Research article

Switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives

  • Received: 18 May 2021 Accepted: 05 September 2021 Published: 14 September 2021
  • MSC : 26A33, 34A08, 34B27

  • In this paper, we consider switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives. Some sufficient conditions are constructed to observe the existence, uniqueness and generalized Ulam-Hyers-Rassias stability of our proposed model, with the help of generalized Diaz-Margolis's fixed point approach, over generalized complete metric space. We give an example which supports our main result.

    Citation: Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada. Switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives[J]. AIMS Mathematics, 2021, 6(12): 13092-13118. doi: 10.3934/math.2021757

    Related Papers:

  • In this paper, we consider switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives. Some sufficient conditions are constructed to observe the existence, uniqueness and generalized Ulam-Hyers-Rassias stability of our proposed model, with the help of generalized Diaz-Margolis's fixed point approach, over generalized complete metric space. We give an example which supports our main result.



    加载中


    [1] R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973–1033. doi: 10.1007/s10440-008-9356-6
    [2] B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal.: Real World Appl., 13 (2012), 599–602. doi: 10.1016/j.nonrwa.2011.07.052
    [3] Z. Ali, A. Zada, K. Shah, Ulam satbility to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl., 2018 (2018), 1–16. doi: 10.1186/s13661-017-0918-2
    [4] Z. Ali, A. Zada, K. Shah, On Ulam stability for a coupled systems of nonlinear implicit fractional differential equations, Bull. Malays. Math. Sci. Soc., 42 (2019), 2681–2699. doi: 10.1007/s40840-018-0625-x
    [5] Z. Bai, On positive solutions of a non-local fractional boundary value problem, Nonlinear Anal.: Theory Methods Appl., 72 (2010), 916–924. doi: 10.1016/j.na.2009.07.033
    [6] D. Baleanu, H. Khan, H. Jafari, R. A. Khan, M. Alipure, On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Differ. Equ., 2015 (2015), 1–14. doi: 10.1186/s13662-014-0331-4
    [7] M. Benchohra, J. R. Graef, S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal., 87 (2008), 851–863. doi: 10.1080/00036810802307579
    [8] M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theory Differ. Equ., 2009 (2009), 1–14.
    [9] J. B. Diaz, B. Margolis, A fixesd point theorem of the alternative, for contractions on a generalized complete matric space, Bull. Am. Math. Soc., 74 (1968), 305–309. doi: 10.1090/S0002-9904-1968-11933-0
    [10] K. S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E, 73 (2006), 061104. doi: 10.1103/PhysRevE.73.061104
    [11] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222
    [12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equation, Elsevier, 2006.
    [13] N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results Math., 63 (2013), 1289–1310. doi: 10.1007/s00025-012-0269-3
    [14] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.
    [15] S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A., 372 (2008), 6309–6320. doi: 10.1016/j.physleta.2008.08.045
    [16] F. Mainardi, P. Pironi, The fractional Langevin equation: Brownian motion revisited, Extracta Math., 11 (1996), 140–154.
    [17] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [18] T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. doi: 10.1090/S0002-9939-1978-0507327-1
    [19] R. Rizwan, Existence theory and stability snalysis of fractional Langevin equation, Int. J. Nonlinear Sci. Numer. Simul., 20 (2019), 833–848. doi: 10.1515/ijnsns-2019-0053
    [20] R. Rizwan, A. Zada, Existence theory and Ulam's stabilities of fractional Langevin equation, Qual. Theory Dyn. Syst., 20 (2021), 1–17. doi: 10.1007/s12346-020-00443-9
    [21] R. Rizwan, A. Zada, M. Ahmad, S. O. Shah, H. Waheed, Existence theory and stability analysis of switched coupled system of nonlinear implicit impulsive Langevin equations with mixed derivatives, Math. Meth. Appl. Sci., 44 (2021), 1–23. doi: 10.1002/mma.6548
    [22] R. Rizwan, A. Zada, H. Waheed, U. Riaz, Switched coupled system of nonlinear impulsive Langevin equations involving Hilfer fractional-order derivatives, Int. J. Nonlinear Sci. Numer. Simul., 2021. Available from: https://doi.org/10.1515/ijnsns-2020-0240.
    [23] R. Rizwan, A. Zada, X. Wang, Stability analysis of non linear implicit fractional Langevin equation with non-instantaneous impulses, Adv. Differ. Equ., 2019 (2019), 1–31. doi: 10.1186/s13662-018-1939-6
    [24] R. Rizwan, A. Zada, Nonlinear impulsive Langevin equation with mixed derivatives, Math. Meth. App. Sci., 43 (2020), 427–442. doi: 10.1002/mma.5902
    [25] I. A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes Bolyai Math., 54 (2009), 125–133.
    [26] S. O. Shah, A. Zada, A. E. Hamza, Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales, Qual. Theory Dyn. Syst., 18 (2019), 825–840. doi: 10.1007/s12346-019-00315-x
    [27] V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, Springer, HEP, 2011.
    [28] S. M. Ulam, A collection of mathematical problems, New York: Interscience Publisher, 1960.
    [29] J. Wang, M. Feckan, Y. Zhou, Ulam's stype stability of impulsive ordinary differential equation, J. Math. Anal. Appl., 395 (2012), 258–264. doi: 10.1016/j.jmaa.2012.05.040
    [30] J. Wang, Y. Zhou, M. Feckan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64 (2012), 3389–3405. doi: 10.1016/j.camwa.2012.02.021
    [31] J. Wang, Y. Zhou, Z. Lin, On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649–657.
    [32] X. Wang, R. Rizwan, J. R. Lee, A. Zada, S. O. Shah, Existence, uniqueness and Ulam stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives, AIMS Math., 6 (2021), 4915–4929. doi: 10.3934/math.2021288
    [33] L. Xu, X. Chu, H. Hu, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. doi: 10.1016/j.aml.2019.106000
    [34] L. Xu, H. Hu, F. Qin, Ultimate boundedness of impulsive fractional differential equations, Appl. Math. Lett., 62 (2016), 110–117. doi: 10.1016/j.aml.2016.06.011
    [35] L. Xu, J. Li, S. S. Ge, Impulsive stabilization of fractional differential systems, ISA Trans., 70 (2017), 125–131. doi: 10.1016/j.isatra.2017.06.009
    [36] A. Zada, S. Ali, Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 763–774 doi: 10.1515/ijnsns-2018-0040
    [37] A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Differ. Equ., 2017 (2017), 1–26. doi: 10.1186/s13662-016-1057-2
    [38] A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Methods Appl. Sci., 40 (2017), 5502–5514. doi: 10.1002/mma.4405
    [39] A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Gr$\ddot{o}$nwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2019), 60–65.
    [40] A. Zada, R. Rizwan, J. Xu, Z. Fu, On implicit impulsive Langevin equation involving mixed order derivatives, Adv. Differ. Equ., 2019 (2019), 1–26. doi: 10.1186/s13662-018-1939-6
    [41] A. Zada, S. O. Shah, Hyers-Ulam stability of first-order non-linear delay dierential equations with fractional integrable impulses, Hacettepe J. Math. Stat., 47 (2018), 1196–1205.
    [42] A. Zada, O. Shah, R. Shah, Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., 271 (2015), 512–518.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1809) PDF downloads(87) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog