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Abstract: This study examined the estimations of Weibull distribution using progressively first-failure
censored data, under the assumption that removals follow the beta-binomial distribution. Classical
and Bayesian approaches for estimating unknown model parameters have been established. The
estimations included scale and shape parameters, reliability and failure rate metrics as well as beta-
binomial parameters. Estimations were considered from both point and interval viewpoints. The Bayes
estimates were developed by using the squared error loss and generating samples for the posterior
distribution through the Markov Chain Monte Carlo technique. Two interval estimation approaches are
considered: approximate confidence intervals based on asymptotic normality of likelihood estimates
and Bayes credible intervals. To investigate the performance of classical and Bayesian estimations,
a simulation study was considered by various kinds of experimental settings. Furthermore, two
examples related to real datasets were thoroughly investigated to verify the practical importance of
the suggested methodologies.
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1. Introduction

In recent years, several censoring approaches have been proposed to overcome the disadvantages
of using whole sample data, particularly in reliability/survival analysis for units that fail slowly over
time. In cases where the time-to-event is very lengthy and testing resources are limited, but testing
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supplies are considerably cheaper, the investigators can employ first-failure censoring (FFC), in which
the investigator splits the units into multiple groups, each serving just like a collection of test units, and
subsequently runs the test for all groups simultaneously until the first failure in each set is noticed. The
sample units can be tested using the formula n = k × r, where r represents the number of groups and
k refers to the number of units in each group; see, for more details Balasooriya [1], Wu et al. [2]
and Wu et al. [3]. Similar to conventional single censoring schemes, the FFC mechanism prohibits
units from being eliminated at any time other than the final cutoff time. However, this assumption is
not always valid, as there may be scenarios in which the researcher needs to remove specific units from
the test for additional investigation. Wu and Kuş [4] proposed a progressive FFC (PFFC) methodology
that combines FFC and progressive Type-II censoring strategies to address that drawback. In other
words, the PFFC plan permits the investigator to drop some groups of units from the test before
all groups experience their initial failures. Suppose we want to analyze the reliability and failure
characteristics of a new batch of semiconductor devices. To efficiently collect reliable data while
managing costs and test duration, we can implement the PFFC plan. This plan involves dividing the
semiconductor devices into r groups, each containing k units. We then initiate the test and record
the occurrence of the first failure. At this point, we stop the test, randomly remove some groups
(including the group that experienced the failure), and proceed to the next step. Once the second
failure is recorded, we stop the test again, remove additional groups randomly (including the group
where the second failure occurred), and repeat this process for subsequent failures. The test concludes
after reaching the predetermined number of failures. In the next section, we will delve into this process
in more detail. Wu and Kuş [4] checked inferences for the Weibull model and concluded that this
censorship yields quicker tests than the conventional progressive Type-II censoring. Many studies
considered the PFFC scheme; see, for example Dube et al. [5], Saini et al. [6], Nassar et al. [7], Ashour
et al. [8], Eliwa and Ahmed [9], and Alsadat et al. [10].

The PFFC plan assumes that the removal pattern used during the test is fixed. However, in some
real-world situations, the removal pattern may happen at random. Yuen and Tse [11] stated that, in
some survival/reliability trials, the investigator may determine that it is not suitable or too risky to
continue testing on certain tested units, irrespective of whether they have failed. In these situations, the
pattern of eliminating after each failure is random. Different approaches have been proposed to address
the assumption of a random removal pattern in the case of the PFFC scheme. The first approach
utilizes discrete uniform removals, which was demonstrated by Huang and Wu [12]. The second
involves binomial removals, as proposed by Ashour et al. [13]. The third approach employs beta-
binomial removals (BBR), as suggested by Elshahhat et al. [14]. The first and second approaches
might not be appropriate. The first strategy assumes that each removal instance has an equal likelihood,
without regard to the number of units discarded. The second strategy assumes that the likelihood of
removal for each unit remains constant throughout the test. In the third approach, Elshahhat et al. [14]
assumed a binomial distribution for the number of removals and a beta distribution for the likelihood
of removals. They termed this approach PFFC with BBR (PFFC-BBR). They considered this scheme
to investigate some classical and Bayesian estimation issues for a generalized extreme value lifetime
model. It is important to note that the use of BBRs is not commonly employed in various progressive
censoring plans. Some available studies are Singh et al. [15], Usta and Gezer [16], Kaushik et al. [17],
Vishwakarma et al. [18], and Sangal and Sinha [19]. This may be due to several reasons: (1) the
complex formulation of the joint likelihood function, (2) the increased number of unknown parameters,
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and (3) the related computational aspects. The detail description of the PFFC-BBR plan is discussed
in the next section.

In this study, we assume that the lifespan of the tested units follows a Weibull distribution (WD).
The WD is commonly used in reliability studies for modeling time to failure data. It extends the
classical exponential distribution to incorporate nonconstant hazard rate shapes. Its hazard rate function
(HRF) can be used to model data with increasing or decreasing shapes. It has been effectively employed
to explain both early burning failures and failures caused by wearouts. The random variable T is said
to have the WD(α, θ) if its probability density function (PDF) is expressed as

g(t;α, θ) = αθtα−1e−θt
α

, t > 0, α, θ > 0, (1.1)

where α and θ are shape and scale parameters, respectively. The cumulative distribution function
(CDF) related to (1.1) is given by

G(t;α, θ) = 1 − e−θt
α

. (1.2)

In addition, the reliability function (RF) and HRF of the random variable T , are given, respectively
by

R(t;α, θ) = e−θt
α

and h(t;α, θ) = αθtα−1. (1.3)

The WD can take on various forms depending on the value of its shape parameter, α. When
α = 1, the WD reduces to the exponential distribution. When α = 2, the WD matches the Rayleigh
distribution. Due to its wide range of applications, researchers use it in various contexts, such as
quality control, reliability analysis, medical investigations, and engineering studies. Given the WD’s
popularity and usefulness, several publications investigated its classical and Bayesian estimation issues
using various types of data. Some recent studies include Jia et al. [20], Nassar et al. [21], Ramos
et al. [22], Zhu [23], Starling et al. [24], Ren and Gui [25], and Nassar and Elshahhat [26].

It is worth noting that only a few studies have considered the PFFC-BBR plan, despite its
significance in life-testing experiments. Furthermore, despite the prevalence of WD as one of the
most popular lifetime models, no study has examined its estimation issues in the context of the PFFC-
BBR plan. Taking these reasons into consideration, we are inspired to conduct this study because of
the importance and wide applications of the WD as a lifetime model, as well as the importance of the
PFFC-BBR plan which is more practical than the PFFC plan with prefixed removal. The key objective
of this research is to draw inferences about the parameters of the WD under the PFFC-BBR plan. From
this objective, we can list our sub-objectives, as shown below:

1) Considering the maximum likelihood estimation approach to get the maximum likelihood
estimates (MLEs) of the unknown parameters, including the RF. The approximate confidence
intervals (ACIs) are also addressed. The ACI of the RF is produced via employing the delta
method (DM) to approximate the variance of its MLE.

2) Investigating Bayesian estimations for various parameters. This involves obtaining both Bayes
estimates (BEs) and Bayes credible intervals (BCIs). The BEs are calculated based on the squared
error (SE) loss function. The Markov Chain Monte Carlo (MCMC) technique is recommended
for extracting samples from conditional distributions in order to produce the necessary BEs and
BCIs.

3) Comparing the point estimates, namely, MLEs and BEs, and interval ranges, including ACIs and
BCIs, of the unknown parameters by Monte Carlo simulations. The simulation considered various
parameter values, sample sizes, and removal patterns.
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4) Applying the provided estimates to actual datasets. This analysis aids in demonstrating the
applicability of the offered approaches in real-world settings.

The remaining parts of this study are arranged as follows: Section 2 depicts the framework of the
PFFC-BBR scheme. Section 3 discusses the WD’s MLEs and ACIs based on the PFFC-BBR plan.
Section 4 discusses the various Bayesian estimates. Section 5 describes the simulations’ design and
findings. Section 6 investigates two real-world datasets. Finally, in Section 7, we provide a conclusion
to the study.

2. Designing the PFFC-BBR plan

This section describes the design of the PFFC-BBR plan. Before progressing further, this example
demonstrates why the beta-binomial distribution is used to model the removal pattern instead of the
beta distribution. Consider a clinical study where the likelihood of participants dropping out can vary
depending on when deaths are reported. If deaths occur early in the study, there will initially be a
high chance of removals, which may decrease over time. On the other hand, if all patients survive
for a longer period and the first death occurs much later, the probability of dropout will be relatively
small at the beginning and may increase later on. This fluctuation in dropout probability at each
stage of the experiment indicates that it is not constant throughout the entire study. Therefore, it is
necessary to consider the number of removals as a random variable, following a binomial distribution
at each stage with a randomly distributed probability of removal. To account for the uncertainty in
the probability of removal at different stages of the experiment, we have used beta distribution, which
can take on a wide range of shapes, to model this variability. By combining the distribution of the
number of removals with the probability of removal, we obtain a beta-binomial distribution for S i.
Assume that r distinct groups, each with k units, are placed through a life-testing experiment at age
zero. Suppose that d is a predetermined number of failures and S = (S 1, . . . , S d) represent the groups’
random removal pattern. When the time of the first failure, say T1:d, occurs, some S 1 groups are
excluded from the experiment, including the group that experienced the first failure. Following the
time of the second failure T2:d, some S 2 groups, including the group with the second failure, are deleted
from the surviving live r − S 1 − 1 groups, and so on. The process runs until the dth failure takes place
and at the failure time Td:d, all the surviving groups, given by S d = r − d −

∑d−1
i=1 S i, are removed from

the test.
Let T = (T1:d, . . . ,Td:d) denote the independent lifetimes of the PFFC order statistics with a pre-

fixed removal pattern (S 1 = s1, . . . , S d = sd) obtained from the Weibull population. Then, the joint
likelihood function (LF) of the observed data can be written, ignoring the constant term, as follows:

L1(α, θ; t|S) =

d∏
i=1

g(ti;α, θ) [1 −G(ti;α, θ)]k(si+1)−1 , (2.1)

where t is the realization of T and ti = ti:d, i = 1, . . . , d, for the sake of simplicity. At the ith failure,
with i = 1, . . . , d − 1, assume that the likelihood of the removal si follows the binomial distribution
with parameters r − d −

∑i−1
j=1 s j and π with the following probability mass function (PMF):

Pr (S = s| π) =

(
n∗i
si

)
πsi (1 − π)n?i , i = 1, 2, . . . , d − 1, (2.2)
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where n∗i = r − d −
∑i−1

j=1 s j, n?i = r − d −
∑i

j=1 s j, 0 6 s1 6 r − d and 0 6 si 6 n∗i for i = 2, 3, . . . , d − 1.
Moreover, it is assumed that the likelihood of removals π follows beta distribution with parameters a
and b with PDF expressed as follows:

f (π|a, b) =
1

B(a, b)
πa−1(1 − π)b−1, a, b > 0, 0 < π < 1, (2.3)

where B(a, b) is the beta function. Utilizing (2.2) and (2.3), the unconditional distribution of S ′i s is
given by

Pr (S = s| a, b) =
1

B (a, b)

(
n∗i
si

) ∫ 1

0
πa+si−1 (1 − π)b+n?i −1 dπ.

Following some simplifications, we acquire

Pr (S = s| a, b) =

(
n∗i
si

)B
(
a + ri, b + n?i

)
B (a, b)

. (2.4)

The PMF in (2.4) corresponds to the beta-binomial distribution, given by BB(n∗i , a, b), where n∗ is
the number of trials. Consequently, the joint probability distribution of BBRs can be determined as

L2 (S = s| a, b) = Pr (S 1 = s1) × Pr (S 2 = s2| S 1 = s1)

× · · · × Pr (S d−1 = sd−1| S d−2 = rd−2, . . . , S 1 = d1) . (2.5)

Substituting (2.4) in (2.5), the joint probability of S 1 = s1, . . . , S d = sd can be written, ignoring the
constant term, as

L2 (S = s| a, b) =
1

[B(a, b)]d−1

d−1∏
i=1

B
(
a + si, b + n?i

)
. (2.6)

We also assume that S ′i s are independent of T ′i s for all i. In this case, one can write the full LF
based on (2.1) and (2.6) as follows:

L (α, θ, a, b; t|S) = L1 (α, θ; t|S) L2 (S = s| a, b) . (2.7)

It is evident that L1 (α, θ; t|S) is a function of the unknown parameter α and θ of the used lifetime
model exclusively, while L2 (S = s| a, b) is a function of the parameters a and b only. Thus, these
functions can be maximized separately to get the MLEs of α, θ, a and b, denoted by α̂, θ̂, â and b̂,
respectively.

3. Classical inference

This part focuses on estimations of α, θ, a and b as well as RF and HRF of the WD using PFFC-BBR
data. All of these quantities will now be handled as unknown parameters. Both MLEs and ACIs for
the unknown parameters are examined in this part.
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3.1. Point estimation

Employ a PFFC-BBR sample t of size d selected from a Weibull population with PDF and CDF
given by (1.1) and (1.2), respectively. Then, the LF of α and θ can be expressed using (2.1) as follows

L1(α, θ; t|S) = αdθd exp

(α − 1)
d∑

i=1

log(ti) − θ
d∑

i=1

mitαi

 , (3.1)

where mi = k(si + 1). The natural logarithm of LF in (3.1) is

L1(α, θ; t|S) = d log(α) + d log(θ) + (α − 1)
d∑

i=1

log(ti) − θ
d∑

i=1

mitαi . (3.2)

On the other hand, employing the relation B(v, u) = Γ(v)Γ(u)/Γ(v + u), where Γ(.) refers to the
gamma function, the natural logarithm of L2 (S = s| a, b) in (2.6) can be expressed as follows:

L2 (S = s| a, b) = (d − 1) log[Γ(a + b)] − (d − 1)
[
log[Γ(a)] + log[Γ(b)]

]
+

d−1∑
i=1

log[Γ(a + si)]

+

d−1∑
i=1

log[Γ(b + n?)] −
d−1∑
i=1

log[Γ(a + si + b + n?)]. (3.3)

Now, the MLEs of α and θ can be obtained by simultaneously solving the following normal
equations:

∂L1(α, θ; t|S)
∂α

=
d
α

+

d∑
i=1

log(ti) − θ
d∑

i=1

mitαi log(ti) = 0 (3.4)

and
∂L1(α, θ; t|S)

∂α
=

d
θ
−

d∑
i=1

mitαi = 0. (3.5)

From (3.5), the MLE θ̂ can be acquired as a function of the MLE α̂ as follows:

θ̂ =
d∑d

i=1 mitα̂i
. (3.6)

Equation (3.4), when combined with the MLE of θ̂ in (3.6), reduces to

1
α̂

+
1
d

d∑
i=1

log(ti) −
∑d

i=1 mitα̂i log(ti)∑d
i=1 mitα̂i

= 0. (3.7)

It is observed that Eq (3.7) cannot be solved analytically for α̂. Its numerical solution can be
accomplished by employing the following iterative process

α̂( j+1) =

∑d
i=1 mitα̂

( j)

i log(ti)∑d
i=1 mitα̂

( j)

i

−
1
d

d∑
i=1

log(ti)

−1

,
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where α̂( j) is the MLE of α at iteration number j. Once getting the MLE α̂, the MLE θ̂ can be simply
obtained from (3.6).

In Figure 1, by plotting the profile log-likelihood curves of α and θ, the existence and uniqueness
of their acquired MLEs α̂ and θ̂ are proved. The subplots shown in Figure 1 are created using a
simulated PFFC-BBR sample generated from WD(0.25,0.75) and BB(2, 5) when (r, d, k) = (40, 10, 2).
It indicates that the estimates α̂ ' 0.3213 and θ̂ ' 0.4952 exist and are unique.
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Figure 1. The log-likelihood curves of α (left) and θ (right) from the simulated data.

In contrast, the MLEs â and b̂ can be derived as the simultaneous solution of the two subsequent
normal nonlinear equations

∂L2 (S = s| a, b)
∂a

= (d − 1)[ψ(a + b) − ψ(a)] +

d−1∑
i=1

ψ(a + si) −
d−1∑
i=1

ψ(a + si + b + n?i ) = 0 (3.8)

and

∂L2 (S = s| a, b)
∂b

= (d − 1)[ψ(a + b) − ψ(b)] +

d−1∑
i=1

ψ(b + n?i ) −
d−1∑
i=1

ψ(a + si + b + n?i ) = 0, (3.9)

where ψ[ξ(x)] = ∂ log Γ(ξ(x))/∂x is the digamma function.
It is clear that the MLEs â and b̂ cannot be acquired directly from (3.8) and (3.9). As a result, the

required estimates can be obtained using any suitable numerical technique. By leveraging the MLEs α̂
and θ̂ with the invariance trait of the MLEs, the MLEs of RF and HRF of the WD, at time t0, can be
computed from (1.3) as follows:

R̂(t0) = e−θ̂t
α̂
0 and h(t0) = α̂θ̂tα̂−1

0 .
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3.2. Interval estimation

Here, we employ the asymptotic normality of the MLEs to construct the ACIs of the various
unknown parameters. To obtain such intervals, we first need the following elements obtained from
L1(α, θ|S, t) and L2 (S = s| a, b),

∂2L1(α, θ; t|S)
∂α2 = −

d
α2 − θ

d∑
i=1

mitαi log2(ti),

∂2L1(α, θ; t|S)
∂α2 = −

d
θ2 ,

∂2L1(α, θ; t|S)
∂α∂θ

= −

d∑
i=1

mitαi log(ti),

∂2L2 (S = s| a, b)
∂a2 = (d − 1)[ψ1(a + b) − ψ1(a)] +

d−1∑
i=1

ψ1(a + si) −
d−1∑
i=1

ψ1(a + si + b + n?i ),

∂2L2 (S = s| a, b)
∂b2 = (d − 1)[ψ1(a + b) − ψ1(b)] +

d−1∑
i=1

ψ1(b + n?i ) −
d−1∑
i=1

ψ1(a + si + b + n?i )

and
∂2L2 (S = s| a, b)

∂a∂b
= (d − 1)ψ1(a + b) −

d−1∑
i=1

ψ1(a + si + b + n?i ),

where ψ1[ξ(x)] = ∂2 log Γ(ξ(x))/∂x2 is the trigamma function. Under some mild conditions, the
distribution of the MLEs (α̂, θ̂, â, b̂) are multivariate normal with mean equals to the true parameter
values and covariance matrix I−1(α, θ, a, b). In practice, we commonly estimate I−1(α, θ, a, b) by
I−1(α̂, θ̂, â, b̂) in order to avoid deriving the exact expressions of the Fisher information matrix, which
are quite challenging in this situation. Thus, I−1(α̂, θ̂, â, b̂) can be expressed as follows:

I−1(α̂, θ̂, â, b̂) =


v̂ar(α̂) ĉov(α̂, θ̂) 0 0

ĉov(θ̂, α̂) v̂ar(θ̂) 0 0
0 0 v̂ar(â) ĉov(â, b̂)
0 0 ĉov(b̂, â) v̂ar(b̂)

 . (3.10)

The estimated covariance matrix in (3.10) is computed by taking the inverse of the observed Fisher
information matrix, whose elements are evaluated at the MLEs α̂, θ̂, â, and b̂. Then, with 100(1 − τ)%
confidence level, the ACIs for the parameters α, θ, a, and b are[

α̂ − zτ/2
√

v̂ar(α̂), α̂ + zτ/2
√

v̂ar(α̂)
]
,

[
θ̂ − zτ/2

√
v̂ar(θ̂), θ̂ + zτ/2

√
v̂ar(θ̂)

]
and [

â − zτ/2
√

v̂ar(â), â + zτ/2
√

v̂ar(â)
]
,

[
b̂ − zτ/2

√
v̂ar(b̂), b̂ + zτ/2

√
v̂ar(b̂)

]
,

where zτ/2 is the upper τ/2 percentile of the standard normal distribution. Regarding the ACIs of the
reliability metrics, we need to get estimates of the variances associated with their MLEs R̂(t0) and
ĥ(t0). Here, we use the DM to approximate the estimated variances. Let v̂ar(R̂) and v̂ar(ĥ) represent
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the required estimated variances of R̂(t0) and ĥ(t0), respectively. Using the DM, we can approximate
them as follows:

v̂ar(R̂) ≈
(

R̂1 R̂2

) ( v̂ar(α̂) ĉov(α̂, θ̂)
ĉov(θ̂, α̂) v̂ar(θ̂)

) (
R̂1

R̂2

)
≈ R̂2

1v̂ar(α̂) + 2R̂1R̂2ĉov(α̂, θ̂) + R̂2
2v̂ar(θ̂)

and

v̂ar(ĥ) ≈
(

ĥ1 ĥ2

) ( v̂ar(α̂) ĉov(α̂, θ̂)
ĉov(θ̂, α̂) v̂ar(θ̂)

) (
ĥ1

ĥ2

)
≈ ĥ2

1v̂ar(α̂) + 2ĥ1ĥ2ĉov(α̂, θ̂) + ĥ2
2v̂ar(θ̂),

where
R̂1 = −θ̂tα̂0 e−θ̂t

α̂
0 log(t0), R̂2 = −tα̂0 e−θ̂t

α̂
0

and
ĥ1 = θ̂tα̂−1

0 [1 + α̂ log(t0)], ĥ2 = α̂tα̂−1
0 .

Then, the 100(1 − τ)% ACIs for the parameters RF and HRF are[
R̂ − zτ/2

√
v̂ar(R̂), R̂ + zτ/2

√
v̂ar(R̂)

]
and

[
ĥ − zτ/2

√
v̂ar(ĥ), ĥ + zτ/2

√
v̂ar(ĥ)

]
.

4. Bayesian inference

This section explores Bayesian estimation for the different parameters of the WD using PFFC-BBR
data. The BEs and BCIs are obtained using the MCMC technique, as their closed expressions cannot
be explicitly derived from the posterior distribution. It is important in Bayesian analysis to choose the
appropriate prior distribution that reflects our knowledge about the unknown parameters. Let’s begin
by considering the unknown parameters α and θ. We assume that these two variables are independent
and each follows a gamma distribution. The joint prior distribution in this case is as follows:

φ1(α, θ) ∝ αν1−1θν2−1e−(ω1α+ω2θ), α, θ > 0, (4.1)

where the hyperparameters ν j, ω j > 0, j = 1, 2 are assumed to be known. For more detail about
the importance of Bayesian reliability estimation, see Xu et al. [27]. From (3.1) and (4.1), one can
formulate the joint posterior distribution of α and θ as follows:

Q1(α, θ|S, t) =
1
A1
αd+ν1−1θd+ν2−1 exp

α  d∑
i=1

log(ti) − ω1

 − θ  d∑
i=1

mitαi + ω2

 , (4.2)

where A1 refers to the normalized constant. On the other hand, for the unknown parameters a and b, it
is assumed that they are independent and follow the gamma prior distribution, with the following joint
prior distribution

φ2(a, b) ∝ aν3−1bν4−1e−(ω3a+ω4b), a, b > 0, (4.3)
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where ν j, ω j, j = 3, 4 are known and positive. The joint posterior distribution of a and b can be
expressed using Eqs (2.6) and (4.3)

Q2(a, b|S = s) =
aν3−1bν4−1e−(ω3a+ω4b)

A2[B(a, b)]d−1

d−1∏
i=1

B
(
a + si, b + n?

)
, (4.4)

where A2 is the normalized constant. It is clear that the BEs and BCIs of the parameters α, θ RF and
HRF can be acquired from the joint posterior distribution in (4.2). For simplicity, let $1(α, θ) be any
function of the parameters α and θ.

Then, based on the SE loss function, the BE of $1(a, b), denoted by $̃1(α, θ), can be computed as

$̃1(α, θ) =

∫ ∞

0

∫ ∞

0
$1(α, θ)Q1(α, θ|S, t)dα dθ. (4.5)

Similarly, from the joint posterior in (4.4), the BE of any function of a and b, say $2(a, b), can be
computed based on the SE loss function as

$̃2(a, b) =

∫ ∞

0

∫ ∞

0
$2(a, b)Q2(a, b|S = s)da db. (4.6)

Since choosing a symmetric (or asymmetric) loss is one of the most important challenges of
Bayesian analysis, we recommend considering other loss functions instead of the SE loss, which can
be easily incorporated.

It is evident that obtaining the BEs in (4.5) and (4.6) is not straightforward due to the involvement
of complex integrals. In such cases, one approach to obtain BEs is through the use of Monte Carlo
integration. However, it should be noted that this technique requires more computational time,
especially when dealing with a high number of parameters like in our case. Another approach to
address this challenge is by implementing the MCMC technique. This method enables the generation
of a large sequence of samples which can be used to compute the desired BEs and BCIs. To apply the
MCMC technique, we must first derive the full conditional distributions of the different parameters.
The full conditional distribution for each parameter is obtained by excluding any quantities that do
not rely on the parameter being considered. From the joint posterior distribution in (4.2), the full
conditional distributions of α and θ can be expressed, respectively, as

Q1(α|θ,S, t) ∝ αd+ν1−1 exp

α  d∑
i=1

log(ti) − ω1

 − θ d∑
i=1

mitαi

 (4.7)

and

Q1(θ|α,S, t) ∝ θd+ν2−1 exp

−θ  d∑
i=1

mitαi + ω2

 . (4.8)

Similarly, using the joint posterior distribution in (4.4), we can express the full conditional
distributions of a and b, respectively, as

Q2(a|b,S = s) ∝
aν3−1

[B(a, b)]d−1 exp

 d−1∑
i=1

log[B(a + si, b + n?i )] − ω3a

 (4.9)

and
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Q2(b|a,S = s) ∝
bν4−1

[B(a, b)]d−1 exp

 d−1∑
i=1

log[B(a + si, b + n?i )] − ω4b

 . (4.10)

The following observations are made during the initial check of the full conditional distributions
in (4.7)–(4.10):

• From (4.8), it is clear that θ ∼ Gamma[d + ν2, %(α)], where %(α) =
∑d

i=1 mitαi + ω2. Therefore, to
obtain samples of θ, it is possible to use Gibbs sampling.
• The conditional distributions of α, a and b in (4.7), (4.9), and (4.10), respectively, cannot

be simplified to any standard distribution. Therefore, we suggest using the Metropolis-
Hastings (MH) algorithm to generate the necessary samples from Q1(α|θ,S, t), Q2(a|b,S = s),
and Q2(b|a,S = s).

To apply the MH steps, we consider the normal distribution as a proposal distribution for the three
parameters α, a, and b. The MH within Gibbs sampling requires the following processes to generate
the MCMC samples

Step 1. Put j = 1 and the initial values (α(0), θ(0), a(0), b(0)) = (α̂, θ̂, â, b̂).

Step 2. Implement the MH algorithm to simulate:

• α( j) from Q1(α|θ,S, t) in (4.7);
• a( j) from Q2(a|a,S = s) in (4.9);
• b( j) from Q2(b|a,S = s) in (4.10).

Step 3. Generate θ( j) using Gamma[d + ν2, %(α( j))].

Step 4. Obtain R( j) and h( j), where R( j) ≡ R( j)(t0) and h( j) ≡ h( j)(t0).

Step 5. Replace j by j + 1.

Step 6. Repeat the process from 2 to 5, M times.

Step 7. For j = 1, . . . ,m, store the sequence
(
α( j), θ( j), a( j), b( j),R( j), h( j)

)
.

Before computing the BEs and BCIs using the generated sequence, it is crucial to eliminate the
influence of the initial guesses. To achieve this, we discard the first B generated samples, considering
them as a burn-in period. Then, based on the SE loss function, the BEs of the various unknown
parameters can be computed as

α̃ =
1

M∗

M∑
j=B+1

α( j), θ̃ =
1

M∗

M∑
j=B+1

θ( j), ã =
1

M∗

M∑
j=B+1

b( j)

and

b̃ =
1

M∗

M∑
j=B+1

b( j), R̃ =
1

M∗

M∑
j=B+1

R( j), h̃ =
1

M∗

M∑
j=B+1

h( j),
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where M∗ = M − B. Moreover, to get the BCIs of the different parameters, we first sort the acquired
MCMC samples as α[B+1] < . . . , α[M], θ[B+1] < . . . , θ[M], a[B+1] < . . . , a[M], b[B+1] < . . . , b[M], R[B+1] <

. . . ,R[M] and h[B+1] < . . . , h[M]. Then, the 100(1 − τ)% BCIs can be computed as follows:[
α[τM∗/2], α[(1−τ/2)M∗]

]
,
[
θ[τM∗/2], θ[(1−τ/2)M∗]

]
,
[
a[τM∗/2], a[(1−τ/2)M∗]

]
and [

b[τM∗/2], b[(1−τ/2)M∗]
]
,
[
R[τM∗/2], R[(1−τ/2)M∗]

]
,
[
h[τM∗/2], h[(1−τ/2)M∗]

]
.

5. Simulation studies

This section evaluates and compares the offered theoretical findings for point and interval estimators
about α, θ, R(t), and h(t) based on a series of extensive Monte Carlo simulations.

5.1. Simulation scenarios

This part presents various scenarios for simulating random samples from progressively first-failure
censoring via beta-binomial random removals and then analyzing how well acquired estimators
perform with those simulated samples. For this objective, following Elshahhat et al. [14], we replicate
the PFFC-BBR mechanism 1,000 times from WD(0.75,0.25). At the same time, by taking t0 = 0.1,
the true values of R(t) and h(t) are taken as 0.95652 and 0.33343, respectively. Further, each offered
estimated of α, θ, R(t), or h(t) is assessed based on several options of r(no. of groups), k(group size),
and d(effective censoring), such as r(= 40, 80), k(= 2, 4), and d is specified as a failure percentage
(FP%) such as d

r = 25, 50, and 75%. Furthermore, to examine the effect of the beta-binomial
parameters on the estimation results, two different sets of BB(a, b) are utilized; namely BB-I:(0.2,0.8)
and BB-II:(2,1).

After gathering 1,000 PFFC-BBR samples using R software, we install two crucial packages to
compute the estimates of α, θ, R(t), and h(t), namely, ‘CODA’ and ‘maxLik’ packages by Plummer
et al. [28] and Henningsen and Toomet [29], respectively. In Bayes’ computations, according to
Section 4, we gather 12,000 MCMC variates and reject the first 2,000 MCMC variates for each
parameter in accordance with the suggested MCMC technique. Then, the MCMC estimates of α,
θ, R(t), and h(t) are computed, along with the corresponding 95% BCIs.

In Bayesian framework, the elicitation process to identify the hyperparameter value is the major
issue. Assuming that a large number of complete samples (of size n) are observed, MLEs for α and
θ are obtained based on each simulated sample. Next, we equate the mean and variance of α̂ and θ̂
to the mean and variance of the gamma prior distribution. As a result, the hyperparameter values of
ν j, ω j, j = 1, 2, are determined by applying the election technique of prior-parameter value suggested
by Nassar and Elshahhat [26]. Now, we generate 10,000 complete samples (say, each of size 50) from
WD(0.75,0.25) as past samples for each plausible value of α and θ. As a result, we assigned the values
of ν1, ν2, ω1, and ω2 as 75.9853, 16.1922, 98.5269, and 65.1808, respectively.

Now, we evaluate the point and interval estimates computed for α, θ, R(t), and h(t) (say ℵ) based on
the following criteria:

• The average estimate (AvE):

AvE(ℵ̀) =
1

1000

1000∑
i=1

ℵ̀[i].
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• Root mean squared-error (RMSE):

RMSE(ℵ̀) =

√√
1

1000

1000∑
i=1

(
ℵ̀[i] − ℵ

)2
.

• Average relative absolute bias (ARAB):

ARAB(ℵ̀) =
1

1000

1000∑
i=1

ℵ̀−1
∣∣∣ℵ̀[i] − ℵ

∣∣∣.
• Average interval length (AIL):

AIL(1−α)%(ℵ) =
1

1000

1000∑
i=1

(
Uℵ̀[i] − Lℵ̀[i]

)
.

• Coverage percentage (CP):

CP(1−τ)%(ℵ) =
1

1000

1000∑
i=1

I(Lℵ̀[i] ;U
ℵ̀[i]) (ℵ).

where ℵ̀[i] is the calculated estimate of ℵ at the ith sample, I(·) is the indicator, and (L(·),U(·))
refers to (lower,upper) ACI (or BCI) bounds.

5.2. Results and discussions

In the first, second, and third columns of Tables 1–4, the AvEs, RMSEs, and ARABs of α, θ, R(t),
and h(t) are tabulated, respectively. In the first and second columns of Tables 5–8, the AILs and CPs
of α, θ, R(t), and h(t) are provided, respectively. From Tables 1–8, in terms of lowest RMSE, ARAB,
and AIL values as well as highest CP values, we report the following assessments:

• All acquired point (or interval) estimates of α, θ, R(t), or h(t) behaved satisfactorily.
• As r(or FP%) grows, the accuracy of all proposed estimates becomes even better.
• The Bayesian estimates based on gamma conjugate priors outperform the frequentist estimates

because prior information is provided.
• As k grows, it is noted that:

– For point estimates, the RMSEs and ARABs of α decrease while those of θ, R(t), or h(t)
increase;

– For interval estimates, the AILs of α, θ, R(t), and h(t) decreased while their CPs grew.

• Researchers who want to obtain highly efficient and accurate estimates of model parameters or
reliability indices are advised to increase the number and/or size of the groups under investigation.
• As BB(a, b) grow, it is noted that:

– For point estimates, the RMSEs and ARABs of θ increase while those of α, R(t), or h(t)
decrease;

– For interval estimates, the AILs of α decrease while those of θ, R(t), or h(t) increase; whereas
the CPs of α increase while those of θ, R(t), or h(t) decrease.
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• In most simulation scenarios, the estimated CP value of α, θ, R(t), or h(t) is close to the pre-
specified nominal 95% level.
• Finally, employing the Bayes paradigm via MH within Gibbs sampling to offer point (or interval)

estimates of the Weibull population parameters is recommended once the proposed PFFC-BBR
sample is available.

Table 1. The point results of α.

k r FP% MLE Bayes’

BB-I
2 40 25% 1.067 1.073 1.174 1.120 0.848 1.078

50% 0.884 0.791 0.867 0.937 0.691 0.866
75% 0.722 0.586 0.756 0.903 0.433 0.480

80 25% 1.073 0.498 0.656 1.256 0.287 0.334
50% 0.799 0.410 0.463 0.966 0.214 0.266
75% 0.707 0.246 0.326 0.791 0.166 0.185

4 40 25% 1.067 0.884 0.974 1.119 0.788 0.795
50% 0.884 0.676 0.790 0.927 0.626 0.679
75% 0.722 0.534 0.682 0.920 0.413 0.438

80 25% 1.073 0.435 0.594 1.247 0.257 0.311
50% 0.799 0.386 0.459 0.949 0.204 0.228
75% 0.707 0.226 0.317 0.796 0.147 0.163

BB-II
2 40 25% 1.303 0.860 1.093 1.137 0.718 0.895

50% 0.831 0.659 0.825 1.054 0.477 0.539
75% 0.717 0.547 0.732 0.993 0.367 0.395

80 25% 0.921 0.437 0.625 1.056 0.263 0.291
50% 0.724 0.366 0.451 0.877 0.201 0.216
75% 0.655 0.218 0.318 0.796 0.129 0.116

4 40 25% 1.303 0.829 0.879 1.145 0.730 0.785
50% 0.831 0.606 0.795 1.039 0.477 0.524
75% 0.717 0.515 0.610 0.987 0.367 0.329

80 25% 0.921 0.393 0.562 1.052 0.267 0.247
50% 0.724 0.322 0.436 0.870 0.201 0.209
75% 0.655 0.195 0.302 0.781 0.121 0.103
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Table 2. The point results of θ.

k r FP% MLE Bayes’

BB-I

2 40 25% 0.347 0.190 0.717 0.249 0.178 0.687
50% 0.313 0.166 0.639 0.234 0.151 0.583
75% 0.321 0.163 0.619 0.484 0.132 0.568

80 25% 0.412 0.152 0.594 0.421 0.124 0.460
50% 0.361 0.147 0.563 0.238 0.119 0.419
75% 0.428 0.137 0.517 0.405 0.097 0.367

4 40 25% 0.277 0.219 0.865 0.325 0.207 0.824
50% 0.324 0.211 0.838 0.316 0.198 0.791
75% 0.337 0.204 0.812 0.244 0.185 0.753

80 25% 0.412 0.200 0.797 0.290 0.180 0.716
50% 0.361 0.196 0.782 0.414 0.171 0.668
75% 0.428 0.174 0.739 0.367 0.161 0.615

BB-II

2 40 25% 0.276 0.194 0.739 0.282 0.183 0.776
50% 0.377 0.188 0.691 0.295 0.176 0.601
75% 0.437 0.170 0.624 0.341 0.157 0.499

80 25% 0.311 0.159 0.599 0.305 0.147 0.462
50% 0.406 0.150 0.558 0.268 0.137 0.412
75% 0.463 0.146 0.523 0.299 0.125 0.337

4 40 25% 0.276 0.222 0.885 0.263 0.218 0.860
50% 0.377 0.216 0.845 0.361 0.213 0.834
75% 0.437 0.209 0.832 0.286 0.209 0.814

80 25% 0.311 0.206 0.820 0.218 0.191 0.760
50% 0.406 0.202 0.795 0.244 0.184 0.733
75% 0.463 0.197 0.786 0.232 0.182 0.724
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Table 3. The point results of R(t).

k r FP% MLE Bayes’

BB-I

2 40 25% 0.993 0.042 0.048 0.951 0.039 0.040
50% 0.989 0.041 0.045 0.909 0.037 0.038
75% 0.985 0.038 0.042 0.957 0.034 0.035

80 25% 0.930 0.035 0.039 0.947 0.032 0.035
50% 0.964 0.034 0.034 0.946 0.030 0.030
75% 0.985 0.033 0.032 0.914 0.029 0.030

4 40 25% 0.972 0.046 0.051 0.981 0.042 0.043
50% 0.957 0.044 0.049 0.976 0.040 0.042
75% 0.940 0.042 0.045 0.947 0.039 0.041

80 25% 0.965 0.041 0.042 0.938 0.038 0.040
50% 0.948 0.038 0.040 0.971 0.036 0.037
75% 0.926 0.037 0.038 0.922 0.033 0.035

BB-II

2 40 25% 0.995 0.041 0.045 0.989 0.038 0.039
50% 0.989 0.038 0.041 0.965 0.036 0.038
75% 0.984 0.036 0.038 0.919 0.034 0.034

80 25% 0.992 0.034 0.036 0.925 0.031 0.031
50% 0.986 0.031 0.033 0.948 0.029 0.029
75% 0.982 0.030 0.031 0.987 0.026 0.026

4 40 25% 0.975 0.042 0.047 0.945 0.040 0.041
50% 0.943 0.040 0.045 0.941 0.038 0.039
75% 0.921 0.039 0.043 0.957 0.037 0.038

80 25% 0.961 0.038 0.041 0.962 0.036 0.037
50% 0.930 0.036 0.042 0.971 0.034 0.036
75% 0.908 0.033 0.040 0.943 0.031 0.033
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Table 4. The point results of h(t).

k r FP% MLE Bayes’

BB-I

2 40 25% 0.339 0.291 0.849 0.290 0.283 0.822
50% 0.501 0.280 0.824 0.326 0.267 0.774
75% 0.462 0.271 0.805 0.351 0.255 0.727

80 25% 0.386 0.268 0.788 0.353 0.243 0.702
50% 0.479 0.238 0.626 0.311 0.233 0.591
75% 0.432 0.229 0.621 0.291 0.221 0.609

4 40 25% 0.271 0.311 0.932 0.227 0.308 0.919
50% 0.401 0.307 0.920 0.265 0.297 0.884
75% 0.499 0.301 0.900 0.397 0.295 0.876

80 25% 0.386 0.300 0.895 0.349 0.287 0.856
50% 0.379 0.285 0.850 0.333 0.282 0.838
75% 0.316 0.271 0.811 0.382 0.275 0.805

BB-II

2 40 25% 0.257 0.280 0.826 0.363 0.277 0.807
50% 0.351 0.261 0.758 0.401 0.248 0.722
75% 0.365 0.243 0.698 0.391 0.238 0.706

80 25% 0.373 0.221 0.644 0.363 0.214 0.696
50% 0.459 0.213 0.610 0.264 0.204 0.585
75% 0.373 0.193 0.562 0.406 0.187 0.547

4 40 25% 0.257 0.310 0.923 0.349 0.306 0.916
50% 0.351 0.298 0.888 0.329 0.289 0.861
75% 0.365 0.285 0.848 0.351 0.283 0.846

80 25% 0.373 0.275 0.822 0.463 0.279 0.836
50% 0.359 0.270 0.804 0.279 0.276 0.812
75% 0.308 0.266 0.795 0.345 0.261 0.781
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Table 5. The interval results of α.

k r FP% 95% ACI 95% BCI

BB-I

2 40 25% 1.305 0.896 1.079 0.900
50% 1.149 0.902 0.879 0.907
75% 0.849 0.909 0.729 0.912

80 25% 0.710 0.912 0.470 0.915
50% 0.491 0.915 0.436 0.916
75% 0.343 0.918 0.246 0.922

4 40 25% 1.153 0.901 0.872 0.909
50% 0.783 0.908 0.646 0.916
75% 0.675 0.915 0.516 0.920

80 25% 0.491 0.918 0.425 0.924
50% 0.396 0.921 0.337 0.927
75% 0.322 0.925 0.215 0.931

BB-II

2 40 25% 1.125 0.905 0.791 0.912
50% 0.743 0.912 0.607 0.917
75% 0.625 0.915 0.468 0.919

80 25% 0.527 0.917 0.433 0.920
50% 0.414 0.920 0.347 0.923
75% 0.320 0.922 0.212 0.925

4 40 25% 0.974 0.911 0.786 0.921
50% 0.641 0.918 0.590 0.926
75% 0.492 0.921 0.456 0.928

80 25% 0.450 0.923 0.409 0.929
50% 0.368 0.927 0.286 0.932
75% 0.283 0.930 0.192 0.934
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Table 6. The interval results of θ.

k r FP% 95% ACI 95% BCI

BB-I

2 40 25% 0.181 0.942 0.146 0.945
50% 0.171 0.944 0.134 0.946
75% 0.144 0.947 0.128 0.948

80 25% 0.124 0.950 0.116 0.951
50% 0.105 0.951 0.088 0.953
75% 0.094 0.953 0.064 0.956

4 40 25% 0.080 0.951 0.058 0.954
50% 0.066 0.953 0.054 0.955
75% 0.061 0.956 0.053 0.958

80 25% 0.051 0.960 0.047 0.962
50% 0.047 0.961 0.042 0.962
75% 0.044 0.963 0.034 0.964

BB-II

2 40 25% 0.271 0.937 0.180 0.941
50% 0.236 0.939 0.162 0.943
75% 0.175 0.943 0.138 0.946

80 25% 0.135 0.945 0.121 0.947
50% 0.118 0.946 0.095 0.950
75% 0.101 0.948 0.080 0.952

4 40 25% 0.157 0.946 0.070 0.950
50% 0.125 0.948 0.068 0.953
75% 0.086 0.952 0.064 0.954

80 25% 0.070 0.954 0.055 0.956
50% 0.056 0.955 0.049 0.959
75% 0.051 0.956 0.037 0.962
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Table 7. The interval results of R(t).

k r FP% 95% ACI 95% BCI

BB-I

2 40 25% 0.033 0.964 0.029 0.966
50% 0.026 0.966 0.022 0.968
75% 0.023 0.967 0.020 0.969

80 25% 0.022 0.968 0.016 0.971
50% 0.019 0.969 0.013 0.972
75% 0.016 0.971 0.011 0.973

4 40 25% 0.015 0.974 0.013 0.975
50% 0.012 0.976 0.011 0.977
75% 0.010 0.977 0.008 0.979

80 25% 0.009 0.978 0.007 0.980
50% 0.008 0.979 0.006 0.981
75% 0.007 0.981 0.005 0.982

BB-II

2 40 25% 0.037 0.962 0.034 0.964
50% 0.029 0.964 0.025 0.966
75% 0.027 0.965 0.022 0.967

80 25% 0.023 0.967 0.017 0.969
50% 0.020 0.969 0.015 0.970
75% 0.017 0.970 0.012 0.972

4 40 25% 0.023 0.972 0.017 0.974
50% 0.019 0.974 0.015 0.976
75% 0.014 0.976 0.011 0.977

80 25% 0.013 0.977 0.009 0.978
50% 0.010 0.978 0.008 0.979
75% 0.008 0.979 0.007 0.980
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Table 8. The interval results of h(t).

k r FP% 95% ACI 95% BCI

BB-I

2 40 25% 0.245 0.922 0.204 0.925
50% 0.214 0.926 0.193 0.927
75% 0.187 0.928 0.165 0.930

80 25% 0.168 0.931 0.143 0.933
50% 0.144 0.933 0.125 0.936
75% 0.137 0.934 0.109 0.939

4 40 25% 0.115 0.928 0.082 0.932
50% 0.089 0.932 0.077 0.934
75% 0.076 0.934 0.072 0.936

80 25% 0.072 0.938 0.068 0.939
50% 0.069 0.940 0.055 0.942
75% 0.066 0.941 0.046 0.944

BB-II

2 40 25% 0.331 0.914 0.219 0.924
50% 0.295 0.919 0.208 0.925
75% 0.199 0.927 0.170 0.929

80 25% 0.173 0.930 0.151 0.931
50% 0.159 0.932 0.128 0.934
75% 0.144 0.933 0.114 0.937

4 40 25% 0.193 0.922 0.129 0.927
50% 0.183 0.925 0.104 0.931
75% 0.147 0.931 0.085 0.934

80 25% 0.085 0.935 0.077 0.936
50% 0.074 0.937 0.070 0.938
75% 0.067 0.939 0.053 0.942

6. Real data applications

The main goals of this part are to demonstrate the estimators’ usefulness in real-world scenarios
and to demonstrate the estimating methodologies’ worth. This part so examines the examination of
two real datasets from the clinical and chemical sectors.

6.1. Bladder cancer

A tumor, or the development of abnormal tissue, that forms in the bladder lining is called bladder
cancer. The tumor may occasionally spread into the bladder muscle. It is the most frequent
urologic cancer, with the greatest incidence of cancer recurrence. This application analyzes a dataset
representing the remission times (in months) of a sample of 128 bladder cancer patients; see Table 9.
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This set of bladder cancer remission times (BCRTs) is available in Lee and Wang [30].

Table 9. Bladder cancer remission times.

0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26 1.35 1.40
1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46 2.54 2.62 2.64
2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.31 3.36 3.36 3.48 3.52
3.57 3.64 3.70 3.82 3.88 4.18 4.23 4.26 4.33 4.34 4.40 4.50
4.51 4.87 4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41 5.41 5.49
5.62 5.71 5.85 6.25 6.54 6.76 6.93 6.94 6.97 7.09 7.26 7.28
7.32 7.39 7.59 7.62 7.63 7.66 7.87 7.93 8.26 8.37 8.53 8.65
8.66 9.02 9.22 9.47 9.74 10.06 10.34 10.66 10.75 11.25 11.64 11.79
11.98 12.02 12.03 12.07 12.63 13.11 13.29 13.80 14.24 14.76 14.77 14.83
15.96 16.62 17.12 17.14 17.36 18.10 19.13 20.28 21.73 22.69 23.63 25.74
25.82 26.31 32.15 34.26 36.66 43.01 46.12 79.05

To check if BCRTs data fit the WD(α, θ), the Kolmogorov–Smirnov (K–S) statistic and associated
P-value are computed before proceeding. To begin, from Table 9, the MLEs (with their standard-errors
(St.Ers)) of α and θ are 1.0475(0.0675) and 0.0939(0.0191), respectively. Consequently, the K–S(P-
value) is 0.0699(0.558). As a result, the Weibull lifetime model fits the BCRTs data adequately.

Additionally, from Table 9, the estimated/empirical PDF, the estimated/empirical RF, and contour
plots are shown in Figure 2. It supports the fit result and confirms that the Weibull model is suitable
to analyze the BCRTs dataset. Figure 2(a) shows that the estimated Weibull density line captured the
BCRTs histograms; Figure 2(b) shows that the estimated Weibull reliability line is quite close to its
empirical line; Figure 2(c) shows that the MLEs α̂ � 1.0475 and θ̂ � 0.0939 existed and are unique.
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Figure 2. Fitting diagrams of the WD from BCRTs dataset.

Now, to calculate the theoretical results of Weibull parameters of life (α, θ, R(t), h(t)) and beta-
binomial parameters (a and b), we put the entire BCRTs dataset into a life-test simultaneously, and
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randomly classified it into r = 32 groups within k = 4 items in each group; see Table 10. Next,
by assigning a = b = 2 and different choices of d, we report three artificial PFFC-BBR samples in
Table 11. Specifically, the steps to manually produce a PFFC-BBR sample; one follows Table 1 in
Elshahhat et al. [14].

Table 10. Artificial first-failure samples from BCRTs data.

1 2 3 4 5 6 7 8 9 10 11
6.54 1.05? 3.57 25.82 4.51? 0.08? 13.11 7.63 5.41? 79.05 0.5?

34.26 9.22 19.13 2.07? 17.14 6.76 3.52? 3.7? 11.64 1.46? 5.62
9.74 7.28 2.69? 10.66 7.62 16.62 18.10 9.47 12.07 5.85 10.75
2.23? 4.98 43.01 6.97 5.09 11.98 5.71 32.15 7.32 6.25 2.69

12 13 14 15 16 17 18 19 20 21 22
3.36? 5.32 12.63 3.02 13.29 11.79 9.02 4.26? 4.87 20.28 5.41
7.09 2.54? 7.26 1.76? 5.06 7.39 6.93 7.93 7.66 2.02? 3.25
7.59 26.31 2.83? 12.03 2.46? 0.2? 2.75? 5.17 17.36 3.82 46.12

14.77 4.5 8.66 4.34 14.83 21.73 17.12 14.76 2.87? 10.34 2.62?

23 24 25 26 27 28 29 30 31 32
1.35? 2.64? 2.02 4.18 0.9? 5.49 8.65 13.8 0.81? 2.09
8.37 3.36 1.4? 3.88 5.32 2.26 23.63 10.06 4.33 1.19?

4.4 25.74 5.34 36.66 7.87 0.51? 0.4? 12.02 15.96 14.24
8.53 6.94 3.64 3.48? 1.26 8.26 4.23 3.31? 22.69 11.25

Table 11. Artificial PFFC-BBR samples from BCRTs data.

d i 1 2 3 4 5 6 7 8 9 10
10 si 5 9 0 4 1 3 0 0 0 0

ti 0.08 0.20 0.50 0.81 0.90 1.35 1.46 2.02 2.75 3.31
15 i 1 2 3 4 5 6 7 8 9 10

si 4 7 0 3 1 2 0 0 0 0
ti 0.08 0.40 0.51 0.90 1.19 1.35 1.46 1.76 2.07 2.54
i 11 12 13 14 15
si 0 0 0 0 0
ti 2.69 2.83 3.36 3.52 3.70

20 i 1 2 3 4 5 6 7 8 9 10
si 3 5 0 2 0 2 0 0 0 0
ti 0.08 0.50 0.81 0.90 1.05 1.19 1.35 1.40 1.46 1.76
i 11 12 13 14 15 16 17 18 19 20
si 0 0 0 0 0 0 0 0 0 0
ti 2.02 2.54 2.62 2.64 2.75 2.83 2.87 3.31 3.36 3.48
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Since no prior information is available about α, θ, a, and b, the non-informative prior is considered
when ν j, ω j = 0.001, j = 1, 2, 3.4. Following the MCMC technique described in Section 4,
from 40,000 MCMC samples with 10,000 burn-in, the Bayes MCMC estimates are developed. In
Table 12, the point estimations (with their St.Ers) and the interval estimations (with their interval
lengths (ILs)) of α, θ, R(t), h(t) (at t0 = 1), a, and b are reported. Table 12 shows that the maximum
likelihood and Bayes results of α, θ, R(t), h(t), a, or b are highest close to each other. This note is also
observed when comparing the 95% ACI with 95% BCI estimates. In terms of minimum St.Ers and
ILs, Table 12 indicates that the Bayes’ point (or BCI) estimates of all unknown quantities outperform
the likelihood estimates.

To demonstrate the existence and uniqueness of the MLEs of Weibull parameters (α,θ) and beta-
binomial parameters (a,b), using the PFFCS-BBR sample at d = 10 (as an example) from Table 11,
Figure 3 depicts the profile log-likelihoods of α, θ, a, and b. It demonstrates that the provided MLEs
of α, θ, a, and b exist and are unique.

Table 12. Estimates of α, θ, R(t), h(t), a, and b from BCRTs data.

d Par. MLE MCMC 95% ACI 95% BCI

Est. St.rr Est. St.Er Lower Upper IL Lower Upper IL

10 α 1.5412 0.3421 1.5373 0.0202 0.8707 2.2116 1.3409 1.4989 1.5761 0.0772
θ 0.0868 0.0311 0.0825 0.0165 0.0258 0.1478 0.1220 0.0526 0.1148 0.0623

R(t) 0.9168 0.0285 0.9209 0.0152 0.8609 0.9728 0.1118 0.8915 0.9488 0.0573
h(t) 0.1338 0.0429 0.1268 0.0256 0.0497 0.2179 0.1682 0.0808 0.1766 0.0958
a 0.1725 0.3421 0.1665 0.0204 0.0025 0.8429 0.8404 0.1290 0.2049 0.0759
b 0.2716 0.0311 0.2666 0.0203 0.2106 0.3326 0.1220 0.2279 0.3050 0.0772

15 α 1.8005 0.3417 1.7995 0.0100 1.1307 2.4702 1.3395 1.7802 1.8192 0.0390
θ 0.0548 0.0215 0.0534 0.0083 0.0126 0.0971 0.0844 0.0380 0.0697 0.0317

R(t) 0.9466 0.0204 0.9481 0.0078 0.9067 0.9866 0.0799 0.9326 0.9627 0.0300
h(t) 0.0987 0.0276 0.0961 0.0149 0.0447 0.1528 0.1081 0.0684 0.1255 0.0570
a 0.0881 0.3417 0.0820 0.0192 0.0007 0.7578 0.7571 0.0478 0.1191 0.0713
b 0.2383 0.0215 0.2328 0.0204 0.1961 0.2806 0.0844 0.1940 0.2712 0.0771

20 α 1.8382 0.3484 1.7989 0.0100 1.1554 2.5210 1.3656 1.7801 1.8188 0.0387
θ 0.0310 0.0126 0.0403 0.0160 0.0063 0.0556 0.0493 0.0284 0.0540 0.0257

R(t) 0.9695 0.0122 0.9605 0.0110 0.9456 0.9934 0.0478 0.9474 0.9720 0.0246
h(t) 0.0569 0.0153 0.0725 0.0196 0.0269 0.0870 0.0601 0.0508 0.0971 0.0463
a 0.1016 0.3484 0.0841 0.0193 0.0012 0.7844 0.7832 0.0481 0.1219 0.0738
b 0.1702 0.0126 0.2307 0.0214 0.1456 0.1949 0.0493 0.1909 0.2698 0.0788
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Figure 3. The log-likelihoods of α, θ, a, and b from BCRTs data.

In order to track the convergence of the simulated Markovian chains, using the PFFCS-BBR sample
at d = 10 (as an example) from Table 11, Figure 4 examines the density and trace plots of α, θ,
R(t), h(t), a, and b. The solid and dashed horizontal-lines in each plot indicate the sample average
and the two 95% BCI limits, respectively. It demonstrates that the simulated Markov iterations of all
unknown quantities are fairly-symmetrical. Once more, we develop several statistics, namely: quartiles
Qi, i = 1, 2, 3, mean, mode, standard deviation (St.D), and skewness (Sk.) from the remaining 30,000
iterations of α, θ, R(t), h(t), a, and b; see Table 13. It confirms the results shown in Figure 4 and
indicates a convergence within the gathered iterations for each unknown subject.

Table 13. Statistics of α, θ, R(t), h(t), a, and b from BCRTs data.

d Par. Mean Mode Q1 Q2 Q3 St.Dv. Sk.

10 α 1.5373 1.4933 1.5236 1.5373 1.5508 0.0198 0.0078
θ 0.0825 0.0723 0.0713 0.0822 0.0931 0.0160 0.1611

R(t) 0.9209 0.9302 0.9111 0.9211 0.9312 0.0147 -0.1147
h(t) 0.1268 0.1080 0.1096 0.1261 0.1431 0.0246 0.1648
a 0.1665 0.1337 0.1532 0.1664 0.1797 0.0195 0.0285
b 0.2666 0.2118 0.2535 0.2665 0.2798 0.0197 -0.0070

15 α 1.7995 1.7754 1.7927 1.7995 1.8062 0.0099 0.0075
θ 0.0534 0.0466 0.0477 0.0533 0.0589 0.0081 0.1163

R(t) 0.9481 0.9477 0.9428 0.9481 0.9534 0.0077 -0.0927
h(t) 0.0961 0.0827 0.0858 0.0959 0.1059 0.0146 0.1161
a 0.0820 0.0572 0.0694 0.0815 0.0941 0.0182 0.1405
b 0.2328 0.1723 0.2196 0.2329 0.2460 0.0197 -0.0326

20 α 1.7989 1.8129 1.7921 1.7988 1.8058 0.0099 0.0730
θ 0.0403 0.0293 0.0355 0.0400 0.0446 0.0067 0.1985

R(t) 0.9605 0.9712 0.9564 0.9608 0.9651 0.0064 -0.1790
h(t) 0.0725 0.0531 0.0639 0.0720 0.0803 0.0120 0.1935
a 0.0841 0.0572 0.0714 0.0837 0.0968 0.0189 0.0889
b 0.2307 0.1723 0.2172 0.2308 0.2442 0.0200 -0.0321
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(a) α (b) θ (c) R(t)

(d) h(t) (e) a (f) b

Figure 4. The density (left) and trace (right) plots of α, θ, R(t), h(t), a, and b from BCRTs
data.

6.2. Vinyl chloride

Vinyl chloride is an organochloride that burns easily, is colorless at room temperature, and has an
overly pleasant smell. It is also known to be a human carcinogen. In 1835, Henri Victor Regnault
and Justus von Liebig made the initial discovery of it. For its commercial applications, including as
pipes, packaging materials, and coatings for wire and cable, it cannot be generated naturally and must
be created industrially.

In this example, we will examine a data collection of 34 vinyl chloride data points from clean
upgradient monitoring wells; see Table 14. Bhaumik et al. [31] provided this dataset and, subsequently,
Elshahhat and Elemary [32] and Alotaibi et al. [33] also investigated it.

Table 14. Vinyl chloride (in mg/L) data.

0.1 0.1 0.2 0.2 0.4 0.4 0.4 0.5 0.5 0.5
0.6 0.6 0.8 0.9 0.9 1.0 1.1 1.2 1.2 1.3
1.8 2.0 2.0 2.3 2.4 2.5 2.7 2.9 3.2 4.0
5.1 5.3 6.8 8.0

From Table 14, the MLEs (with their St.Ers) of α and θ are 1.0102(0.1327) and 0.5262(0.1177),
respectively, as well as the K–S(P-value) is 0.0918(0.937). Since the estimated P-value is far from the
significance level 5%, we decide that the WD fits the vinyl chloride data satisfactorily. This fact is also
supported by four subplots, which are depicted in Figure 5.

Figure 5(a) shows that the density line captured the vinyl chloride data histograms; Figure 5(b)
indicates that the estimated reliability line captured its empirical line; Figure 5(c) shows that the MLEs
α̂ � 1.0102 and θ̂ � 0.5262 existed and are unique.

AIMS Mathematics Volume 9, Issue 9, 24109–24142.



24135

t

D
e
n
s
it
y

0 2 4 6 8

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5 Weibull

0 2 4 6 8
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

R
e
lia

b
ili

ty

Weibull

0.98 0.99 1.00 1.01 1.02 1.03 1.04

0
.5

0
0
.5

1
0
.5

2
0
.5

3
0
.5

4
0
.5

5

alpha

th
e
ta

 −55.64 

 −55.64 

 −55.62 

 −55.62 

 −55.6 

 −55.6 

 −55.58 

 −55.58 

 −55.56 

 −55.56 

 −55.54 

 −55.54 

 −55.52 

 −55.52 

 −55.5 

 −55.5 

 −55.48 

 −55.46 

(a) PDF (b) RF (c) Contour

Figure 5. Fitting diagrams of the WD from vinyl chloride dataset.

We now placed the entire vinyl chloride dataset into a life-test simultaneously and randomly
grouped it into r = 17 with k = 2 items in each group; see Table 15. In Table 16, by taking a = b = 4,
three artificial PFFC-BBR datasets based on various selections of d are provided.

Table 15. Artificial first-failure samples from vinyl chloride data.

1 2 3 4 5 6 7 8 9 10

0.4? 0.1? 4.0 1.2 2.3 0.5? 5.3 0.5? 2.0 0.2?

2.5 5.1 2? 0.1? 0.9? 1.2 0.6? 1.3 0.6? 2.9

11 12 13 14 15 16 17

6.8 1.1? 3.2 0.4? 1.8 2.4 0.5?

0.8? 2.7 0.2? 1.0 0.4? 0.9? 8.0

Table 16. Artificial PFFC-BBR samples from vinyl chloride data.

d i 1 2 3 4 5 6 7 8

8 si 3 3 0 1 0 2 0 0
ti 0.1 0.2 0.4 0.4 0.5 0.6 0.9 1.1

10 i 1 2 3 4 5 6 7 8 9 10
si 2 2 0 1 0 2 0 0 0 0
ti 0.1 0.2 0.4 0.5 0.5 0.6 0.9 0.9 1.1 2.0

12 i 1 2 3 4 5 6 7 8 9 10 11 12
si 2 1 0 1 0 1 0 0 0 0 0 0
ti 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.5 0.6 0.8 0.9 0.9
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When ν j, ω j = 0.001, j = 1, 2, 3.4, the non-informative prior is taken into consideration since there
is no prior information available about α, θ, a, and b. Using (M, B) = (40, 000), the Bayes MCMC
estimates are created using the MCMC approach as outlined in Section 4. In Table 17, the interval and
point estimations of α, θ, R(t), h(t) (at t0 = 0.1), a, and b are provided. As Table 17 demonstrates, the
Bayes results (along with associated 95% BCI) of α, θ, R(t), h(t), a, or b behave well compared to the
MLE (along with associated 95% ACI) results in terms of the lowest St.Er and IL values.

Using the PFFCS-BBR sample at d = 8 (as an example) from Table 16, Figure 6 shows that the
offered MLEs of the Weibull parameters (α,θ) and beta-binomial parameters (a and b) exist and are
unique. Figure 7 indicates that the remaining 30,000 MCMC iterations of α, θ, a, and b are fairly
symmetrical, while those of R(t) and h(t) are close to negatively and positively skewed, respectively.
Figure 7 supports all findings displayed in Tables 17 and 18.
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Figure 6. The log-likelihoods of α, θ, a, and b from vinyl chloride data.

(a) α (b) θ (c) R(t)

(d) h(t) (e) a (f) b

Figure 7. The density (left) and trace (right) plots of α, θ, R(t), h(t), a, and b from vinyl
chloride data.
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Table 17. Estimates of α, θ, R(t), h(t), a, and b from vinyl chloride data.

d Par. MLE MCMC 95% ACI 95% BCI
Est. St.rr Est. St.Er Lower Upper IL Lower Upper IL

8 α 1.9969 0.5125 1.9529 0.0774 0.9923 3.0014 2.0091 1.8277 2.0793 0.2516
θ 0.9914 0.3975 0.9448 0.0791 0.2123 1.7705 1.5582 0.8217 1.0710 0.2493

R(t) 0.9901 0.0104 0.9894 0.0018 0.9697 1.0105 0.0408 0.9857 0.9924 0.0066
h(t) 0.1994 0.1625 0.2068 0.0281 0.0000 0.5179 0.5179 0.1585 0.2643 0.1059
a 0.3365 0.5125 0.2621 0.1035 0.0000 1.3411 1.3411 0.1319 0.4106 0.2788
b 0.4846 0.3975 0.4087 0.1070 0.0000 1.2637 1.2637 0.2672 0.5591 0.2918

10 α 1.6250 0.3593 1.9415 0.0835 0.9208 2.3292 1.4084 1.8219 2.0660 0.2442
θ 0.5725 0.1810 0.9145 0.0998 0.2177 0.9273 0.7096 0.7923 1.0386 0.2464

R(t) 0.9865 0.0119 0.9895 0.0034 0.9633 1.0098 0.0465 0.9858 0.9924 0.0066
h(t) 0.2206 0.1509 0.2043 0.0317 0.0000 0.5163 0.5163 0.1566 0.2623 0.1058
a 0.2021 0.3593 0.2434 0.1165 0.0000 0.9063 0.9063 0.1052 0.3866 0.2814
b 0.4229 0.1207 0.4190 0.0982 0.1863 0.6594 0.4731 0.2833 0.5638 0.2805

12 α 2.0238 0.4633 1.9433 0.0833 1.1157 2.9319 1.8163 1.8159 2.0690 0.2531
θ 1.4467 0.5069 0.6540 0.0625 0.4531 2.4403 1.9872 0.5329 0.7772 0.2443

R(t) 0.9864 0.0124 0.9925 0.0062 0.9622 1.0106 0.0485 0.9897 0.9947 0.0050
h(t) 0.2772 0.1944 0.1456 0.1333 0.0000 0.6583 0.6583 0.1073 0.1915 0.0842
a 0.3455 0.4633 0.2473 0.1142 0.0000 1.2536 1.2536 0.1102 0.3945 0.2843
b 0.7452 0.5069 0.4505 0.0793 0.0000 1.7388 1.7388 0.3120 0.5923 0.2803
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Table 18. Statistics of α, θ, R(t), h(t), a, and b from vinyl chloride data.

d Par. Mean Mode Q1 Q2 Q3 St.Dv. Sk.

8 α 1.9529 1.8170 1.9106 1.9526 1.9953 0.0637 0.0337
θ 0.9448 0.7923 0.9015 0.9437 0.9879 0.0639 0.0433

R(t) 0.9894 0.9880 0.9883 0.9895 0.9906 0.0017 -0.4491
h(t) 0.2068 0.2194 0.1879 0.2055 0.2240 0.0271 0.3418
a 0.2621 0.1443 0.2109 0.2593 0.3097 0.0720 0.2046
b 0.4087 0.2672 0.3561 0.4079 0.4601 0.0755 0.1271

10 α 1.9415 1.9149 1.8992 1.9411 1.9820 0.0625 0.0137
θ 0.9145 0.7352 0.8716 0.9153 0.9566 0.0636 -0.0202

R(t) 0.9895 0.9911 0.9884 0.9896 0.9907 0.0017 -0.5461
h(t) 0.2043 0.1712 0.1851 0.2032 0.2210 0.0272 0.4120
a 0.2434 0.0812 0.1955 0.2404 0.2897 0.0700 0.1874
b 0.4190 0.3559 0.3671 0.4193 0.4684 0.0731 0.0545

12 α 1.9433 1.7949 1.9003 1.9423 1.9867 0.0638 0.0229
θ 0.6540 0.6326 0.6107 0.6540 0.6963 0.0621 0.0139

R(t) 0.9925 0.9899 0.9917 0.9926 0.9934 0.0013 -0.4631
h(t) 0.1456 0.1821 0.1305 0.1445 0.1593 0.0215 0.3525
a 0.2473 0.1461 0.1989 0.2443 0.2939 0.0713 0.1782
b 0.4505 0.3393 0.4010 0.4516 0.4987 0.0716 0.0207

Lastly, the analysis outputs from the bladder cancer and vinyl chloride datasets corroborate the
simulation results and show how the proposed inference approaches can be applied in a real-world
scenario in the case of the PFFC-BBR sample.

7. Conclusions

In this paper, we present classical and Bayesian estimate methods for the Weibull distribution
when samples are gathered using a progressive first-failure censoring strategy. To address the issue
of unrealistic fixed removals, it is assumed in this study that the removals at each time point follow a
beta-binomial distribution. Two estimation approaches are used to estimate Weibull parameters such as
scale, shape, reliability, and failure rate functions, as well as beta-binomial distribution parameters. The
first approach is the commonly used maximum likelihood method. The other approach is the Bayesian
estimation method, where Bayes estimates are obtained using squared error loss. A simulation study
is conducted and two real datasets are investigated to compare different estimates and highlight the
significance of the proposed estimates. The numerical findings revealed that as the beta-binomial
parameters increase, the RMSE and ARAB decrease for the shape, reliability, and HRFs, while they
increase for the scale parameter. Additionally, it was observed that the average interval length decreases
for the shape parameter, but decreases for the other quantities as the beta-binomial parameters increase.
This demonstrates how the removal pattern affects the accuracy of estimations. When comparing the
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different estimates, it is clear that the Bayesian estimation method outperforms the classical likelihood
method in terms of both point and interval estimates for all parameters. It is crucial to highlight that
the methods we were discussing are only applicable when the data contains a single cause of failure.
If there are multiple causes of failure, it is recommended to analyze the data using a competing risks
model. In future work, it is suggested to apply the same methods discussed in this paper to accelerated
life tests. For example, it would be of interest to investigate the estimation issues of constant-stress
accelerated life tests. Another area for future research is studying the application of these methods
when the data has multiple causes of failures. In addition, one can explore the same methods that
have been discussed in this paper for different lifetime models, such as gamma, inverse Weibull,
and exponentiated exponential distributions. One can use other loss functions to compute the Bayes
estimates, for example, LINEX and general entropy loss functions. Currently, there is a shortage of
real data in the literature on progressively first-failure censored data with BBRs. As a result, a common
approach is to generate censored samples from an existing dataset to illustrate the practical application
of the proposed methods. We adopted this approach in our study. For future research, it would be
interesting to apply the proposed life-testing experiment to collect progressively first-failure censored
data with BBRs and employ the same estimation methods discussed in this paper.
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