The semi-Riemannian multiple metric that gives rise to the Ricci-Yamabe flow is represented by the
following

∂tg(t) = −2δRic(t) + εR(t)g(t), g0 = g(0), (1.2)

where the termsRic andR refer for the scalar curvature and the Ricci tensor, respectively. Additionally,
the authors in [8] Guler treated the Ricci-Yamabe flow of type (δ, ε).

In the Ricci-Yamabe flow, a RYS is one that exclusively evolves by diffeomorphism and scales by
a single parameter group. A RYS is a data (g, F,Λ, δ, ε) that obeys the Riemannain manifold (M, g):

1
2
LFg + δRic =

(
Λ +

ε

2
R

)
g, (1.3)

where LF shows the Lie derivative along the vector field F, and Λ, δ, and ε are real scalars. A RYS is
called either shrinking (Λ > 0), expanding (Λ < 0), or steady (or Λ = 0).

Additionaly, if (1.3) holds for the Λ, δ, and ε smooth functions, then the soliton is called an almost
RYS [10, 11].

If there exists a smooth function γ : M → R such that F = ∇γ, then the (δ, ε)-type RYS is called
a gradient RYS of type (δ, ε), which is denoted by (M, g, γ,Λ, δ, ε), and in this case, (1.3) takes the
following form:

~ess(γ) + δRic =

(
Λ +

ε

2
R

)
g, (1.4)

where ~ess is the Hessain of the function γ, and γ is called potential of the gradient RYS of type (δ, ε).
Originated with concepts by Cunha et al. ( [12,13]), consider a connected and oriented hypersurface

calledMn that is submerged in a Riemannian manifold Nn+1 of dimension (n + 1) .
For some 0 ≤ r ≤ n, we declare that Mn is a gradient r-Almost Newton-Ricci-Yamabe solitons

(gradient r-ANRYS) exists, which retains the following equation:

δRic + Pr ◦ ~ess(γ) =

(
Λ +

ε

2
R

)
g, (1.5)

where g denotes the Riemannian metric brought about by immersion. In addition,Pr◦~ess(γ) illustrates
the tensor generated by

Pr ◦ ~ess(γ)(U,V) = 〈Pr∇U∇γ,V〉,
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for the tangent vector fields U,V ∈ X(M).
Moreover, Siddiqi et al. ( [14–17]) studied the same notion r-almost Newton Ricci soliton (r-

ANRS), which is merely close to this topic. The study of Eq (1.5) is fascinating since a gradient r-
ANRYS reduces to a gradient RYS when r = 0. A gradient r-ANRYS is trivial whenever the potential
γ is constant. It is considered nontrivial if not. Furthermore, we refer to the gradient r- Newton Ricci-
Yamabe soliton (r-ANRYS) when Λ is a constant.

Furthermore, the idea of almost Ricci solitons in a K-contact structure was started by Sharma [18].
Additionally, several properties of (k, µ)-contact and K-contact geometries were explored by
Sharam [19] and Tripathi [20]. Moreover, (k, µ)-paracontact metric manifolds with almost conformal
Ricci solitons were examined by the Siddiqi in [21].

The aim of the present paper is to obtain a Schur-type inequality in terms of the gradient r-ANRYS
solitons in (k, µ)-contact metric manifolds.

2. Preliminaries

An almost contact structure (φ, ξ, η), with a (1, 1)-tensor field φ, ξ is a vector field with dual 1-form
η, and; for any vector field U onM [22], it is admitted to a (2n + 1)-dimensional smooth manifoldM
if it admits one as follows:

φ2U = −U + η(U)ξ, (2.1)

φ(ξ) = 0, η(φ) = 0, η(ξ) = 1. (2.2)

If and only if the (1, 2)-type torsion tensor Nφ = [φ, φ]−2dη⊗ ξ identically vanishes, then an almost
contact structure is considered normal [23], where [φ, φ] indicates the Nijenhuis tensor of φ.

LetM be a nearly contact manifold [24] with a Riemannian metric g

g(φU, φV) = g(U,V) − η(U)η(V), (2.3)

for all U,V ∈ χ(M). Then (M, g) refers to an almost contact metric manifold. An almost contact
structure is said to be a contact structure if [19]

g(U, φV) = dη(U,V). (2.4)

The characteristic vector field is ξ, and the 1-form η is referred to as a contact form. The (1, 1)-tensor
field h is given as follows:

Lξφ = 2h,

where L indicates the Lie derivative along the direction of the vector field ξ.
Blair pointed out that the tensor h is a symmetric operator in [25]. Then the following requirements

are met by h:

hφ = −φh, hξ = 0, (2.5)

∇Uξ = −φU − φhU, (2.6)
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where Tr(φh) = 0 = Tr(h), and U ∈ χ(M).
Obviously, the tensor is h and the Levi-Civita connection of ∇ for every U ∈ χ(M) in M

Riemannian manifold. The tensor h is said to be a K-contact manifold if and only if ξ is a Killing
vector field. This is evident from the fact that the tensor h satisfies h = 0 in this case [26]:

A almost contact manifold is considered Sasakian if and only if the subsequent circumstance is
met [23]

(∇Uφ)V = g(U,V) − η(V)U, (2.7)

for any U,V ∈ χ(M).
A normal contact metric manifold is said to be Sasakian if the following holds

R(U,V)ξ = −[η(V)U − η(U)V], (2.8)

for any U,V ∈ χ(M), contrastingly, the contact metric geometry within Eq (2.8) does not infer that the
contact manifold is Sasakian manifold [19].

It is widely understood that the tangent sphere bundle of a flat Riemannian manifold can admit a
contact structure which fulfills R(X,Y)ξ = 0. Blair et al. [26] studied the (k, µ)-nullity condition in
a contact metric manifold and provided numerous motivations for investigating it, they saw it as a
extension of both Sasakian manifold and R(U,V)ξ = 0 case.

The (k, u)-nullity distribution N(k, µ) of a contact metric manifold M is defined by the
following [26, 27]

N(k, µ) : p −→ Np(k, µ) =
{
Z ∈ TpM|R(U,V)W = (kI + µh)(g(V,W)U − g(U,W)V)

}
,

for all the vector fields U,V,W ∈ TM, and (k, µ) ∈ R2.

In a (k, µ)-contact manifold (M
2n+1

, φ, ξ, η, g), n > 1, the following relationships are valid [28]:

φ2 =
h2

(k − 1)
, k ≤ 1, (2.9)

(∇Uφ)V = g[U + hU,V]ξ − η(V)[U + hU], (2.10)

R(ξ,U)V = k[g(U,V) − η(V)U] + µ[g(hU,V)ξ − η(V)hU], (2.11)

for any vector fields U,V ∈ χ(M). Making use of (2.6), we have the following

(∇Uη)V = g(U, φV) + g(φhU,V). (2.12)

3. r-almost Newton-Ricci-Yamabe soliton on hypersurface

Let Mn be a connected and oriented hypersurface that is immersed in a (k, µ)-contact metric
manifoldM

(2n+1)
. The Gauss formula for immersion is well known to be given by the following

R](U,V)W = 〈AU,W〉AV − 〈AV,W〉AU + (R(U,V)W)>,
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for the tangent vector fields U,V,W ∈ X(M), where ( )> stands for a vector field’s tangential component
in X(M) alongMn.

In this instance, R] and R signify the curvatures ofM
2n+1

andMn, respectively, and A : X(M) →
X(M) signifies the second fundamental form ofMn inM

2n+1
. Specifically, the scalar curvature R of

the hypersurface fulfills the following requirements

R] =
∑

1≤i, j≤n

〈R](vi, v j)v j, vi〉 + n2H2 − |A|2, (3.1)

where the Hilbert-Schmidt norm is denoted by | · | and an orthonormal frame on TM is represented by
{v1, . . . , vn}. Then the following value is calculated:

R] = 2n(2n − 2 + k − nµ) + n2H2 − |A|2, (3.2)

for n algebraic invariants, which are the fundamental symmetric type functions Rr of the hypersurface’s
primary curvatures k1, . . . , kn, associated with the second fundamental form shape operator A of the
hypersurfaceMn.

R0 = 1 and Rr =
∑

i1<...<ir

ki1 · · · kir .

The r-th mean curvature is represented by the following equation:(
n
r

)
Hr = Rr.

If r = 1, then we turn up the mean curvatureH1 = H = 1
n tr(A) = ofMn.

The r-th Newton transformation is defined as Pr : X(M) → X(M) for each 0 ≤ r ≤ n. On the
hypersurfaceMn by using the identity operator (P0 = I) and the recurrence relation for 1 ≤ r ≤ n

r∑
j=0

(−1)r− j

(
n
j

)
H jA

(r) = Pr, (3.3)

where j times (A(0) = I) represent the composition of A with r. Observe that the second order
differential operator Lr is connected for all Newton transformation Pr, which is defined by the
following

Lr(ω) = tr(Pr ◦ ~ess ω).

We observe that L0 is just the Laplacian operator for r = 0. Additionally, it is apparent that

divM(Pr∇ω) =

n∑
i=1

〈(∇viPr)(∇ω), vi〉 +

n∑
i=1

〈Pr(∇vi∇ω), vi〉 = 〈divMPr,∇ω〉 +Lr(ω), (3.4)

where the equation for the divergence of Pr onMn is as follows:

divMPr = tr(∇Pr) =

n∑
i=1

(∇viPr)(vi).

Because divMPr = 0, the Eq (3.4) reduces to Lr(ω) = divM(Pr∇ω, ), in particular when the ambient
space has a constant sectional curvature (see [29] for more information). The following lemma gives
useful conclusions.
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Lemma 3.1. [29] IfM has a compact support γ without a boundary is either non-compact or compact,
then we have

(i)
∫
M

Lr(γ) = 0;

(ii)
∫
M

γLr(γ) = −

∫
M

〈Pr∇γ,∇γ〉.

Additionally,it will be suitable for our intent to deal with the so-called traceless second fundamental
form of the hypersurface, which is given by Φ = A−H I. Observe that tr (Φ) = 0 and |Φ|2 = tr(Φ2) =

|A|2 − nH2 ≥ 0, with an equality if and only ifMn is totally umbilical.
In order to wrap up this subject, let us review Yau’s lemma that corresponds to Theorem 3 of [30].

Lemma 3.2. Let ω be a nonnegative and subharmonic function on a complete Riemannian manifold
Mn. If ω ∈ Lp(M), for some p > 1, then ω is a constant.

Here, we adopt the symbol Lp(M) = {ω : Mn → R |
∫
M
|ω|p <} for each p ≥ 1. We end these

considerations by providing an example.

Example 3.1. Let an immersion from Sn into Sn+1. It is recognized as totally geodesic. Specifically,
Pr ≡ 0 for all 1 ≤ r ≤ n. By choosing Λ =

2δ−(n−1)ε
2(n−1) , we obtain the Eq (1.5), which is fulfilled by the

immersion.

In addition, the Eq (1.5) becomes true if the scalar curvature ofMn is constant,

δRic + Pr ◦ ~ess(γ) = µg, (3.5)

where µ = Λ − ε
2R. Thus, as an additional illustration of a gradient r-ANRYS, we can refer back to

Example 2 of [12].
Let Sn+1(1) denote a unit sphere in the Euclidean space Rn+1 and h : Sn+1(1) −→ Rn+1 be a natural

embedding with induced the metric g on Sn+1(1). Then, (Sn+1(1), ϕ, ξ, η, g) is a contact metric manifold
with the constant sectional curvature c = 1.

Let i : Mn −→ Sn+1(1) ⊂ Rn+1 be an immersion of a smooth n-dimensional manifoldMn into the
unit sphere.

For a constant l ∈ Rn+1, according to [12], choose the functions f l and ψl on Rn+1 such that fl(t) =

−g(t, l) + n − 1 and ψl(t) = − fl + c, ψl := i ∗ fl ∈ C∞(Sn+1), where l ∈ Sn+1(1), l , 0, c ∈ R
and t = (t1, ..., tn+1) ∈ Sn+1 is the position vector. Now, we can see that (Sn+1, g,∇ψl, λl) satisfies the
following

δRic + Pr ◦ ~ess(γ) = λlg, (3.6)

where λl = fl = µ = Λ − ε
2R and ∇ψl is the projection of the constant vector l to the tangent space of

Sn+1. It is obvious that Sn+1 is totally umbilical with the second fundamental form A = I and the r-th
mean curvature Hr = 1. The Newton tensor Pr is given by

Pr = αI,∀ r, 0 ≤ r ≤ n, (3.7)

for α =
∑r

j=0(−1)r− j
(

n
j

)
. Thus, if we choose the function ψ = α−1ψl, then we can observe that the

hypersurfaces satisfies Eq (3.5).
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4. Results of triviality and inequlity

With the gradient r-Newton-Ricci-Yamabe soliton (gradient r-NRYS) closed and Λ constant, we
spend this part to present our key findings. The (k, µ)-contact metric manifold with the constant
sectional curvature c is denoted by the symbolM

n+1
c throughout the text.

Theorem 4.1. If (Mn, g, γ,Λ, δ, ε) is a closed gradient r-NRYS immersed into a (k, µ)-contact metric
manifoldM

n+1
c , such that Pr is either bounded above or bounded below (referring to quadratic form)

and any one of the following propositions is valid, then we have

i) δ > −nε
2 and R] ≥ 0 and Λ ≥ 0, or R] ≤ 0, Λ ≤ 0,

ii) δ < −nε
2 and R] ≥ 0 and Λ ≤ 0, or R] ≤ 0, Λ ≥ 0,

iii) δ , −nε
2 and either R] ≥ nΛ

2δ+nε or R] ≤ nΛ
2δ+nε ,

where the scalar curvature R] is constant ofMn andMn is trivial.

Proof. In light of Lemma 3.1 and the structural relation, we obtain

0 =

∫
M

Lr(γ) =

∫
M

(
nΛ − (2δ + nε)R]

)
.

Therefore, if (i) and (ii) are true, then we derive R] = Λn
2δ+nε = 0 and Lr(γ) = 0 from the structural

equation. There is a positive constant C > 0 because the quadratic form of Pr is bounded either above
or below:

0 = Lr(γ) ≤ C∆γ or 0 = Lr(γ) ≥ −C∆γ,

respectively. γ is a subharmonic function as a result. Hopf’s theorem tells us that γ is a constant
function sinceM is compact. Therefore, the soliton is trivial. Lastly,
(iii) corresponds in the same way to (i) and (ii). �

Remark 1. The assertion (i) and (ii) in the above theorem entails thatM is steady and R] = 0. Since
Mn is trivial, we get Ric ≡ 0. Consequently, (iii) implies R] = Λn

2δ+nε . SinceM is trivial, we turn up the
following

δRic =

(
Λ −

nεΛ
(2δ + ε)

)
g =

2δΛ
(2δ + nε)

g = δ
R]

n
g,

i.e.,Mn is Einstein.

Theorem 4.2. If (Mn, γ,Λ, δ, ε) is a closed gradient r-NRYS immersed into a (k, µ)-contact metric
manifoldM

n+1
c , such that Pr is either bounded above or bounded below (referring to quadratic form)

and δ , −nε
2 , then the scalar curvature ofMn is constant,Mn is Einstein and trivial.

Proof. In view of the structural equation Lemma 3.1, we own the following∫
M

|nΛ − (2δ + nε)R]|2 =

∫
M

(
nΛ − (2δ + nε)R]

)
Lr(γ) =

(
nΛ − (2δ + nε)R]

) ∫
M

Lr(γ) = 0.

Hence, we obtain R] = 2nΛ
2δ+nε and Lr(γ) = 0. Adopting that Pr is either bounded above or bounded

below (referring to quadratic form) to demonstrate that M is trivial, we can adopt the same steps as
in the proof of Theorem 4.1. Last but not least, sinceMn is trivial, we can move on to Remark 1 to
conclude thatMn is Einstein. �
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5. Schur-type inequality

We established a Schur-type inequality in the following Theorem.

Theorem 5.1. If (Mn, g, γ,Λ, δ, ε) is a closed gradient r-NRYS immersed into a (k, µ)-contact metric
manifoldM

n+1
c , such that Pr is bounded below (referring to quadratic form) and δ > −nε

2 , then∫
M

|R] − R|2 ≤
nC

(n − 2)
(
δ + nε

2

) ◦

‖Ric‖L2

∥∥∥∥∥∇2γ −
∆γ

n
g
∥∥∥∥∥
L2
. (5.1)

Proof. The contracted second Bianchi identity states the following

div(Ric) −
1
2
∇R] = 0.

Hence,

div(
◦

Ric) =
n − 2

2n
∇R],

where
◦

Ric is the traceless Ricci tensor. Since the closed gradient r-NRYS is compact and Pr, we get∫
M

|nΛ − (2δ + nε)R]|2 =

∫
M

(
nΛ − (2δ + nε)R]

)
Lr(γ)

=

∫
M

(
nΛ − (2δ + nε)R]

)
div(Pr∇γ)

=(2δ + nε)
∫
M

〈∇R],Pr∇Ψ〉 ≤ C(2δ + nε)
∫
M

〈∇R],∇γ〉

=
2nC(2δ + nε)

n − 2

∫
M

〈div(
◦

Ric),∇γ〉

=
2nC(2δ + nε)

n − 2

∫
M

〈
◦

Ric,∇2γ〉

=
2nC(2δ + nε)

n − 2

∫
M

〈
◦

Ric,∇2γ −
∆γ

n
g〉

≤
2nC(2δ + nε)

n − 2
‖
◦

Ric ‖L2

∥∥∥∥∥∇2γ −
∆γ

n
g
∥∥∥∥∥
L2
,

wherein we employed that 〈
◦

Ric, g〉 = 0. Provided that the closed gradient r-NRYS is compact, we get
the following

nΛ = (2δ + nε)R,

where R indicates for the average of R]. Therefore,

(2δ + nε)2
∫

M
|R] − R|2 =

∫
M

|nΛ − (2δ + nε)R]|2,

i.e.,

(2δ + nε)2
∫
M

|R] − R|2 ≤
2nC(2δ + nε)

n − 2
‖
◦

Ric ‖L2

∥∥∥∥∥∇2γ −
∆γ

n
g
∥∥∥∥∥
L2
,
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i.e., ∫
M

|R] − R|2 ≤
2nC

(n − 2)(2δ + nε)
‖(
◦

Ric)‖L2

∥∥∥∥∥∇2γ −
∆γ

n
g
∥∥∥∥∥
L2
.

This completes the proof. �

Remark 2. Due to the fact that both sides of expression (5.1) diminish in the foregoing theorem if Mn”
is Einstein, the equality is maintained. To demonstrate the rigidity would be a fascinating problem.

Remark 3. By the definition of Ricci-Yamabe solitons [9] if δ = 0 and ε = 1, then, we turn up the
case of the gradient r-Newton-Yamabe soliton. Consequently, in view of the Theorem 5.1, we gain the
Schur-type inequality in terms of the gradient r-Newton-Yamabe soliton by the follwoing:

Corollary 5.1. If (Mn, g, γ,Λ, δ, ε) is a closed gradient r-Newton-Yamabe soliton immersed into a
(k, µ)-contact metric manifoldM

n+1
c , such that Pr is bounded below (referring to quadratic form) and

ε > 0, then ∫
M

|R] − R|2 ≤
2n2C

(n − 2)

◦

‖Ric‖L2

∥∥∥∥∥∇2γ −
∆γ

n
g
∥∥∥∥∥
L2
. (5.2)

6. Some applications

Definition 6.1. [31] A Riemannian manifold with a triplet (M, g, γ) is said to be static if

∆γg − ∇2γ + γRic = 0, (6.1)

where γ is a potential function.

Therefore, in the light of Theorem 5.1, and Eqs (5.1) and (6.1), we gain the Schur-type inequality
for the static gradient r-NRYS immersed into into a (k, µ)-contact metric manifoldM

n+1
c :

Theorem 6.1. Let (Mn, g, γ,Λ, δ, ε) be a closed static gradient r-NRYS with a potential function γ

immersed into a (k, µ)-contact metric manifoldM
n+1
c . Then∫

M

|R] − R|2 ≤
nC

(n − 2)
(
δ + nε

2

) ◦

‖Ric‖L2

{∥∥∥∥∥ (n − 1)∆γ
n

g
∥∥∥∥∥
L2

+ γ ‖Ric‖L2

}
. (6.2)

Once again, in view of Corollary 5.1, we can also state the following corollaries:

Corollary 6.1. Let (Mn, g, γ,Λ, δ, ε) be a static closed gradient r-Newton-Yamabe soliton immersed
into a (k, µ)-contact metric manifoldM

n+1
c , and ε > 0. Then∫

M

|R] − R|2 ≤
2n2C

(n − 2)

◦

‖Ric‖L2

{∥∥∥∥∥ (n − 1)∆γ
n

g
∥∥∥∥∥
L2

+ γ ‖Ric‖L2

}
. (6.3)

Second, we roughly associate the Casimir operator Ω with the Laplace-Beltrami operator ∆. This
statement is stated in [32] for rank one symmetric spaces and in [33] for a Riemannian symmetric
manifold of the noncompact type. For the sake of completeness, we provide the argument for a
Riemannian symmetric manifold of the compact type, sometimes known as normal homogeneous
compact Riemannian manifolds. It is essentially the same.
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In [34], Lippner et al. proved for a normal homogeneous compact Riemannian manifoldM
n+1
c . Let

∆ be the Laplace-Beltrami operator onM
n+1
c and Ω be the projected Casimir operator. Then,

∆ = Ω. (6.4)

Now, in view of (5.1), (5.2), (6.1), (6.2), and (6.4), we gain the Schur-type inequalities for a normal
homogeneous compact Riemannian manifold in terms of the Casimir operator Ω.

Theorem 6.2. Let (Mn, g, γ,Λ, δ, ε) be a closed and normal homogeneous compact gradient r-NRYS
immersed into a (k, µ)-contact metric manifold M

n+1
c , such that Pr is bounded below (referring to

quadratic form) and δ > −nε
2 . Then∫

M

|R] − R|2 ≤
nC

(n − 2)
(
δ + nε

2

) ◦

‖Ric‖L2

∥∥∥∥∥∇2γ −
Ωγ

n
g
∥∥∥∥∥
L2
. (6.5)

Theorem 6.3. Let (Mn, g, γ,Λ, δ, ε) be a closed and normal homogeneous compact static gradient
r-NRYS with a potential function γ immersed into a (k, µ)-contact metric manifoldM

n+1
c . Then∫

M

|R] − R|2 ≤
nC

(n − 2)
(
δ + nε

2

) ◦

‖Ric‖L2

{∥∥∥∥∥ (n − 1)Ωγ
n

g
∥∥∥∥∥
L2

+ γ ‖Ric‖L2

}
. (6.6)

Corollary 6.2. Let (Mn, g, γ,Λ, δ, ε) be a closed and normal homogeneous compact gradient r-
Newton-Yamabe soliton immersed into a (k, µ)-contact metric manifoldM

n+1
c , such that Pr is bounded

below (referring to quadratic form) and ε > 0. Then∫
M

|R] − R|2 ≤
2n2C

(n − 2)

◦

‖Ric‖L2

∥∥∥∥∥∇2γ −
Ωγ

n
g
∥∥∥∥∥
L2
. (6.7)

Corollary 6.3. Let (Mn, g, γ,Λ, δ, ε) be a statically closed and normal homogeneous compact gradient
r-Newton-Yamabe soliton immersed into a (k, µ)-contact metric manifoldM

n+1
c , and ε > 0. Then∫

M

|R] − R|2 ≤
2n2C

(n − 2)

◦

‖Ric‖L2

{∥∥∥∥∥ (n − 1)Ωγ
n

g
∥∥∥∥∥
L2

+ γ ‖Ric‖L2

}
. (6.8)

7. Conclusions

In the context of a (k, µ)-contact metric manifold, this research study examined a geometric
inequality known as Schur inequality in terms of r-almost Newton Ricci-Yamabe solutions. In the
course of this investigation, several important results concerning trivial and compact immersed r-
almost Newton Ricci-Yamabe solitons in (k, µ)-contact metric manifolds were derived and discussed.
This result emphasized the use of a particular Schur’s inequality in terms of the projected Casimir
operator for closed and normal homogeneous compact static gradient r-almost Newton Yamabe
solutions.
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