In this paper, we examined the (2+1)-dimensional generalized breaking soliton system (GBSS), an adaptable framework that accurately describes the three-dimensional, wave-dominated interactions occurring in many non-linear media, i.e., fluids, plasmas, and optical fibers. We used an improved F-expansion technique to generate new families of exact solitonic and periodic wave solutions, significantly enlarging the well-studied solution space and providing insight into the complicated interaction between multi-pulse solitons. Validation of these results and an assessment of their stability were carried out by developing a numerical scheme based on finite difference and undertaking a detailed error and stability analysis, demonstrating unconditional stability across a range of parameter values. The results provide new insights into the interplay of dispersion, non-linearity, and cross-wave coupling in governing soliton formation and energy transport in multidimensional systems. In addition to its theoretical importance, this work can provide valuable practical information on engineering applications such as soliton-based communications and wave control applications in fluid systems. This study offers a new methodology to investigate more complex non-linear wave phenomena by integrating the power of symbolic computation with that of robust numerical verification, opening new opportunities for further developments in soliton-driven technologies.
Citation: Amer Ahmed, Abdulghani R. Alharbi, Ishak Hashim. Exact and numerical solutions of the generalized breaking soliton system: Insights into non-linear wave dynamics[J]. AIMS Mathematics, 2025, 10(3): 5124-5142. doi: 10.3934/math.2025235
In this paper, we examined the (2+1)-dimensional generalized breaking soliton system (GBSS), an adaptable framework that accurately describes the three-dimensional, wave-dominated interactions occurring in many non-linear media, i.e., fluids, plasmas, and optical fibers. We used an improved F-expansion technique to generate new families of exact solitonic and periodic wave solutions, significantly enlarging the well-studied solution space and providing insight into the complicated interaction between multi-pulse solitons. Validation of these results and an assessment of their stability were carried out by developing a numerical scheme based on finite difference and undertaking a detailed error and stability analysis, demonstrating unconditional stability across a range of parameter values. The results provide new insights into the interplay of dispersion, non-linearity, and cross-wave coupling in governing soliton formation and energy transport in multidimensional systems. In addition to its theoretical importance, this work can provide valuable practical information on engineering applications such as soliton-based communications and wave control applications in fluid systems. This study offers a new methodology to investigate more complex non-linear wave phenomena by integrating the power of symbolic computation with that of robust numerical verification, opening new opportunities for further developments in soliton-driven technologies.
[1] |
A. Seadawy, I. Mujahid, Optical soliton solutions for non-linear complex Ginzburg–Landau dynamical equation with laws of nonlinearity Kerr law media, Int. J. Mod. Phys. B, 34 (2020), 2050179. https://doi.org/10.1142/S0217979220501799 doi: 10.1142/S0217979220501799
![]() |
[2] |
A. Wazwaz, Gaussian solitary waves for the logarithmic Boussinesq equation and the logarithmic regularised Boussinesq equation, Ocean Eng., 94 (2015), 111–115. https://doi.org/10.1016/j.oceaneng.2014.11.024 doi: 10.1016/j.oceaneng.2014.11.024
![]() |
[3] |
B. Li, Y. Ma, T. Yang, Stable optical soliton in the ring-cavity fiber system with carbon nanotube as saturable absorber, Superlattice. Microst., 113 (2018), 366–372. https://doi.org/10.1016/j.spmi.2017.11.016 doi: 10.1016/j.spmi.2017.11.016
![]() |
[4] |
J. Yang, Y. Gao, C. Su, D Zuo, Y. Feng, Solitons and quasi-periodic behaviors in an inhomogeneous optical fiber, Commun. Nonlinear Sci., 42 (2017), 477–490. https://doi.org/10.1016/j.cnsns.2016.05.013 doi: 10.1016/j.cnsns.2016.05.013
![]() |
[5] |
H. Ismael, T. Sulaiman, H. Nabi, W. Mahmoud, M. Osman, Geometrical patterns of time variable Kadomtsev–Petviashvili (Ⅰ) equation that models dynamics of waves in thin films with high surface tension, Nonlinear Dyn., 111 (2023), 9457–9466. https://doi.org/10.1007/s11071-023-08319-8 doi: 10.1007/s11071-023-08319-8
![]() |
[6] |
M. Zhang, Y. Ma, B. Li, Novel loop-like solitons for the generalized Vakhnenko equation, Chinese Phys. B, 22 (2013), 030511. https://dx.doi.org/10.1088/1674-1056/22/3/030511 doi: 10.1088/1674-1056/22/3/030511
![]() |
[7] |
A. R. Seadawy, Stability analysis for Zakharov–Kuznetsov equation of weakly non-linear ion-acoustic waves in a plasma, Comput. Math. Appl., 67 (2014), 172–180. https://doi.org/10.1016/j.camwa.2013.11.001 doi: 10.1016/j.camwa.2013.11.001
![]() |
[8] |
Y. Ma, B. Li, The wrinkle-like N-solitons for the thermophoretic motion equation through graphene sheets, Physica A, 494 (2018), 169–174. https://doi.org/10.1016/j.physa.2017.12.014 doi: 10.1016/j.physa.2017.12.014
![]() |
[9] |
B. Ren, P. Chu, Dynamics of D'Alembert wave and soliton molecule for a (2+1)-dimensional generalized breaking soliton equation, Chinese J. Phys., 74 (2021), 296–301. https://doi.org/10.1016/j.cjph.2021.07.025 doi: 10.1016/j.cjph.2021.07.025
![]() |
[10] |
B. Ren, J. Lin, Z. Lou, Consistent Riccati expansion and rational solutions of the Drinfel'd–Sokolov–Wilson equation, Appl. Math. Lett., 105 (2020), 106326. https://doi.org/10.1016/j.aml.2020.106326 doi: 10.1016/j.aml.2020.106326
![]() |
[11] | M. Remoissenet, Basic concepts and the discovery of solitons. Waves Called Solitons: Concepts and Experiments, Heidelberg: Springer Berlin Heidelberg, 1999. https://doi.org/10.1007/978-3-662-03790-4_1 |
[12] |
C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E. Richter, et al., Oscillations and interactions of dark and dark–bright solitons in Bose–Einstein condensates, Nat. Phys., 4 (2008), 496–501. https://doi.org/10.1038/nphys962 doi: 10.1038/nphys962
![]() |
[13] |
A. Slunyaev, Persistence of hydrodynamic envelope solitons: Detection and rogue wave occurrence, Phys. Fluids, 33 (2021), 036606. https://doi.org/10.1063/5.0042232 doi: 10.1063/5.0042232
![]() |
[14] | G. Dematteis, T. Grafke, E. Eijnden, Rogue waves and large deviations in deep sea, P. Natl. Acad. Sci., 115 (2018), 855–860. https://www.pnas.org/doi/abs/10.1073/pnas.1710670115 |
[15] |
A. Alharbi, Traveling-wave and numerical solutions to non-linear evolution equations via modern computational techniques, AIMS Math., 9 (2024), 1323–1345. https://doi.org/10.3934/math.2024065 doi: 10.3934/math.2024065
![]() |
[16] |
S. Residori, M. Onorato, U. Bortolozzo, F. Arecchi, Rogue waves: A unique approach to multidisciplinary physics, Contemp. Phys., 58 (2017), 53-–69. https://doi.org/10.1080/00107514.2016.1243351 doi: 10.1080/00107514.2016.1243351
![]() |
[17] |
A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, G. Steinmeyer, Rogue events in the group velocity horizon, Sci. Rep., 2 (2012), 850. https://doi.org/10.1038/srep00850 doi: 10.1038/srep00850
![]() |
[18] |
G. Xu, Integrability of a (2+1)-dimensional generalized breaking soliton equation, Appl. Math. Lett., 50 (2015), 16–22. https://doi.org/10.1016/j.aml.2015.05.015 doi: 10.1016/j.aml.2015.05.015
![]() |
[19] |
L. Ling, L. Zhao, B. Guo, Darboux transformation and classification of solution for mixed coupled non-linear Schrödinger equations, Commun. Nonlinear Sci., 32 (2016), 285–304. https://doi.org/10.1016/j.cnsns.2015.08.023 doi: 10.1016/j.cnsns.2015.08.023
![]() |
[20] |
S. Jia, Y. Gao, C. Zhao, Z. L. Feng, Solitons, breathers and rogue waves for a sixth-order variable-coefficient non-linear Schrödinger equation in an ocean or optical fiber, Eur. Phys. J. Plus, 132 (2017), 34. https://doi.org/10.1140/epjp/i2017-11318-y doi: 10.1140/epjp/i2017-11318-y
![]() |
[21] |
R. Hirota, Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Japan, 33 (1972), 1456–1458. https://doi.org/10.1143/JPSJ.33.1456 doi: 10.1143/JPSJ.33.1456
![]() |
[22] |
B. Ghanbari, K. Nisar, Determining new soliton solutions for a generalized non-linear evolution equation using an effective analytical method, Alex. Eng. J., 59 (2020), 3171–3179. https://doi.org/10.1016/j.aej.2020.07.032 doi: 10.1016/j.aej.2020.07.032
![]() |
[23] |
A. Alharbi, Numerical solutions to two-dimensional fourth order parabolic thin film equations using the Parabolic Monge-Ampere method, AIMS Math., 8 (2023), 16463–16478. https://doi.org/10.3934/math.2023841 doi: 10.3934/math.2023841
![]() |
[24] |
A. Alharbi, Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods, AIMS Math., 8 (2023), 1230–1250. https://doi.org/10.3934/math.2023062 doi: 10.3934/math.2023062
![]() |
[25] |
M. Iqbal, A. Seadawy, S. Althobaiti, Mixed soliton solutions for the (2+1)-dimensional generalized breaking soliton system via new analytical mathematical method, Results Phys., 32 (2022), 105030. https://doi.org/10.1016/j.rinp.2021.105030 doi: 10.1016/j.rinp.2021.105030
![]() |
[26] |
M. Jawad, A. Ja'afar, Soliton solutions for nonlinear systems (2+1)-dimensional equations, IOSR J. Math., 1 (2012), 27–34. http://dx.doi.org/10.9790/5728-0162734 doi: 10.9790/5728-0162734
![]() |
[27] |
W. Hereman, M. Takaoka, Solitary wave solutions of non-linear evolution and wave equations using a direct method and MACSYMA, J. Phys. A-Math. Gen., 23 (1990), 4805. https://dx.doi.org/10.1088/0305-4470/23/21/021 doi: 10.1088/0305-4470/23/21/021
![]() |
[28] |
T. Alharbi, A. Alharbi, Traveling-wave and numerical investigations to non-linear equations via modern computational techniques, AIMS Math., 9 (2024), 12188–12210. https://doi.org/10.3934/math.2024595 doi: 10.3934/math.2024595
![]() |
[29] |
T. Alharbi, A. Alharbi, A study of traveling wave structures and numerical investigations into the coupled nonlinear schrödinger equation using advanced mathematical techniques, Mathematics, 11 (2023), 4597. https://doi.org/10.3390/math11224597 doi: 10.3390/math11224597
![]() |
[30] |
M. Ahmed, A. Zaghrout, H. Ahmed, Construction of solitons and other solutions for NLSE with Kudryashov's generalized non-linear refractive index, Alex. Eng. J., 64 (2023), 391–397. https://doi.org/10.1016/j.aej.2022.09.015 doi: 10.1016/j.aej.2022.09.015
![]() |
[31] |
I. Samir, E. Salah, E. A. El-Dahab, H. M. Ahmed, M. Ammar, W. Alexan, et al., Unraveling solitons dynamics in system of dispersive NLSE with Kudryashov's law of nonlinearity using improved modified extended tanh function method, Alex. Eng. J., 91 (2024), 419–428. https://doi.org/10.1016/j.aej.2024.02.020 doi: 10.1016/j.aej.2024.02.020
![]() |
[32] |
R. Attia, H. Qazi, A. Kamran, A. Jamshad, Z. Aniqa, Soliton solutions of nonlinear evolution equations by basic (G'/G)-expansion method, Math. Model. Eng. Probl., 7 (2020), 242–-250. http://dx.doi.org/10.18280/mmep.070210 doi: 10.18280/mmep.070210
![]() |
[33] |
F. Calogero, A. Degasperis, Non-linear evolution equations solvable by the inverse spectral transform.—Ⅰ, Nuovo Cimento B, 32 (1976), 201–242. https://doi.org/10.1007/BF02727634 doi: 10.1007/BF02727634
![]() |
[34] |
A. Wazwaz, A new integrable (2+1)-dimensional generalized breaking soliton equation: N-soliton solutions and traveling wave solutions, Commun. Theor. Phys., 66 (2016), 385. https://dx.doi.org/10.1088/0253-6102/66/4/385 doi: 10.1088/0253-6102/66/4/385
![]() |
[35] |
Y. Ma, B. Li, Interactions between soliton and rogue wave for a (2+1)-dimensional generalized breaking soliton system: Hidden rogue wave and hidden soliton, Comput. Math. Appl., 78 (2019), 827–839. https://doi.org/10.1016/j.camwa.2019.03.002 doi: 10.1016/j.camwa.2019.03.002
![]() |
[36] |
T. Taklo, W. Choi, Group resonant interactions between surface and internal gravity waves in a two-layer system, J. Fluid Mech., 892 (2020), A14. https://doi.org/10.1017/jfm.2020.180 doi: 10.1017/jfm.2020.180
![]() |
[37] | V. Kruglov, J. Harvey, Solitary waves in optical fibers governed by higher-order dispersion, Phys. Rev. A, 98 (2018), 063811. https://link.aps.org/doi/10.1103/PhysRevA.98.063811 |
[38] |
M. Abdou, The extended F-expansion method and its application for a class of non-linear evolution equations, Chaos Soliton. Fract., 31 (2007), 95–104. https://doi.org/10.1016/j.chaos.2005.09.030 doi: 10.1016/j.chaos.2005.09.030
![]() |
[39] |
L. Shampine, M. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput., 18 (1997), 1–22. https://doi.org/10.1137/S1064827594276424 doi: 10.1137/S1064827594276424
![]() |