We study the finite difference approximation for axisymmetric solutions of a parabolic system with blow-up. A scheme with adaptive temporal increments is commonly used to compute an approximate blow-up time. There are, however, some limitations to reproduce the blow-up behaviors for such schemes. We thus use an algorithm, in which uniform temporal grids are used, for the computation of the blow-up time and blow-up behaviors. In addition to the convergence of the numerical blow-up time, we also study various blow-up behaviors numerically, including the blow-up set, blow-up rate and blow-up in $ L^\sigma $-norm. Moreover, the relation between blow-up of the exact solution and that of the numerical solution is also analyzed and discussed.
Citation: Chien-Hong Cho, Ying-Jung Lu. On the numerical solutions for a parabolic system with blow-up[J]. AIMS Mathematics, 2021, 6(11): 11749-11777. doi: 10.3934/math.2021683
We study the finite difference approximation for axisymmetric solutions of a parabolic system with blow-up. A scheme with adaptive temporal increments is commonly used to compute an approximate blow-up time. There are, however, some limitations to reproduce the blow-up behaviors for such schemes. We thus use an algorithm, in which uniform temporal grids are used, for the computation of the blow-up time and blow-up behaviors. In addition to the convergence of the numerical blow-up time, we also study various blow-up behaviors numerically, including the blow-up set, blow-up rate and blow-up in $ L^\sigma $-norm. Moreover, the relation between blow-up of the exact solution and that of the numerical solution is also analyzed and discussed.
[1] | J. Abia, J. C. López-Marcos, J. Martínez, The Euler method in the numerical integration of reaction-diffusion problems with blow-up, Appl. Numer. Math., 38 (2001), 287–313. doi: 10.1016/S0168-9274(01)00035-6 |
[2] | C. J. Budd, W. Huang, R. D. Russel, Moving mesh methods for problems with blow-up, J. SIAM J. Sci. Comput., 17 (1996), 305–327. doi: 10.1137/S1064827594272025 |
[3] | C. J. Budd, O. Koch, L. Taghizadeh, E. B. Weinmüller, Asymptotic properties of the space-time adaptive numerical solution of a nonlinear heat equation, Calcolo, 55 (2018), 43. doi: 10.1007/s10092-018-0286-z |
[4] | M. Burger, J. A. Carrillo, M. T. Wolfram, A mixed finite element method for nonlinear diffusion equations, Kinet. Relat. Models, 3 (2010), 59–83. doi: 10.3934/krm.2010.3.59 |
[5] | G. Caristi, E. Mitidieri, Blow-up estimates of positive solutions of a parabolic system, J. Diff. Eqn., 113 (1994), 265–271. doi: 10.1006/jdeq.1994.1124 |
[6] | Y. G. Chen, Asymptotic behaviours of blowing-up solutions for finite difference analogue of $u_t = u_xx+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. IA, 33 (1986), 541–574. |
[7] | Y. G. Chen, Blow-up solutions to a finite difference analogue of $u_t = u_xx+u^{1+\alpha}$ in $N$-dimensional ball, Hokkaido Math. J., 21 (1992), 447–474. doi: 10.14492/hokmj/1381413684 |
[8] | M. Chlebík, M. Fila, From critical exponents to blow-up rates for parabolic problems, Rend. Mat. Appl., 19 (1999), 449–470. |
[9] | C. H. Cho, On the finite difference approximation for blow-up solutions of the porous medium equation with a source, Appl. Numer. Math., 65 (2013), 1–26. doi: 10.1016/j.apnum.2012.11.001 |
[10] | C. H. Cho, On the computation of the numerical blow-up time, Japan J. Indust. Appl. Math., 30 (2013), 331–349. doi: 10.1007/s13160-013-0101-9 |
[11] | C. H. Cho, A numerical algorithm for blow-up problems revisited, Numer. Algor., 75 (2017), 675–697. doi: 10.1007/s11075-016-0216-6 |
[12] | C. H. Cho, On the computation for blow-up solutions of the nonlinear wave equation, Numerische Mathematik, 138 (2018), 537–556. doi: 10.1007/s00211-017-0919-1 |
[13] | C. H. Cho, S. Hamada, H. Okamoto, On the finite difference approximation for a parabolic blow-up problem, Japan J. Indust. Appl. Math., 24 (2007), 105–134. doi: 10.1007/BF03167510 |
[14] | C. H. Cho, H. Okamoto, Further remarks on asymptotic behavior of the numerical solutions of parabolic blow-up problems, Methods Appl. Anal., 14 (2007), 213–226. |
[15] | C. H. Cho, H. Okamoto, Finite difference schemes for an axisymmetric nonlinear heat equation with blow-up, Electronic Trans. Numer. Anal., 52 (2020), 391–415. doi: 10.1553/etna_vol52s391 |
[16] | K. Deng, Blow-up rates for parabolic systems, Z. Angew. Math. Phys., 47 (1996), 132–143. doi: 10.1007/BF00917578 |
[17] | A. Friedman, B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Uni. Math. J., 34 (1985), 425–447. doi: 10.1512/iumj.1985.34.34025 |
[18] | M. Fila, P. Souplet, The blow-up rate for semilinear parabolic problems on general domains, NoDEA Nonlinear Differ. Equ. Appl., 8 (2001), 473–480. doi: 10.1007/PL00001459 |
[19] | A. Friedman, Y. Giga, A single point blow-up for solutions of semilinear parabolic systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 34 (1987), 65–79. |
[20] | V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, A parabolic system of quasilinear equations I, Differential Equations, 19 (1983), 2123–2140. |
[21] | V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, A parabolic system of quasilinear equations II, Differential Equations, 21 (1985), 1544–1559. |
[22] | P. Groisman, Totally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions, Computing, 76 (2006), 325–352. doi: 10.1007/s00607-005-0136-0 |
[23] | W. Huang, R. D. Russel, Adaptive moving mesh methods, Springer, New York, 2010. |
[24] | W. Huang, J. Ma, R. D. Russel, A study of moving mesh PDE methods for numerical simulation of blowup in reaction diffusion equations, J. Comput. Phys., 227 (2008), 6532–6552. doi: 10.1016/j.jcp.2008.03.024 |
[25] | Y. J. Lu, On a finite difference scheme for blow-up solutions of a semilinear parabolic system, Master's Thesis in National Chung Cheng University, 2018. |
[26] | T. Nakagawa, Blowing up of a finite difference solution to $u_t = u_xx+u^2$, Appl. Math. Optim., 2 (1975), 337–350. doi: 10.1007/BF01448176 |
[27] | T. Nakagawa, T. Ushijima, Numerical analysis of the semi-linear equation of blow-up type, Publications mathématiques et informatique de Rennes, S5 (1976), 1–24. |
[28] | T. Nakanishi, N. Saito, Finite element method for radially symmetric solution of a multidimensional semilinear heat equation, Japan J. Indust. Appl. Math., 37 (2020), 165–191. doi: 10.1007/s13160-019-00393-z |
[29] | P. Quittner, P. Souplet, Global existence from single-component Lp estimates in a semilinear reaction-diffusion system, Proc. Amer. Math. Soc., 130 (2002), 2719–2724. doi: 10.1090/S0002-9939-02-06453-5 |
[30] | W. Ren, X. P. Wang, An iterative grid redistribution method for singular problems in multiple dimensions, J. Comput. Phys., 159 (2000), 246–273. doi: 10.1006/jcph.2000.6435 |
[31] | N. Saito, Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis, Commun. Pure Appl. Anal., 11 (2012), 339–364. doi: 10.3934/cpaa.2012.11.339 |
[32] | P. Souplet, Single-point blow-up for a semilinear parabolic system, J. Eur. Math. Soc., 11 (2009), 169–188. |
[33] | G. Viglialoro, On the blow-up time of a parabolic system with damping terms, Comptes Rendus de L'Academie Bulgare des Sciences, 67 (2014), 1223–1232. |
[34] | F. Weissler, Single point blowup of semilinear initial value problems, J. Diff. Eqn., 55 (1984), 202–224. |