Research article

Nonlocal coupled system for ψ-Hilfer fractional order Langevin equations

  • Received: 27 March 2021 Accepted: 21 June 2021 Published: 28 June 2021
  • MSC : 26A33, 34A08, 34B10

  • In the present work a coupled system consisting by ψ-Hilfer fractional order Langevin equations supplemented with nonlocal integral boundary conditions is studied. Existence and uniqueness results are obtained by using standard fixed point theorems. The obtained results are well illustrated by numerical examples.

    Citation: Weerawat Sudsutad, Sotiris K. Ntouyas, Chatthai Thaiprayoon. Nonlocal coupled system for ψ-Hilfer fractional order Langevin equations[J]. AIMS Mathematics, 2021, 6(9): 9731-9756. doi: 10.3934/math.2021566

    Related Papers:

    [1] Lamya Almaghamsi, Aeshah Alghamdi, Abdeljabbar Ghanmi . Existence of solution for a Langevin equation involving the $ \psi $-Hilfer fractional derivative: A variational approach. AIMS Mathematics, 2025, 10(1): 534-550. doi: 10.3934/math.2025024
    [2] Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a $ \psi $-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397
    [3] Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon . Nonlocal integro-multistrip-multipoint boundary value problems for $ \overline{\psi}_{*} $-Hilfer proportional fractional differential equations and inclusions. AIMS Mathematics, 2023, 8(6): 14086-14110. doi: 10.3934/math.2023720
    [4] Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential $ \psi $-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477
    [5] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [6] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [7] Zohreh Heydarpour, Maryam Naderi Parizi, Rahimeh Ghorbnian, Mehran Ghaderi, Shahram Rezapour, Amir Mosavi . A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction. AIMS Mathematics, 2022, 7(10): 18253-18279. doi: 10.3934/math.20221004
    [8] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [9] Zheng Kou, Saeed Kosari . On a generalization of fractional Langevin equation with boundary conditions. AIMS Mathematics, 2022, 7(1): 1333-1345. doi: 10.3934/math.2022079
    [10] Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486
  • In the present work a coupled system consisting by ψ-Hilfer fractional order Langevin equations supplemented with nonlocal integral boundary conditions is studied. Existence and uniqueness results are obtained by using standard fixed point theorems. The obtained results are well illustrated by numerical examples.



    Fractional calculus deals with the study of fractional order integral and derivative operators over real or complex domains. The subject of fractional differential equations has become a hot topic for the researchers due to its intensive development and applications in the field of physics, mechanics, chemistry, engineering, etc. For a reader interested in the systematic development of the topic, we refer the books [1,2,3,4,5,6,7,8].

    Since the beginning of the fractional calculus there are numerous definitions of integrals and fractional derivatives, and over time, new derivatives and fractional integrals arise. Hilfer in [9] generalized both Riemann-Liouville and Caputo fractional derivatives to Hilfer fractional derivative of order α(0,1) and a type β[0,1] which can be reduced to the Riemann-Liouville and Caputo fractional derivatives when β=0 and β=1, respectively. For more details see [10,11] and references cited therein.

    In [2], a fractional derivative of a function with respect to another function were introduced, by using the fractional derivative in the Riemann-Liouville sense. Almeida [12] using the idea of the fractional derivative in the Caputo sense, proposes a new fractional derivative, called ψ-Caputo derivative with respect to another function ψ, which generalizes a class of fractional derivatives. In [13], the authors, by using the Hilfer fractional derivative idea, proposed a fractional differential operator of a function with respect to another ψ-function, the so-called ψ-Hilfer fractional derivative. The ψ-Hilfer fractional derivative has as advantage the freedom of choice of the classical differential operator, see, for example, [14,15].

    Initial value problems involving Hilfer fractional derivatives were studied by several authors, see for example [16,17,18] and references therein. In [19], the authors initiated the study of nonlocal boundary value problems for Hilfer fractional derivative. Recently, in [20], the results in [19] was extended to ψ-Hilfer nonlocal implicit fractional boundary value problems. In [21], the existence and uniqueness of solutions were studied, for a new class of boundary value problems of sequential ψ-Hilfer-type fractional differential equations with multi-point boundary conditions.

    The Langevin equation (first formulated by Langevin in 1908 to give an elaborate description of Brownian motion) is found to be an effective tool to describe the evolution of physical phenomena in fluctuating environments [22]. For some new developments on the fractional Langevin equation, see, for example, [23], [24], [25].

    In [26], the authors considered a boundary value problem of Langevin fractional differential equations with ψ-Hilfer fractional derivative and nonlocal integral boundary conditions, given by

    {Dχ1,β1;ψ(Dχ2,β2;ψ+k)x(t)=f(t,x(t)),tJ:=[a,b],x(a)=0,x(b)=mi=1λiIδi;ψx(τi), (1.1)

    where Dχi,βi;ψ, i=1,2 is the ψ-Hilfer fractional derivative of order χi, 0<χi<1 and type βi, 0βi1, i=1,2, 1<χ1+χ22, kR, a0, f:J×RR is a continuous function, Iδi;ψ is ψ-Riemann-Liouville fractional integral of order δi>0, λiR, i=1,2,,m and 0aτ1<τ2<<τmb. Existence and uniqueness results are established by using Krasnosel'skii's fixed point theorem, Leray-Schauder nonlinear alternative and Banach contraction mapping principle.

    In the present work, we study a coupled system consisting by ψ-Hilfer fractional order Langevin equations supplemented with nonlocal integral boundary conditions of the form

    {HDα1,β1;ψa+(HDp1,q1;ψa++λ1)x(t)=f(t,x(t),y(t)),tJ:=[a,b],HDα2,β2;ψa+(HDp2,q2;ψa++λ2)y(t)=g(t,x(t),y(t)),tJ:=[a,b],x(a)=0,x(b)=mi=1ηiIδi;ψa+y(θi),y(a)=0,y(b)=nj=1μjIκj;ψa+x(ξj), (1.2)

    where HDu,v;ψa+ is ψ-Hilfer fractional derivatives of order u{α1,α2,p1,p2} with 0<u1 and v{β1,β2,q1,q2} with 0v1, Iw;ψa+ is ψ-Riemann-Liouville fractional integral of order w={δi,κj}, w>0, the points θi, ξj[a,b], i=1,2,,m, j=1,2,,n, λ1, λ2R, f, gC([a,b]×R2,R) and b>a0.

    The rest of the paper is organized as follows. In Section 2 we outline the basic concepts from fractional calculus and prove an auxiliary lemma for the linear variant of the problem (1.2). Then, by applying Banach's fixed point theorem, we derive the existence and uniqueness result for the problem (1.2), while the existence result is established via Leray-Schauder alternative. Example illustrating the main results are also presented.

    This section, is assigned to recall some notation in relation to fractional calculus.

    Let S=C([a,b],R) be the space equipped with the norm defined by x=sup{|x(t)|:tJ}. Obviously (S,) is a Banach space and, consequently, the product space (S×S,) is a Banach space with the norm (x,y)=x+y for (x,y)S×S and the n-times absolutely continuous functions given by

    ACn([a,b],R)={f:JR;f(n1)AC([a,b],R)}.

    Definition 2.1. [2] Let (a,b), (a<b), be a finite or infinite interval of the half-axis R+ and αR+. Also let ψ(x) be an increasing and positive monotone function on (a,b], having a continuous derivative ψ(x) on (a,b). The ψ-Riemann-Liouville fractional integral of a function f with respect to another function ψ on [a,b] is defined by

    Iα;ψa+f(t)=1Γ(α)taψ(s)(ψ(t)ψ(s))α1f(s)ds,t>a>0, (2.1)

    where Γ() is represent the Gamma function.

    Definition 2.2. [2] Let ψ(t)0 and α>0, nN. The Riemann–Liouville derivatives of a function f with respect to another function ψ of order α correspondent to the Riemann–Liouville, is defined by

    Dα;ψa+f(t)=(1ψ(t)ddt)nInα;ψa+f(t)=1Γ(nα)(1ψ(t)ddt)ntaψ(s)(ψ(t)ψ(s))nα1f(s)ds, (2.2)

    where n=[α]+1, [α] is represent the integer part of the real number α.

    Definition 2.3. [13] Let n1<α<n with nN, [a,b] is the interval such that a<b and f,ψCn([a,b],R) two functions such that ψ is increasing and ψ(t)0, for all t[a,b]. The ψ-Hilfer fractional derivative of a function f of order α and type 0ρ1, is defined by

    HDα,ρ;ψa+f(t)=Iρ(nα);ψa+(1ψ(t)ddt)nI(1ρ)(nα);ψa+f(t)=Iγα;ψa+Dγ;ψa+f(t), (2.3)

    where n=[α]+1, [α] represents the integer part of the real number α with γ=α+ρ(nα).

    Lemma 2.4. [2] Let α,β>0. Then we have the following semigroup property given by,

    Iα;ψa+Iβ;ψa+f(t)=Iα+β;ψa+f(t),t>a. (2.4)

    Next, we present the ψ-fractional integral and derivatives of a power function.

    Proposition 2.5. [2,13] Let α0, υ>0 and t>a. Then, ψ-fractional integral and derivative of a power function are given by

    (i) Iα;ψa+(ψ(s)ψ(a))υ1(t)=Γ(υ)Γ(υ+α)(ψ(t)ψ(a))υ+α1.

    (ii) HDα,ρ;ψa+(ψ(s)ψ(a))υ1(t)=Γ(υ)Γ(υα)(ψ(t)ψ(a))υα1,n1<α<n,υ>n.

    Lemma 2.6. [27] Let m1<α<m, n1<β<n, n,mN, nm, 0ρ1 and αβ+ρ(nβ). If fCn(J,R), then

    HDβ,ρ;ψa+Iα;ψa+f(t)=Iαβ;ψa+f(t). (2.5)

    Lemma 2.7. [13] If fCn(J,R), n1<α<n, 0ρ1 and γ=α+ρ(nα) then

    Iα;ψa+HDα,ρ;ψa+f(t)=f(t)nk=1(ψ(t)ψ(a))γkΓ(γk+1)f[nk]ψI(1ρ)(nα);ψa+f(a), (2.6)

    for all tJ, where f[n]ψf(t):=(1ψ(t)ddt)nf(t).

    The following lemma deals with a linear variant of the system (1.2).

    Lemma 2.8. Let 0<α1,α2,p1,p21, 0β1,β2,q1,q21, γ1=α1+β1(1α1), γ2=p1+q1(1p1), φ1=α2+β2(1α2), φ2=p2+q2(1p2), h1, h2S and Ω0. Then the solution for the linear system of ψ-Hilfer fractional Langevin differential equations of the form:

    {HDα1,β1;ψa+(HDp1,q1;ψa++λ1)x(t)=h1(t),tJ,HDα2,β2;ψa+(HDp2,q2;ψa++λ2)y(t)=h2(t),tJ,x(a)=0,x(b)=mi=1ηiIδi;ψa+y(θi),y(a)=0,y(b)=nj=1μjIκj;ψa+x(ξj), (2.7)

    is equivalent to the integral equations

    x(t)=Iα1+p1;ψa+h1(t)λ1Ip1;ψa+x(t)+(ψ(t)ψ(a))γ1+p11ΩΓ(γ1+p1)[Ω4(Iα1+p1;ψa+h1(b)+mi=1ηiIα2+p2+δi;ψa+h2(θi)+λ1Ip1;ψa+x(b)λ2mi=1ηiIp2+δi;ψa+y(θi))+Ω2(nj=1μjIα1+p1+κj;ψa+h1(ξj)Iα2+p2;ψa+h2(b)λ1nj=1μjIp1+κj;ψa+x(ξj)+λ2Ip2;ψa+y(b))], (2.8)

    and

    y(t)=Iα2+p2;ψa+h2(t)λ2Ip2;ψa+y(t)+(ψ(t)ψ(a))φ1+p21ΩΓ(φ1+p2)[Ω1(nj=1μjIα1+p1+κj;ψa+h1(ξj)Iα2+p2;ψa+h2(b)λ1nj=1μjIp1+κj;ψa+x(ξj)+λ2Ip2;ψa+y(b))+Ω3(Iα1+p1;ψa+h1(b)+mi=1ηiIα2+p2+δi;ψa+h2(θi)+λ1Ip1;ψa+x(b)λ2mi=1ηiIp2+δi;ψa+y(θi))], (2.9)

    where

    Ω1=(ψ(b)ψ(a))γ1+p11Γ(γ1+p1), (2.10)
    Ω2=mi=1ηi(ψ(θi)ψ(a))φ1+p2+δi1Γ(φ1+p2+δi), (2.11)
    Ω3=nj=1μj(ψ(ξj)ψ(a))γ1+p1+κj1Γ(γ1+p1+κj), (2.12)
    Ω4=(ψ(b)ψ(a))φ1+p21Γ(φ1+p2), (2.13)
    Ω=Ω1Ω4Ω2Ω3. (2.14)

    Proof. Let xS be a solution of the problem (2.7). Taking the operator Iα1;ψa+ on both sides of (2.7) and using Lemma 2.7, we have

    HDp1,q1;ψa+x(t)+λ1x(t)=Iα1;ψa+h1(t)+(ψ(t)ψ(a))γ11Γ(γ1)c1, (2.15)

    where c1R. Applying the operator Ip1;ψa+ on both sides of (2.15) and using Lemma 2.7 again, we get

    x(t)=Iα1+p1;ψa+h1(t)λ1Ip1;ψa+x(t)+(ψ(t)ψ(a))γ1+p11Γ(γ1+p1)c1+(ψ(t)ψ(a))γ21Γ(γ2)c2, (2.16)

    where c1, c2 are arbitrary constants.

    In the same process, let yS be a solution of the problem (2.7). Applying the operators Iα2;ψa+ and Ip2;ψa+, respectively, on both sides of the second equation in (2.7) and using Lemma 2.7, we obtain

    y(t)=Iα2+p2;ψa+h2(t)λ2Ip2;ψa+y(t)+(ψ(t)ψ(a))φ1+p21Γ(φ1+p2)d1+(ψ(t)ψ(a))φ21Γ(φ2)d2, (2.17)

    where d1, d2 are arbitrary constants. Using the boundary conditions x(a)=0 and y(a)=0, respectively in (2.16) and (2.17), we find that c2=0 and d2=0. Hence we have

    x(t)=Iα1+p1;ψa+h1(t)λ1Ip1;ψa+x(t)+(ψ(t)ψ(a))γ1+p11Γ(γ1+p1)c1, (2.18)
    y(t)=Iα2+p2;ψa+h2(t)λ2Ip2;ψa+y(t)+(ψ(t)ψ(a))φ1+p21Γ(φ1+p2)d1. (2.19)

    Using (2.18) and (2.19) in the conditions x(b)=mi=1ηiIδi;ψa+y(θi) and y(b)=nj=1μjIκj;ψa+x(ξj), we obtain a system of equations in the unknown constants c1 and d1 given by

    Ω1c1Ω2d1=A1, (2.20)
    Ω3c1+Ω4d1=A2, (2.21)

    where Ω1, Ω2, Ω3, Ω4 are given by (2.10), (2.11), (2.12), (2.13), respectively, and

    A1=Iα1+p1;ψa+h1(b)+mi=1ηiIα2+p2+δi;ψa+h2(θi)+λ1Ip1;ψa+x(b)λ2mi=1ηiIp2+δi;ψa+y(θi),A2=nj=1μjIα1+p1+κj;ψa+h1(ξj)Iα2+p2;ψa+h2(b)λ1nj=1μjIp1+κj;ψa+x(ξj)+λ2Ip2;ψa+y(b).

    Solving the system (2.20)-(2.21) for c1 and d1, it follows that

    c1=Ω4A1+Ω2A2Ω1Ω4Ω2Ω3andd1=Ω1A2+Ω3A1Ω1Ω4Ω2Ω3.

    Inserting values c1 and d1 in (2.18) and (2.19) respectively together with notations Ω1, Ω2, Ω3, Ω4, A1, and A2 lead to solutions (2.8) and (2.9).

    Conversely, it is easily to shown, by a direct computation, that the solution x(t) and y(t) are given by (2.8) and (2.9) satisfies the problem (2.7) under the nonlocal integral boundary conditions. The proof of Lemma 2.8 is completed.

    Fixed point theorems play a major role in establishing the existence theory for the system (1.2). We collect here the well-known fixed point theorems used in this paper.

    Lemma 2.9. (Banach fixed point theorem) [28] Let X be a Banach space, DX closed and F:DD a strict contraction, i.e. |FxFy|k|xy| for some k(0,1) and all x,yD. Then F has a unique fixed point in D.

    Lemma 2.10. (Leray-Schauder alternative [29]). Let K:DD be a complete continuous operator (i.e., a map that restricted to any bounded set in D is compact). Let

    M(K)={xD:x=σK(x)forsome0<σ<1}.

    Then either the set M(K) is unbounded, or K has at least one fixed point.

    In this section, we discuss existence and uniqueness results to the purposed system (1.2).

    Throughout this paper, the expression Iq,ρ0+f(s,x(s),y(s))(c) means that

    Iu;ψa+f(s,x(s),y(s))(c)=1Γ(u)caψ(s)(ψ(c)ψ(s))u1f(s,x(s),y(s))ds,

    where u{p1,p2,α1+p1,α2+p2,p2+δi,α2+p2+δi,p1+κj,α1+p1+κj} and c{t,a,b,θi, ξj}, i=1,2,,m, j=1,2,,n.

    In view of Lemma 2.8, we define an operator Q:S×SS×S by

    Q(x,y)(t):=(Q1(x,y)(t),Q2(x,y)(t)), (3.1)

    where

    Q1(x,y)(t)=Iα1+p1;ψa+f(s,x(s),y(s))(t)λ1Ip1;ψa+x(t)+(ψ(t)ψ(a))γ1+p11ΩΓ(γ1+p1)[Ω4(Iα1+p1;ψa+f(s,x(s),y(s))(b)+mi=1ηiIα2+p2+δi;ψa+g(s,x(s),y(s))(θi)+λ1Ip1;ψa+x(b)λ2mi=1ηiIp2+δi;ψa+y(θi))+Ω2(nj=1μjIα1+p1+κj;ψa+f(s,x(s),y(s))(ξj)Iα2+p2;ψa+g(s,x(s),y(s))(b)λ1nj=1μjIp1+κj;ψa+x(ξj)+λ2Ip2;ψa+y(b))], (3.2)

    and

    Q2(x,y)(t)=Iα2+p2;ψa+g(s,x(s),y(s))(t)λ2Ip2;ψa+y(t)+(ψ(t)ψ(a))φ1+p21ΩΓ(φ1+p2)[Ω1(nj=1μjIα1+p1+κj;ψa+f(s,x(s),y(s))(ξj)Iα2+p2;ψa+g(s,x(s),y(s))(b)λ1nj=1μjIp1+κj;ψa+x(ξj)+λ2Ip2;ψa+y(b))+Ω3(Iα1+p1;ψa+f(s,x(s),y(s))(b)+mi=1ηiIα2+p2+δi;ψa+g(s,x(s),y(s))(θi)+λ1Ip1;ψa+x(b)λ2mi=1ηiIp2+δi;ψa+y(θi))]. (3.3)

    It should be noticed that the system (1.2) has solutions if and only if Q has fixed points.

    For the sake of convenience, we use the following notations:

    Ψ1(B,u)=(ψ(B)ψ(a))uΓ(u+1), (3.4)
    Λ1(U)=Ψ1(b,U)+Ψ1(b,γ1+p11)|Ω|(|Ω4|Ψ1(b,U)+|Ω2|nj=1|μj|Ψ1(ξj,U+κj)), (3.5)
    Λ2(U)=Ψ1(b,γ1+p11)|Ω|(|Ω2|Ψ1(b,U)+|Ω4|mi=1|ηi|Ψ1(θi,U+δi)), (3.6)
    Λ3(U)=Ψ1(b,φ1+p21)|Ω|(|Ω3|Ψ1(b,U)+|Ω1|nj=1|μj|Ψ1(ξj,U+κj)), (3.7)
    Λ4(U)=Ψ1(b,U)+Ψ1(b,φ1+p21)|Ω|(|Ω1|Ψ1(b,U)+|Ω3|mi=1|ηi|Ψ1(θi,U+δi)). (3.8)

    In the first result, we establish the existence and uniqueness of solutions for system (1.2), by applying Banach's fixed point theorem.

    Theorem 3.1. Let Ω0, f, g:[a,b]×R2R be continuous functions. In addition, we assume that:

    (H1) There exist constants L1, L2>0 such that, t[a,b] and x1, x2, y1 y2R,

    |f(t,x1,y1)f(t,x2,y2)|L1(|x1y1|+|x2y2|),|g(t,x1,y1)g(t,x2,y2)|L2(|x1y1|+|x2y2|).

    Then system (1.2) has a unique solution on [a,b], provided that Φ1<1, where

    Φ1:=[Λ1(α1+p1)+Λ3(α1+p1)]L1+[Λ2(α2+p2)+Λ4(α2+p2)]L2+[Λ1(p1)+Λ3(p1)]|λ1|+[Λ2(p2)+Λ4(p2)]|λ2|. (3.9)

    Proof. Firstly, we transform the system (1.2) into a fixed point problem, (x,y)(t)=Q(x,y)(t), where the operator Q is defined as in (3.1). Applying the Banach contraction mapping principle, we shall show that the operator Q has a unique fixed point, which is the unique solution of system (1.2).

    Let supt[a,b]|f(t,0,0)|:=M1< and supt[a,b]|g(t,0,0)|:=N1<. Next, we set Br1:={(x,y)S×S:(x,y)r1} with

    r1[Λ1(α1+p1)+Λ3(α1+p1)]M1+[Λ2(α2+p2)+Λ4(α2+p2)]N11Φ1. (3.10)

    Observe that Br1 is a bounded, closed, and convex subset of S. The proof is divided into two steps:

    Step Ⅰ. We show that QBr1Br1.

    For any (x,y)Br1, t[a,b], using the condition (H1), we have

    |f(t,x,y)||f(t,x,y)f(t,0,0)|+|f(t,0,0)|L1(x+y)+M1L1r1+M1,

    and

    |g(t,x,y)||g(t,x,y)g(t,0,0)|+|g(t,0,0)|L2(x+y)+N1L2r1+N1.

    Then, we get

    Q1(x,y)supt[a,b]{Iα1+p1;ψa+|f(s,x(s),y(s))|(t)+|λ1|Ip1;ψa+|x(s)|(t)+(ψ(t)ψ(a))γ1+p11|Ω|Γ(γ1+p1)[|Ω4|(Iα1+p1;ψa+|f(s,x(s),y(s))|(b)+mi=1|ηi|Iα2+p2+δi;ψa+|g(s,x(s),y(s))|(θi)+|λ1|Ip1;ψa+|x(s)|(b)+|λ2|mi=1|ηi|Ip2+δi;ψa+|y(s)|(θi))+|Ω2|(nj=1|μj|Iα1+p1+κj;ψa+|f(s,x(s),y(s))|(ξj)+Iα2+p2;ψa+|g(s,x(s),y(s))|(b)+|λ1|nj=1|μj|Ip1+κj;ψa+|x(s)|(ξj)+|λ2|Ip2;ψa+|y(s)|(b))]}
    [(ψ(b)ψ(a))α1+p1Γ(α1+p1+1)+(ψ(b)ψ(a))γ1+p11|Ω|Γ(γ1+p1)(|Ω4|(ψ(b)ψ(a))α1+p1Γ(α1+p1+1)+nj=1|Ω2||μj|(ψ(ξj)ψ(a))α1+p1+κjΓ(α1+p1+κj+1))]L1r1+[(ψ(b)ψ(a))γ1+p11|Ω|Γ(γ1+p1)×(|Ω2|(ψ(b)ψ(a))α2+p2Γ(α2+p2+1)+mi=1|Ω4||ηi|(ψ(θi)ψ(a))α2+p2+δiΓ(α2+p2+δi+1))]L2r1+[|λ1|((ψ(b)ψ(a))p1Γ(p1+1)+(ψ(b)ψ(a))γ1+p11|Ω|Γ(γ1+p1)(|Ω4|(ψ(b)ψ(a))p1Γ(p1+1)+nj=1|Ω2||μj|(ψ(ξj)ψ(a))p1+κjΓ(p1+κj+1)))+|λ2|(ψ(b)ψ(a))γ1+p11|Ω|Γ(γ1+p1)(|Ω2|(ψ(b)ψ(a))p2Γ(p2+1)+mi=1|Ω4||ηi|(ψ(θi)ψ(a))p2+δiΓ(p2+δi+1))]r1+[(ψ(b)ψ(a))α1+p1Γ(α1+p1+1)+(ψ(b)ψ(a))γ1+p11|Ω|Γ(γ1+p1)×(|Ω4|(ψ(b)ψ(a))α1+p1Γ(α1+p1+1)+nj=1|Ω2||μj|(ψ(ξj)ψ(a))α1+p1+κjΓ(α1+p1+κj+1))]M1+[(ψ(b)ψ(a))γ1+p11|Ω|Γ(γ1+p1)(|Ω2|(ψ(b)ψ(a))α2+p2Γ(α2+p2+1)+mi=1|Ω4||ηi|(ψ(θi)ψ(a))α2+p2+δiΓ(α2+p2+δi+1))]N1=[Ψ1(b,α1+p1)+Ψ1(b,γ1+p11)|Ω|(|Ω4|Ψ1(b,α1+p1)+|Ω2|nj=1|μj|Ψ1(ξj,α1+p1+κj))]L1r1+[Ψ1(b,γ1+p11)|Ω|(|Ω2|Ψ1(b,α2+p2)+|Ω4|mi=1|ηi|Ψ1(θi,α2+p2+δi))]L2r1+[|λ1|(Ψ1(b,p1)+Ψ1(b,γ1+p11)|Ω|×(|Ω4|Ψ1(b,p1)+|Ω2|nj=1|μj|Ψ1(ξj,p1+κj)))+|λ2|Ψ1(b,γ1+p11)|Ω|×(|Ω2|Ψ1(b,p2)+|Ω4|mi=1|ηi|Ψ1(θi,p2+δi))]r1+[Ψ1(b,α1+p1)+Ψ1(b,γ1+p11)|Ω|(|Ω4|Ψ1(b,α1+p1)+|Ω2|nj=1|μj|Ψ1(ξj,α1+p1+κj))]M1+[Ψ1(b,γ1+p11)|Ω|(|Ω2|Ψ1(b,α2+p2)+mi=1|Ω4||ηi|Ψ1(θi,α2+p2+δi))]N1=[Λ1(α1+p1)L1+Λ2(α2+p2)L2+|λ1|Λ1(p1)+|λ2|Λ2(p2)]r1+Λ1(α1+p1)M1+Λ2(α2+p2)N1.

    Similarly, we find that

    Q2(x,y)[Λ3(α1+p1)L1+Λ4(α2+p2)L2+|λ1|Λ3(p1)+|λ2|Λ4(p2)]r1+Λ3(α1+p1)M1+Λ4(α2+p2)N1.

    Consequently, we have

    Q(x,y)[(Λ1(α1+p1)+Λ3(α1+p1))L1+(Λ2(α2+p2)+Λ4(α2+p2))L2+(Λ1(p1)+Λ3(p1))|λ1|+(Λ2(p2)+Λ4(p2))|λ2|]r1+[Λ1(α1+p1)+Λ3(α1+p1)]M1+[Λ2(α2+p2)+Λ4(α2+p2)]N1r1,

    which implies that QBr1Br1.

    Step Ⅱ. We show that Q:SS is a contraction.

    Using condition (H1), for any (x1,y1), (x2,y2)S×S and for each t[a,b], we have

    Q1(x1,y1)Q1(x2,y2)supt[a,b]{Iα1+p1;ψa+|f(s,x1(s),y1(s))f(s,x2(s),y2(s))|(t)+|λ1|Ip1;ψa+|x1(s)x2(s)|(t)+(ψ(t)ψ(a))γ1+p11|Ω|Γ(γ1+p1)[|Ω4|(Iα1+p1;ψa+|f(s,x1(s),y1(s))f(s,x2(s),y2(s))|(b)+mi=1|ηi|Iα2+p2+δi;ψa+|g(s,x1(s),y1(s))g(s,x2(s),y2(s))|(θi)+|λ1|Ip1;ψa+|x1(s)x2(s)|(b)+|λ2|mi=1|ηi|Ip2+δi;ψa+|y1(s)y2(s)|(θi))+|Ω2|(nj=1|μj|Iα1+p1+κj;ψa+|f(s,x1(s),y1(s))f(s,x2(s),y2(s))|(ξj)+Iα2+p2;ψa+|g(s,x1(s),y1(s))g(s,x2(s),y2(s))|(b)+|λ1|nj=1|μj|Ip1+κj;ψa+|x1(s)x2(s)|(ξj)+|λ2|Ip2;ψa+|y1(s)y2(s)|(b))]}(x1x2+y1y2)[Ψ1(b,α1+p1)+Ψ1(b,γ1+p11)|Ω|(|Ω4|Ψ1(b,α1+p1)+|Ω2|nj=1|μj|Ψ1(ξj,α1+p1+κj))]L1+(x1x2+y1y2)×[Ψ1(b,γ1+p11)|Ω|(|Ω2|Ψ1(b,α2+p2)+|Ω4|mi=1|ηi|Ψ1(θi,α2+p2+δi))]L2+[|λ1|(Ψ1(b,p1)+Ψ1(b,γ1+p11)|Ω|(|Ω4|Ψ1(b,p1)+|Ω2|nj=1|μj|Ψ1(ξj,p1+κj)))+|λ2|Ψ1(b,γ1+p11)|Ω|(|Ω2|Ψ1(b,p2)+|Ω4|mi=1|ηi|Ψ1(θi,p2+δi))]×(x1x2+y1y2){[Λ1(α1+p1)+Λ3(α1+p1)]L1+[Λ2(α2+p2)+Λ4(α2+p2)]L2+[Λ1(p1)+Λ3(p1)]|λ1|+[Λ2(p2)+Λ4(p2)]|λ2|}(x1x2+y1y2).

    Similarly, we get that

    Q2(x1,y1)Q2(x2,y2)supt[a,b]{Iα2+p2;ψa+|g(s,x1(s),y1(s))g(s,x2(s),y2(s))|(t)+|λ2|Ip2;ψa+|y1(s)y2(s)|(t)+(ψ(t)ψ(a))φ1+p21|Ω|Γ(φ1+p2)[|Ω1|(nj=1|μj|Iα1+p1+κj;ψa+|f(s,x1(s),y1(s))f(s,x2(s),y2(s))|(ξj)+Iα2+p2;ψa+|g(s,x1(s),y1(s))g(s,x2(s),y2(s))|(b)+|λ1|nj=1μjIp1+κj;ψa+|x1(s)x2(s)|(ξj)+|λ2|Ip2;ψa+|y1(s)y2(s)|(b))+Ω3(Iα1+p1;ψa+|f(s,x1(s),y1(s))f(s,x2(s),y2(s))|(b)+mi=1|ηi|Iα2+p2+δi;ψa+|g(s,x1(s),y1(s))g(s,x2(s),y2(s))|(θi)+|λ1|Ip1;ψa+|x1(s)x2(s)|(b)+|λ2|mi=1|ηi|Ip2+δi;ψa+|y1(s)y2(s)|(θi))]}[Λ3(α1+p1)L1+Λ4(α2+p2)L2+|λ1|Λ3(p1)+|λ2|Λ4(p2)](x1x2+y1y2).

    Consequently, we get

    Q(x1,y1)Q(x2,y2)Φ(x1x2+y1y2).

    which, by condition (3.9), implies that the operator Q is a contraction. Therefore, by the conclusion of Banach contraction mapping principle (Lemma 2.9), the operator Q has a unique fixed point. Hence, system (1.2) has a unique solution on [a.b]. The proof is completed.

    In the second result, we apply the Leray-Schauder alternative to investigate the existence of solutions for the system (1.2).

    For convenience, we set:

    E1(U)=Λ1(U)+Λ3(U), (3.11)
    E2(U)=Λ2(U)+Λ4(U), (3.12)

    where Λ1(), Λ2(), Λ3() and Λ4() are given by (3.5), (3.6), (3.7) and (3.8) respectively.

    Theorem 3.2. Let f, g:[a,b]×R2R be continuous functions such that the following condition holds:

    (H2) There exist real constants Ki, ¯Ki0 for i=1,2,3, such that, for x, yR,

    |f(t,x,y)|K1+K2|x|+K3|y|,and|g(t,x,y)|¯K1+¯K2|x|+¯K3|y|.

    Then, the system (1.2) has at least one solution on [a,b] provided that

    Φ2=E1(α1+p1)K2+E2(α2+p2)¯K2+E1(p1)|λ1|<1, (3.13)
    Φ3=E1(α1+p1)K3+E2(α2+p2)¯K3+E2(p2)|λ2|<1, (3.14)

    where E1() and E2() are given by (3.11) and (3.12) respectively.

    Proof. The process of the proof is divided into several steps:

    Firstly, we show that the operator Q:S×SS×S is completely continuous. Note that the operator Q, defined by (3.1), is continuous in view of the continuity of f and g.

    Let Br2S×S be a bounded set, where Br2={(x,y)S×S:(x,y)r2}. Then, for any (x,y)Br2, there exist positive real numbers ¯f and ¯g such that |f(t,x(t),y(t))|¯f and |g(t,x(t),y(t))|¯g.

    Thus, for each (x,y)Br2 we have

    Q1(x,y)supt[a,b]{Iα1+p1;ψa+|f(s,x(s),y(s))|(t)+|λ1|Ip1;ψa+|x(s)|(t)+(ψ(t)ψ(a))γ1+p11|Ω|Γ(γ1+p1)[|Ω4|(Iα1+p1;ψa+|f(s,x(s),y(s))|(b)+mi=1|ηi|Iα2+p2+δi;ψa+|g(s,x(s),y(s))|(θi)+|λ1|Ip1;ψa+|x(s)|(b)+|λ2|mi=1|ηi|Ip2+δi;ψa+|y(s)|(θi))+|Ω2|(nj=1|μj|Iα1+p1+κj;ψa+|f(s,x(s),y(s))|(ξj)+Iα2+p2;ψa+|g(s,x(s),y(s))|(b)+|λ1|nj=1μjIp1+κj;ψa+|x(s)|(ξj)+|λ2|Ip2;ψa+|y(s)|(b))]}[Ψ1(b,α1+p1)+Ψ1(b,γ1+p11)|Ω|(|Ω4|Ψ1(b,α1+p1)+|Ω2|nj=1|μj|Ψ1(ξj,α1+p1+κj))]¯f+[Ψ1(b,γ1+p11)|Ω|(|Ω2|Ψ1(b,α2+p2)+|Ω4|mi=1|ηi|Ψ1(θi,α2+p2+δi))]¯g+[|λ1|(Ψ1(b,p1)+Ψ1(b,γ1+p11)|Ω|(|Ω4|Ψ1(b,p1)+|Ω2|nj=1μjΨ1(ξj,p1+κj)))+|λ2|(Ψ1(b,γ1+p11)|Ω|(|Ω2|Ψ1(b,p2)+|Ω4|mi=1|ηi|Ψ1(θi,p2+δi)))]r2=Λ1(α1+p1)¯f+Λ2(α2+p2)¯g+[|λ1|Λ1(p1)+|λ2|Λ2(p2)]r2.

    In similar process, we have that

    Q2(x,y)Λ3(α1+p1)¯f+Λ4(α2+p2)¯g+[|λ1|Λ3(p1)+|λ2|Λ4(p2)]r2.

    Therefore, it follows that

    Q(x,y)E1(α1+p1)¯f+E2(α2+p2)¯g+[E1(p1)|λ1|+E2(p2)|λ2|]r2,

    which implies that the operator Q is uniformly bounded.

    In the next step, we show that the operator Q is equicontinuous. Let τ1, τ2[a,b] with τ1<τ2. Then, we can compute that

    |Q1(x,y)(τ2)Q1(x,y)(τ1)||Iα1+p1;ψa+f(s,x(s),y(s))(τ2)Iα1+p1;ψa+f(s,x(s),y(s))(τ1)|+|λ1||Ip1;ψa+x(τ2)Ip1;ψa+x(τ1)|+|(ψ(τ2)ψ(a))γ1+p11(ψ(τ1)ψ(a))γ1+p11||Ω|Γ(γ1+p1)×[|Ω4|(Iα1+p1;ψa+|f(s,x(s),y(s))|(b)+mi=1|ηi|Iα2+p2+δi;ψa+|g(s,x(s),y(s))|(θi)+|λ1|Ip1;ψa+|x(s)|(b)+|λ2|mi=1|ηi|Ip2+δi;ψa+|y(s)|(θi))+|Ω2|(nj=1|μj|Iα1+p1+κj;ψa+|f(s,x(s),y(s))|(ξj)+Iα2+p2;ψa+|g(s,x(s),y(s))|(b)+|λ1|nj=1|μj|Ip1+κj;ψa+|x(s)|(ξj)+|λ2|Ip2;ψa+|y(s)|(b))]¯fΓ(α1+p1+1)[2(ψ(τ2)ψ(τ1))α1+p1+|(ψ(τ2)ψ(a))α1+p1(ψ(τ1)ψ(a))α1+p1|]+|λ1|r2Γ(p1+1)[2(ψ(τ2)ψ(τ1))p1+|(ψ(τ2)ψ(a))p1(ψ(τ1)ψ(a))p1|]+|(ψ(τ2)ψ(a))γ1+p11(ψ(τ1)ψ(a))γ1+p11||Ω|Γ(γ1+p1)[(|Ω4|Ψ1(b,α1+p1)+|Ω2|nj=1|μj|Ψ1(ξj,α1+p1+κj))¯f+(|Ω4|mi=1|ηi|Ψ1(θi,α2+p2+δi)+|Ω2|Ψ1(b,α2+p2))¯g+(|Ω4||λ1|Ψ1(b,p1)+|Ω2||λ1|nj=1|μj|Ψ1(ξj,p1+κj)+|Ω2||λ2|Ψ1(b,p2)+|Ω4||λ2|mi=1|ηi|Ψ1(θi,p2+δi))r2].

    In the same process, we deduce that

    |Q2(x,y)(τ2)Q2(x,y)(τ1)|¯gΓ(α2+p2+1)[2(ψ(τ2)ψ(τ1))α2+p2+|(ψ(τ2)ψ(a))α2+p2(ψ(τ1)ψ(a))α2+p2|]+|λ2|r2Γ(p2+1)[2(ψ(τ2)ψ(τ1))p2+|(ψ(τ2)ψ(a))p2(ψ(τ1)ψ(a))p2|]+|(ψ(τ2)ψ(a))φ1+p21(ψ(τ1)ψ(a))φ1+p21||Ω|Γ(φ1+p2)[(|Ω3|Ψ1(b,α1+p1)+|Ω1|nj=1|μj|Ψ1(ξj,α1+p1+κj))¯f+(|Ω3|mi=1|ηi|Ψ1(θi,α2+p2+δi)+|Ω1|Ψ1(b,α2+p2))¯g+(|Ω3||λ1|Ψ1(b,p1)+|Ω1||λ1|nj=1|μj|Ψ1(ξj,p1+κj)+|Ω1||λ2|Ψ1(b,p2)+|Ω3||λ2|mi=1|ηi|Ψ1(θi,p2+δi))r2].

    Consequently, the operator Q(x,y) is equicontinuous. By Arzelá-Ascoli theorem, the operator Q(x,y) is completely continuous.

    At last process, we show that the set U={(x,y)S×S|(x,y)=σQ(x,y),0σ1} is a bounded. Let (x,y)U, with (x,y)=σQ(x,y). For any t[a,b], we obtain

    x(t)=σQ(x,y)(t),andy(t)=σQ(x,y)(t).

    By using condition (H3), we can calculate that

    |x(t)|=|σQ1(x,y)(t)|(K1+K2x+K3y)Iα1+p1;ψa+(1)(b)+|λ1|xIp1;ψa+(1)(b)+(ψ(b)ψ(a))γ1+p11|Ω|Γ(γ1+p1)×[|Ω4|((K1+K2x+K3y)Iα1+p1;ψa+(1)(b)+|λ1|xIp1;ψa+(1)(b)+(¯K1+¯K2x+¯K3y)mi=1|ηi|Iα2+p2+δi;ψa+(1)(θi)+|λ2|ymi=1|ηi|Ip2+δi;ψa+(1)(θi))+|Ω2|((K1+K2x+K3y)nj=1|μj|Iα1+p1+κj;ψa+(1)(ξj)+|λ2|yIp2;ψa+(1)(b)+(¯K1+¯K2x+¯K3y)Iα2+p2;ψa+(1)(b)+|λ1|xnj=1μjIp1+κj;ψa+(1)(ξj))]Λ1(α1+p1)(K1+K2x+K3y)+Λ2(α2+p2)(¯K1+¯K2x+¯K3y)+|λ1|Λ1(p1)x+|λ2|Λ2(p2)y,

    and

    |y(t)|=|σQ2(x,y)(t)|(¯K1+¯K2x+¯K3y)Iα2+p2;ψa+(1)(b)+|λ2|yIp2;ψa+(1)(b)+(ψ(b)ψ(a))φ1+p21|Ω|Γ(φ1+p2)×[|Ω1|((K1+K2x+K3y)nj=1|μj|Iα1+p1+κj;ψa+(1)(ξj)+|λ2|yIp2;ψa+(1)(b)+(¯K1+¯K2x+¯K3y)Iα2+p2;ψa+(1)(b)+|λ1|xnj=1|μj|Ip1+κj;ψa+(1)(ξj))+|Ω3|((¯K1+¯K2x+¯K3y)mi=1|ηi|Iα2+p2+δi;ψa+(1)(θi)+|λ1|xIp1;ψa+(1)(b)+(K1+K2x+K3y)Iα1+p1;ψa+(1)(b)+|λ2|ymi=1|ηi|Ip2+δi;ψa+(1)(θi))]Λ3(α1+p1)(K1+K2x+K3y)+Λ4(α2+p2)(¯K1+¯K2x+¯K3y)+|λ1|Λ3(p1)x+|λ2|Λ4(p2)y.

    Hence, we have

    x[Λ1(α1+p1)K1+Λ2(α2+p2)¯K1]+[Λ1(α1+p1)K2+Λ2(α2+p2)¯K2+|λ1|Λ1(p1)]x+[Λ1(α1+p1)K3+Λ2(α2+p2)¯K3+|λ2|Λ2(p2)]y,

    and

    y[Λ3(α1+p1)K1+Λ4(α2+p2)¯K1]+[Λ3(α1+p1)K2+Λ4(α2+p2)¯K2+|λ1|Λ3(p1)]x+[Λ3(α1+p1)K3+Λ4(α2+p2)¯K3+|λ2|Λ4(p2)]y.

    From the above inequalities, we get

    x+yE1(α1+p1)K1+E2(α2+p2)¯K1+(E1(α1+p1)K2+E2(α2+p2)¯K2+E1(p1)|λ1|)x+(E1(α1+p1)K3+E2(α2+p2)¯K3+E2(p2)|λ2|)y,

    which implies that

    (x,y)E1(α1+p1)K1+E2(α2+p2)¯K1E0,

    where E0=min{1Φ2,1Φ3}. Hence the set U is bounded. Thus, by Lemma 2.10, the operator Q has at least one fixed point, which implies that system (1.2) has at least one solution on [a,b]. This completes the proof.

    This section is devoted to the illustration of the results derived in previous sections.

    Example 4.1. Consider the following nonlocal boundary problem of the form:

    {HDe2,0.5;et60+(HD3e2,0.4;et60++110)x(t)=f(t,x(t),y(t)),t[0,1.2],HDe3,0.6;et60+(HD3e3,0.7;et60++120)y(t)=g(t,x(t),y(t)),t[0,1.2],x(0)=0,x(1.2)=3i=1(ln2i+1)Iln(6i2);et60+y(2i110),y(0)=0,y(1.2)=2j=1(ln(j+1)j)Iln(j+33);et60+x(2j+310). (4.1)

    Here αk=e/(k+1), βk=(k+4)/10, pk=3e/(k+1), qk=(3k+1)/10, λk=(155k)/100, k=1,2, ψ(t)=et/6, ηi=ln2/(i+1), δi=ln((6i)/2), θi=(2i1)/10, i=1,2,3, μj=ln(j+1)/j, κj=ln((j+3)/3), ξj=(2j+3)/10, j=1,2, a=0 and b=1.2. From (2.14) with the given data, we can compute that of

    Ω1=(ψ(b)ψ(a))γ1+p11Γ(γ1+p1)=(e1.2616)0.61Γ(1.61),Ω2=mi=1ηi(ψ(θi)ψ(a))φ1+p2+δi1Γ(φ1+p2+δi)=3i=1(ln2i+1)(e2i110616)0.285+ln(6i2)Γ(1.285+ln(6i2)),Ω3=nj=1μj(ψ(ξj)ψ(a))γ1+p1+κj1Γ(γ1+p1+κj)=nj=1(ln(j+1)j)(e2j+310616)0.61+ln(j+33)Γ(1.61+ln(j+33)),Ω4=(ψ(b)ψ(a))φ1+p21Γ(φ1+p2)=(e1.2616)0.285Γ(1.285).

    Then, Ω10.6261, Ω20.0580, Ω30.1687, Ω40.8476, and Ω=Ω1Ω4Ω2Ω30.52090. In addition, Table 1 shows the numerical results of Ωi for i=1,2,3,4, and Ω for a variety of t(0,1.2). These results are shown in Figure 1.

    Table 1.  Numerical results of Ωi for i=1,2,3,4 and Ω in Ex 4.1.
    n t Ω1 Ω2 Ω3 Ω4 Ω
    1 0.00 0.0000 0.0000 0.0000 0.0000 0.0000
    2 0.05 0.0612 0.0104 0.0125 0.2860 0.0174
    3 0.10 0.0949 0.0186 0.0247 0.3509 0.0328
    4 0.15 0.1234 0.0267 0.0372 0.3968 0.0480
    5 0.20 0.1494 0.0348 0.0502 0.4339 0.0631
    6 0.25 0.1739 0.0431 0.0637 0.4658 0.0782
    7 0.30 0.1974 0.0517 0.0777 0.4943 0.0936
    8 0.35 0.2204 0.0605 0.0925 0.5204 0.1091
    9 0.40 0.2430 0.0697 0.1079 0.5447 0.1249
    10 0.45 0.2654 0.0793 0.1240 0.5676 0.1408
    11 0.50 0.2878 0.0893 0.1409 0.5895 0.1570
    12 0.55 0.3101 0.0997 0.1586 0.6104 0.1735
    13 0.60 0.3325 0.1107 0.1771 0.6306 0.1901
    14 0.65 0.3551 0.1221 0.1966 0.6503 0.2069
    15 0.70 0.3778 0.1341 0.2170 0.6694 0.2238
    16 0.75 0.4009 0.1466 0.2384 0.6882 0.2409
    17 0.80 0.4242 0.1597 0.2609 0.7066 0.2581
    18 0.85 0.4479 0.1735 0.2845 0.7248 0.2752
    19 0.90 0.4719 0.1880 0.3093 0.7427 0.2923
    20 0.95 0.4964 0.2032 0.3354 0.7605 0.3093
    21 1.00 0.5213 0.2192 0.3627 0.7781 0.3261
    22 1.05 0.5467 0.2360 0.3914 0.7956 0.3426
    23 1.10 0.5726 0.2536 0.4216 0.8130 0.3586
    24 1.15 0.5990 0.2721 0.4532 0.8303 0.3741
    25 1.20 0.6261 0.2916 0.4865 0.8476 0.3888

     | Show Table
    DownLoad: CSV
    Figure 1.  Graphical representation of Ωi for i=1,2,3,4, and Ω in Example 4.1.

    (i) To demonstrate the application of Theorem 3.1, let us take

    f(t,x,y)=12+6et(5+2sin2πt)2|x|10+|x|+3et5|y|5+|y|,g(t,x,y)=1+25t4(10t+8)(1+|x|+|y|). (4.2)

    For xi, yiR, i=1,2 and t[0,1.2], we get the inequalities

    |f(t,x1,y1)f(t,x2,y2)|325(|x1x2|+|y1y2|),|g(t,x1,y1)g(t,x2,y2)|15(|x1x2|+|y1y2||).

    The assumption (H1) is fulfilled with Λ1(α1+p1)0.3530, Λ2(α2+p2)0.0336, Λ3(α1+p1)0.0626, Λ4(α2+p2)0.7669, Λ1(p1)1.1549, Λ2(p2)0.0866, Λ3(p1)1.2941, Λ4(p2)1.4749, L1=3/25 and L2=1/5. Also Φ10.4329<1, and thus by Theorem 3.1, the system (4.1), with f and g given by (4.2), has a unique solution on [0,1.2]. In addition, Tables 2 and 3 show the numerical results of Λi(U) for i=1,2,3,4, where U={α1+p1,α2+p2,p1,p2} and Φ1 for a variety of t(0,1.2). These results are shown in Figures 2-4.

    Table 2.  Numerical results of Λi(U) for i=1,2,3,4 and U={α1+p1,α2+p2} in Ex. 4.1 (ⅰ).
    n t Λ1(α1+p1) Λ2(α2+p2) Λ3(α1+p1) Λ4(α2+p2)
    1 0.00 0.0000 0.0000 0.0000 0.0000
    2 0.05 0.0008 0.0002 0.0000 0.0092
    3 0.10 0.0025 0.0009 0.0002 0.0206
    4 0.15 0.0050 0.0020 0.0006 0.0339
    5 0.20 0.0085 0.0035 0.0012 0.0491
    6 0.25 0.0128 0.0056 0.0022 0.0664
    7 0.30 0.0181 0.0083 0.0777 0.0857
    8 0.35 0.0244 0.0117 0.0037 0.1074
    9 0.40 0.0320 0.0158 0.0058 0.1316
    10 0.45 0.0408 0.0208 0.0087 0.1584
    11 0.50 0.0510 0.0267 0.0124 0.1882
    12 0.55 0.0628 0.0338 0.0173 0.2211
    13 0.60 0.0763 0.0421 0.0234 0.2576
    14 0.65 0.0918 0.0517 0.0311 0.2979
    15 0.70 0.1094 0.0629 0.0407 0.3423
    16 0.75 0.1294 0.0759 0.0524 0.3914
    17 0.80 0.1520 0.0908 0.0667 0.4455
    18 0.85 0.1776 0.1079 0.0841 0.5052
    19 0.90 0.2064 0.1274 0.1049 0.5709
    20 0.95 0.2389 0.1497 0.1300 0.6434
    21 1.00 0.2755 0.1751 0.1953 0.7234
    22 1.05 0.3166 0.2039 0.2373 0.8115
    23 1.10 0.3628 0.2365 0.2868 0.9087
    24 1.15 0.4146 0.2734 0.3451 1.0160
    25 1.20 0.4728 0.3152 0.4134 1.1344

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical results of Λi(U) for i=1,2,3,4, U={p1,p2} and Φ1 in Ex. 4.1 (ⅰ).
    n t Λ1(p1) Λ2(p2) Λ3(p1) Λ4(p2) Φ1
    1 0.00 0.0000 0.0000 0.0000 0.0000 0.0000
    2 0.05 0.0586 0.0041 0.0026 0.1434 0.0155
    3 0.10 0.1040 0.0102 0.0085 0.2162 0.0272
    4 0.15 0.1477 0.0178 0.0174 0.2808 0.0393
    5 0.20 0.1912 0.0269 0.0292 0.3426 0.0522
    6 0.25 0.2353 0.0374 0.0440 0.4038 0.0662
    7 0.30 0.2804 0.0493 0.0622 0.4655 0.0814
    8 0.35 0.3269 0.0628 0.0839 0.5285 0.0981
    9 0.40 0.3750 0.0779 0.1094 0.5933 0.1163
    10 0.45 0.4249 0.0948 0.1391 0.6603 0.1364
    11 0.50 0.4769 0.1135 0.1733 0.7300 0.1584
    12 0.55 0.5313 0.1341 0.2125 0.8029 0.1826
    13 0.60 0.5882 0.1569 0.2570 0.8791 0.2091
    14 0.65 0.6478 0.1819 0.3075 0.9593 0.2384
    15 0.70 0.7105 0.2094 0.3645 1.0437 0.2706
    16 0.75 0.7764 0.2395 0.4285 1.1328 0.3061
    17 0.80 0.8459 0.2724 0.5003 1.2270 0.3452
    18 0.85 0.9192 0.3084 0.5805 1.3269 0.3882
    19 0.90 0.9967 0.3476 0.6700 1.4328 0.4357
    20 0.95 1.0787 0.3904 0.7696 1.5455 0.4881
    21 1.00 1.1656 0.4370 0.8803 1.6654 0.5459
    22 1.05 1.2577 0.4877 1.0030 1.7934 0.6097
    23 1.10 1.3555 0.5429 1.1391 1.9300 0.6801
    24 1.15 1.4596 0.6029 1.2896 2.0760 0.7579
    25 1.20 1.5704 0.6680 1.4559 2.2325 0.8439

     | Show Table
    DownLoad: CSV
    Figure 2.  Graphical representation of Λi(U) for i=1,2,3,4, and U={α1+p1,α2+p2} in Ex. 4.1 (ⅰ).
    Figure 3.  Graphical representation of Λi(U) for i=1,2,3,4, and U={p1,p2} in Ex. 4.1 (ⅰ).
    Figure 4.  Graphical representation of Φ1 in Ex. 4.1 (ⅰ).

    (ii) To illustrate Theorem 3.2 let

    f(t,x,y)=1103+sin2(πt)+6sin|x|22+t(5+t2)+3cos2(πt)(3t+5)2|y|1+|y|,g(t,x,y)=1+2cos2(5πt)(t+2)3+2+48+et2(t+5)2|x|2+|x|+5t25sin|y|5+sin|y|. (4.3)

    For x, yR and t[0,1.2], we have

    |f(t,x,y)|15+310|x|+325|y|and|g(t,x,y)|310+625|x|+425|y|.

    From (3.11)-(3.12) with the given datas, we have E1(α1+p1)0.4156, E2(α2+p2)0.8005, E1(p1)1.4489, and E2(p2)1.5614. The assumption (H2) is satisfied with K1=1/5, K2=3/10, K3=3/25, ¯K1=3/10, ¯K2=6/25 and ¯K3=4/25. Hence, we get Φ20.4617<1 and Φ30.2560<1. Since, all the assumptions of Theorem 3.2 are fulfilled, the system (4.1), with f and g given by (4.3), has at least one solution on [0,1.2]. In addition, Table 4 show the numerical results of Ei(U) for i=1,2, where U={α1+p1,α2+p2,p1,p2} and Φi for i=2,3 for a variety of t(0,1.2). These results are shown in Figures 5-6.

    Table 4.  Numerical results of Ei(U) for i=1,2, U={α1+p1,α2+p2,p1,p2}, Φ2, and Φ3 in Ex. 4.1 (ⅱ).
    n t E1(α1+p1) E2(α2+p2) E1(p1) E2(p2) Φ2 Φ3
    1 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
    2 0.05 0.0008 0.0095 0.0612 0.1475 0.0086 0.0090
    3 0.10 0.0027 0.0215 0.1126 0.2264 0.0172 0.0151
    4 0.15 0.0056 0.0359 0.1651 0.2986 0.0268 0.0213
    5 0.20 0.0097 0.0526 0.2204 0.3695 0.0376 0.0281
    6 0.25 0.0150 0.0720 0.2793 0.4412 0.0497 0.0354
    7 0.30 0.0218 0.0940 0.3426 0.5149 0.0634 0.0434
    8 0.35 0.0303 0.1191 0.4107 0.5913 0.0787 0.0522
    9 0.40 0.0406 0.1473 0.4843 0.6712 0.0960 0.0620
    10 0.45 0.0532 0.1792 0.5640 0.7551 0.1154 0.0728
    11 0.50 0.0683 0.2149 0.6502 0.8435 0.1371 0.0848
    12 0.55 0.0862 0.2549 0.7438 0.9370 0.1614 0.0980
    13 0.60 0.1074 0.2997 0.8452 1.0360 0.1887 0.1126
    14 0.65 0.1325 0.3496 0.9554 1.1412 0.2192 0.1289
    15 0.70 0.1618 0.4053 1.0750 1.2531 0.2533 0.1469
    16 0.75 0.1961 0.4673 1.2050 1.3723 0.2915 0.1669
    17 0.80 0.2361 0.5363 1.3462 1.4994 0.3342 0.1891
    18 0.85 0.2825 0.6130 1.4997 1.6352 0.3819 0.2138
    19 0.90 0.3364 0.6984 1.6667 1.7804 0.4352 0.2411
    20 0.95 0.3987 0.7932 1.8483 1.9359 0.4948 0.2715
    21 1.00 0.4708 0.8985 2.0458 2.1024 0.5614 0.3054
    22 1.05 0.5539 1.0154 2.2607 2.2811 0.6359 0.3430
    23 1.10 0.6496 1.1453 2.4946 2.4729 0.7192 0.3848
    24 1.15 0.7597 1.2894 2.7492 2.6789 0.8123 0.4314
    25 1.20 0.8862 1.4495 3.0263 2.9005 0.9164 0.4833

     | Show Table
    DownLoad: CSV
    Figure 5.  Graphical representation of Ei(U) for i=1,2, U={α1+p1,α2+p2,p1,p2} in Ex. 4.1 (ⅱ).
    Figure 6.  Graphical representation of Φ2 and Φ3 in Ex. 4.1 (ⅱ).

    We have discussed the existence and uniqueness of solutions for a coupled system consisting by ψ-Hilfer fractional order Langevin equations supplemented with nonlocal integral boundary conditions. We proved the uniqueness of the solutions in the first case using the Banach contraction mapping principle, and we established the existence of the findings in the second case using the Leray-Schauder alternative. The results of the present paper are new and significantly contribute to the existing literature on the topic. Moreover, several new results follow as special cases of the present one.

    The first author would like to thank the King Mongkut's University of Technology North Bangkok for supporting in this work. The third author would like to thank for funding this work through the Center of Excellence in Mathematics (CEM), CHE, Sri Ayutthaya Rd., Bangkok, 10400, Thailand and Burapha University.

    On behalf of all authors, the corresponding author states that there is no conflict of interest.



    [1] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer, New York, 2010.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of the Fractional Differential Equations, North-Holland Mathematics Studies, 204, 2006.
    [3] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009.
    [4] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, NewYork, 1993.
    [5] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
    [6] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, 1993.
    [7] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
    [8] B. Ahmad, A. Alsaedi, S.K. Ntouyas, J. Tariboon, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer, Cham, Switzerland, 2017.
    [9] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
    [10] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, J. Chem. Phys., 284 (2002), 399–408.
    [11] R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouvill fractional derivatives, Frac. Calc. Appl. Anal., 12 (2009), 299–318.
    [12] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simulat., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006
    [13] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005
    [14] J. Vanterler da C. Sousa, E. Capelas de Oliveira, Leibniz type rule: ψ-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 305–311. doi: 10.1016/j.cnsns.2019.05.003
    [15] J. Vanterler da C. Sousa, E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50–56. doi: 10.1016/j.aml.2018.01.016
    [16] K. M. Furati, N. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. doi: 10.1016/j.camwa.2012.01.009
    [17] H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354.
    [18] J. Wang, Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850–859.
    [19] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657.
    [20] A. Mali, K. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Meth. Appl. Sci., 43 (2020), 8608–8631. doi: 10.1002/mma.6521
    [21] S. K. Ntouyas, D. Vivek, Existence and uniqueness results for sequential ψ-Hilfer fractional differential equations with multi-point boundary conditions, Acta Mathematica Universitatis Comenianae, 90 (2021), 171–185.
    [22] W. T. Coffey, Yu. P. Kalmykov, J. T. Waldron, The Langevin Equation, second ed., World Scientific, Singapore, 2004.
    [23] A. Alsaedi, S. K. Ntouyas, B. Ahmad, Existence results for Langevin fractional differential inclusions involving two fractional orders with four-point multi-term fractional integral boundary conditions, Abstr. Appl. Anal., 2013 (2013), 1–17.
    [24] J. Tariboon, S. K. Ntouyas, Nonlinear second-order impulsive q-difference Langevin equation with boundary conditions, Bound. Value Probl., 2014 (2014), 85. doi: 10.1186/1687-2770-2014-85
    [25] J. Tariboon, S. K. Ntouyas, C. Thaiprayoon, Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Adv. Math. Phys., 2014 (2014), 1–15.
    [26] Ch. Nuchpong, S. K. Ntouyas, D. Vivek, J. Tariboon, Nonlocal boundary value problems for ψ-Hilfer fractional-order Langevin equations, Bound. Value Probl., 2021 (2021), 1–12. doi: 10.1186/s13661-020-01478-2
    [27] C. Thaiprayoon, W. Sudsutad, S. K. Ntouyas, Mixed nonlocal boundary value problem for implicit fractional integro-differential equations via ψ-Hilfer fractional derivative, Adv. Differ. Equ., 2021 (2021), 1–24. doi: 10.1186/s13662-020-03162-2
    [28] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
    [29] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2005.
  • This article has been cited by:

    1. Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas, On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions, 2022, 7, 2473-6988, 12718, 10.3934/math.2022704
    2. M. Vellappandi, Venkatesan Govindaraj, José Vanterler da C. Sousa, Fractional optimal reachability problems with ψ ‐Hilfer fractional derivative , 2022, 45, 0170-4214, 6255, 10.1002/mma.8168
    3. Fidel Meléndez-Vázquez, Guillermo Fernández-Anaya, Aldo Jonathan Muñóz-Vázquez, Eduardo Gamaliel Hernández-Martínez, Generalized conformable operators: Application to the design of nonlinear observers, 2021, 6, 2473-6988, 12952, 10.3934/math.2021749
    4. Hamid Lmou, Khalid Hilal, Ahmed Kajouni, Serkan Araci, A New Result for ψ -Hilfer Fractional Pantograph-Type Langevin Equation and Inclusions, 2022, 2022, 2314-4785, 1, 10.1155/2022/2441628
    5. Ravi P. Agarwal, Afrah Assolami, Ahmed Alsaedi, Bashir Ahmad, Existence Results and Ulam–Hyers Stability for a Fully Coupled System of Nonlinear Sequential Hilfer Fractional Differential Equations and Integro-Multistrip-Multipoint Boundary Conditions, 2022, 21, 1575-5460, 10.1007/s12346-022-00650-6
    6. Abdulwasea Alkhazzan, Wadhah Al-Sadi, Varaporn Wattanakejorn, Hasib Khan, Thanin Sitthiwirattham, Sina Etemad, Shahram Rezapour, A new study on the existence and stability to a system of coupled higher-order nonlinear BVP of hybrid FDEs under the $ p $-Laplacian operator, 2022, 7, 2473-6988, 14187, 10.3934/math.2022782
    7. Sina Etemad, Iram Iqbal, Mohammad Esmael Samei, Shahram Rezapour, Jehad Alzabut, Weerawat Sudsutad, Izzet Goksel, Some inequalities on multi-functions for applying in the fractional Caputo–Hadamard jerk inclusion system, 2022, 2022, 1029-242X, 10.1186/s13660-022-02819-8
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2893) PDF downloads(160) Cited by(7)

Figures and Tables

Figures(6)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog