Our aim in this paper is to study generalizations of the Caginalp phase-field system based on a thermomechanical theory involving two temperatures and a nonlinear coupling. In particular, we prove well-posedness results. More precisely, the existence and uniqueness of solutions, the existence of the global attractor and the existence of an exponential attractor.
Citation: Grace Noveli Belvy Louvila, Armel Judice Ntsokongo, Franck Davhys Reval Langa, Benjamin Mampassi. A conserved Caginalp phase-field system with two temperatures and a nonlinear coupling term based on heat conduction[J]. AIMS Mathematics, 2023, 8(6): 14485-14507. doi: 10.3934/math.2023740
Our aim in this paper is to study generalizations of the Caginalp phase-field system based on a thermomechanical theory involving two temperatures and a nonlinear coupling. In particular, we prove well-posedness results. More precisely, the existence and uniqueness of solutions, the existence of the global attractor and the existence of an exponential attractor.
[1] | G. Caginalp, Conserved-phase field system: implications for kinetic undercooling, phys. Rev. B., 38 (1988), 789–791. https://doi.org/10.1103/PhysRevB.38.789 doi: 10.1103/PhysRevB.38.789 |
[2] | M. Grasselli, A. Miranville, V. Pata, S. Zelik, Welle-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials, Math. Nachr., 280 (2007), 1475–1509. https://doi.org/10.1002/mana.200510560 doi: 10.1002/mana.200510560 |
[3] | L. Cherfils, A. Miranville, S. Peng, Higher-order generalized Cahn-Hilliard equations, Electronic Journal of Qualitative Theory of Differential Equations, 2017 (2017), 1–22. https://doi.org/10.14232/ejqtde.2017.1.9 doi: 10.14232/ejqtde.2017.1.9 |
[4] | B. L. Doumbé Bangola, Global and esponential attractors for a Caginalp type phase-field problem, Cent. Eur. J. Math., 11 (2013), 1651–1676. https://doi.org/10.2478/s11533-013-0258-0 doi: 10.2478/s11533-013-0258-0 |
[5] | B. L. Doumbé Bangola, Phase-field system with two temperatures and a nonlinear coupling term, AIMS Math., 3 (2018), 298–315. https://doi.org/10.3934/Math.2018.2.298 doi: 10.3934/Math.2018.2.298 |
[6] | A. Miranville, Some mathematical models in phase transition, Discrete Contin. Dyn. Systems Seres S, 7 (2014), 271–306. https://doi.org/10.3934/dcdss.2014.7.271 doi: 10.3934/dcdss.2014.7.271 |
[7] | A. Miranville, On higher-order anisotropic conservative Caginalp phase-field systems, Appl. Math. Optim., 77 (2018), 297–314. https://doi.org/10.1007/s00245-016-9375-z doi: 10.1007/s00245-016-9375-z |
[8] | A. Miranville, R. Quintanilla, Some generalizations of Caginalp phase-field system, Appl. Anal., 88 (2009), 877–894. https://doi.org/10.1080/00036810903042182 doi: 10.1080/00036810903042182 |
[9] | A. Miranville, R. Quintanilla, A Caginalp phase-field system based on type Ⅲ heat conduction with two temperatures, Quart. Appl. Math., 74 (2016), 375–398. https://doi.org/10.1090/qam/1430 doi: 10.1090/qam/1430 |
[10] | A. Miranville, R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal. TMA, 71 (2009), 2278–2290. https://doi.org/10.1016/j.na.2009.01.061 doi: 10.1016/j.na.2009.01.061 |
[11] | A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, Handbook of differential equations: evolutionary equations, 4 (2008), 103–200. https://doi.org/10.1016/S1874-5717(08)00003-0 doi: 10.1016/S1874-5717(08)00003-0 |
[12] | A. Miranville, Asymptotic behaviour of a generalized Cahn-hilliard equation for with a proliferation term, Appl. Anal., 92 (2013), 1308–1321. https://doi.org/10.1080/00036811.2012.671301 doi: 10.1080/00036811.2012.671301 |
[13] | A. Miranville, S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545–582. https://doi.org/10.1002/mma.464 doi: 10.1002/mma.464 |
[14] | P. J. Chen, M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys. (ZAMP), 19 (1968), 614–627. https://doi.org/10.1007/BF01594969 doi: 10.1007/BF01594969 |
[15] | P. J. Chen, M. E. Gurtin, W. O. Williams, A note on non-simple heat conduction, Z. Angew. Math. Phys. (ZAMP), 19 (1968), 969–970. https://doi.org/10.1007/BF01602278 doi: 10.1007/BF01602278 |
[16] | P. J. Chen, M. E. Gurtin, W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, Z. Angew. Math. Phys. (ZAMP), 20 (1969), 107–112. https://doi.org/10.1007/BF01591120 doi: 10.1007/BF01591120 |
[17] | J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795–861. |