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of their stability were carried out by developing a numerical scheme based on finite difference and
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and cross-wave coupling in governing soliton formation and energy transport in multidimensional
systems. In addition to its theoretical importance, this work can provide valuable practical information
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1. Introduction

The investigation of solitonic solutions for non-linear evolution equations (NLEEs) is essential
to advancing several scientific and technological fields, including non-linear movement [1], ocean
engineering [2], fibre optics [3, 4], high-frequency waves [5, 6], plasma physics [7], nanoscale
components [8], and fluid interaction [9,10]. Such singular wave phenomena, called solitons, maintain
their shape and energy over large distances, which is crucial for understanding the activities of complex
non-linear systems. Solitons are essential for the study of non-linear systems due to their durability
and ability to capture essential knowledge on system behavior [11]. The designation and scrutiny
of solitonic solutions not only enhance our abstract understanding but also encourage pragmatic
improvements in innovations based on non-linear phenomena [12]. Beyond the span, absorbing
phenomena such as rogue waves and transient and localized waves that appear unexpectedly and
disperse without trace have been detected in deep probes in non-linear situations [13]. Rogue surges
have been detected in a variety of contexts [14–17]. Given the significant importance of solitonic
solutions in understanding and advanced non-linear frameworks throughout multiple objectives,
considerable efforts have been made to develop robust approaches to their compilation and verification.
Over the past few decades, scientists have developed various methods to study and construct
solitonic solutions for NLEEs. These methods include adjusting and developing classical Bäcklund
transformations [18], Darboux transformations [19], as well as the Breather limit approach [20], Hirota
bilinear method [21], generalized exponential rational function method [22–25], exponential rational
function approach, sinh cosh approach [26], direct algebraic approach [27–29], improved modified
extended tanh function approach [30, 31], fundamental (G’/G)-expansion method [32], and many
others.

The main objective of the present research is to examine the (2+1)-dimensional generalized
breaking soliton system (GBSS). This system is a robust theoretical framework to model the dispersion,
non-linearity, and cross-wave coupling in media such as shallow water waves, optical fibre systems and
magnetized plasma. While earlier studies focused on particular cases of GBSS, such as [18,25,33–35],
the present work aims to derive the equation in a more complete and generalized form. By broadening
the scope, this study seeks to uncover dynamic behaviors and solutions that may have been indifferent
in previous studies of particular cases. The generalized form then ideally offers a unified perspective,
which allows one to appreciate different non-linear phenomena that the GBSS encompasses and
understand them theoretically better. This work not only improves upon earlier approaches but also
contributes to the growing body of literature on more compact and efficient ways of studying non-
linear evolution equations. The foundation of this work is the GBSS, which is formally expressed by
the following equations:

Ψt + αΨxxx + βΨxxy + γΨΨx + δΨΦx + λΨxΦ = 0,
Ψy = Φx,

(1.1)

where the parameters α, β, γ, δ, and λ are real parameters, and the functions Ψ = Ψ (x, y, t) and Φ =

Φ(x, y, t) describe the values propagated in the direction of the two structures, respectively. Ψt is what
governs the way the wave changes with time. The third derivative with respect to x gives αΨxxx, which
denotes x-axial dispersion. Dispersion is a process that spreads out the wave so that the steepening of
the wave due to the non-linear processes is reduced. The mixed derivative βΨxxy describes the spread in
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x and y directions. Therefore, it shows the complicated interaction of waves in both directions. A non-
linear term γΨΨx represents the self-interaction of the wave. It implies that it is increasingly becoming
steeper as the wave gets fatter in amplitude. This explains why waves with higher amplitude would
travel faster, and the wave would become steep. In addition, the terms δΨΦx and λΨxΦ are interactions
in both directions of the two wave fields that integrate the motion of the waves with respect to both
axes. They show how waves travelling along one direction affect the motions of the waves travelling
along a perpendicular direction. The second equation on the system 1.1, Ψy = Φx, relates the two wave
fields Ψ and Φ, implying that if there is a wave propagating in the y direction, there must also be a
wave propagating in the x direction.

In a fluid dynamic context, the GBSS pertains to the interaction of surface waves that ripple in the
water’s surface with internal waves that develop in the water below the surface as a result of mechanical
force in strata of different densities. Surface waves, which are caused by wind and gravity, typically
have a short period and propagate quickly, while internal waves have larger wavelengths, a slower
speed, and larger amplitudes. The GBSS captures these interactions by balancing non-linear effects
from wave steepening (terms at the γΨΨx level) with dispersive effects that drive wave dispersion (the
αΨxxx term). The cross-interaction terms δΨΦx and λΨxΦ express the energy flow between surface
and interior waves while in contact. The situation might include internal waves being magnified by
surface waves leading to a similar soliton non-linear interaction where the wave structure changes due
to this interaction, such as breaking or waterfalls [36]. In the context of non-linear optics as well,
this (2+1)-dimensional GBSS describes the interaction of light pulses, or solitons, travelling along
optical fibers, where the non-linear refractive index and dispersion are balanced so that solitons can
be generated. When these light pulses propagate through the fibre, they experience the influence of a
non-linear medium, which induces pulse steepening and the effect of dispersion, which leads to pulse
broadening. The GBSS integrates such dynamics through concepts such as αΨxxx for dispersion and
γΨΨx, which represents non-linear effects. The cross-interaction terms δΨΦx and λΨxΦ represent the
coupling between two light pulses, which can propagate in different polarization modes or neighboring
fibers, allowing for energy transfer and complex interactions. One such interaction is the steepening
or a breakup into sub-pulses (the breaking soliton phenomena) of one pulse. Such modeling is critical
for optical communications: A profound understanding of soliton behavior and interaction can transfer
data with better quality and over longer distances [37]. Similarly, other applications of GBSS include
alfvén waves in magnetized plasma, earthquake dynamics and seismic waves, and the interaction of
gravity waves.

In the sections that follow, we analyze the exact and numerical solutions of the system (1.1). In
Section 2, we adopt the F-exponential method to obtain the exact solutions to (1.1), which demonstrates
that the technique is effective for constructing the analytical solutions for the system. Section 3 deals
with obtaining numerical solutions using the finite difference method that supplements the analytical
methodology, which simulates the system’s behavior under certain conditions.

2. Exact solutions of the GBSS

The development equation related to the physical fields Ψ (x, y, t) and Φ(x, y, t) in the variables x, y,
and t is expressed as follows:

P1(Ψ,Ψt, Ψx, Ψxxx, Ψxxy, Ψy, Φ,Φx, . . . ) = 0. (2.1)
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First, we derive the travelling-wave solutions of system (1.1), which are formulated as follows:

Ψ (x, y, t) = ρ(ζ), ζ = kx + cy − wt,

Φ(x, y, t) = ϕ(ζ),
(2.2)

where k, c are arbitrary constants and w is the wave speed. Subsequently, the non-linear formation (2.1)
is simplified to the following ordinary differential equation:

P2(ρ, ρζ , ρζζζ , ϕ, ϕζ , . . . ) = 0, (2.3)

where P2 is a polynomial in ϕ(ζ), ρ(ζ), and their total derivatives with respect to ζ.
In accordance with the modified F-expansion method, the solutions of (2.3) are given by the form

ρ(ζ) =

N∑
k=0

µkΠ(ζ)k +

N∑
k=1

σkΠ(ζ)−k, (2.4)

that Π(ζ) is a solution of the following differential equation:

Π′(ζ) = ν0 + ν1Π(ζ) + ν2Π(ζ)2, (2.5)

where ν0, ν1, ν2 are specified in Table 1 [38], and µk, σk are to be identified after that.

Table 1. The relations among ν0, ν1, ν2, and the function Π(ζ).

ν0 ν1 ν2 Π(ζ)
ν0 = 0.0, ν1 = 1.0, ν2 = −1.0, Π(ζ) = 0.5 + 0.5 tanh (0.5ζ) .
ν0 = 0.0, ν1 = −1.0, ν2 = 1.0, Π(ζ) = 0.5 − 0.5 coth (0.5ζ) .
ν0 = 0.5, ν1 = 0.0, ν2 = −0.5, Π(ζ) = coth(ζ) ∓ csch(ζ), tanh(ζ) ∓ i sech(ζ).
ν0 = 1.0, ν1 = 0.0, ν2 = −1.0, Π(ζ) = tanh(ζ), coth(ζ).
ν0 = 0.5, ν1 = 0.0, ν2 = 0.5, Π(ζ) = sec(ζ) ± tan(ζ), csc(ζ) ∓ cot(ζ).
ν0 = ∓1.0, ν1 = 0.0, ν2 = ∓1.0, Π(ζ) = tan(ζ), cot(ζ).
ν0 = 0.0, ν1 = 1.0, ν2 , 0.0, Π(ζ) = 1/

(
exp(−ζ) − ν2

)
.

ν0 is arb. const., ν1 , 0.0, ν2 = 0.0, Π(ζ) =
(
exp(ν1 ζ) − ν0

)
/ν1.

The modified F-expansion method gives a successful approach to obtain solutions using the function
Π(ζ). Transformations (2.2) will be used in (1.1) to simplify it into a system of ODEs given by

− w ρζ + k3 α ρζζζ + c k2β ρζζζ + k γ ρρζ + k δρϕζ + k λ ρζϕ = 0,
c ρζ = k ϕζ .

(2.6)

Integrating the second equation from the system (2.6), c ρζ = k ϕζ , with respect to ζ, gives us

ϕ =
c
k
ρ. (2.7)

By substituting Eq (2.7) into the first equation of system (2.6) and performing one integration with
regard to ζ, we obtain

k2 (k α + c β ) ρζζ − w ρ +
1
2

(k γ + c δ + c λ) ρ2 = 0. (2.8)
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Balancing ρζζ with ρ2 in Eq (2.8) gives the value of N = 2. According to the modified F-expansion
method with N = 2, the general solutions of (2.8) are

ρ(ζ) = µ0 + µ1Π(ζ) + µ2Π(ζ)2 + σ1Π(ζ)−1 + σ2Π(ζ)−2. (2.9)

Here Π(ζ) is a solution of the following differential equation:

Π′(ζ) = ν0 + ν1Π(ζ) + ν2Π(ζ)2, (2.10)

where ν0, ν1, ν2 are specified in Table 1. To investigate the analytic solutions to (2.8), the following
steps should be undertaken: First, substitute (2.9) and (2.10) into (2.8), group every coefficient of Π(ζ) j,
j = −4, ..., 4, and set their values to zero. The result will give a system of equations for µ0, µi, σi,
i = 1, 2. Next, solve the resulting system using Wolfram Language. Finally, select the values of ν0, ν1,
and ν2, as well as the function Π(ζ) from Table 1, and replace these along with µ0, µi, σi for i = 1, 2
into (2.9) to yield a collection of trigonometric functions and rational solutions to (2.8). With the
methodology now established, we are able to proceed with adopting it. This enables us to reach the
following conclusions:

Note that we will represent the mathematical statement k(kα + cβ) with the symbol η for the reason
of simplifying the notation in the solutions.

Ψ1 =
22n−2 3 kη

c (δ + λ) + γk
sech2

(
2n−2

(
k x + c y − 22n−2 kη t

))
, n ∈ R,

Φ1 =
22n−2 3 cη

c (δ + λ) + γk
sech2

(
2n−2

(
k x + c y − 22n−2 kη t

))
, n ∈ R. (2.11)

Ψ2 = −
22n−2 3 kη

c (δ + λ) + γk
csch2

(
2n−2

(
k x + c y − 22n−2 kη t

))
, n ∈ R,

Φ2 = −
22n−2 3 cη

c (δ + λ) + γk
csch2

(
2n−2

(
k x + c y − 22n−2 kη t

))
, n ∈ R. (2.12)

Ψ3 = −
22n−2 kη

c (δ + λ) + γk

(
2 − 3 sech2

(
2n−2

(
kx + cy + 22n−2 kη t

)))
, n ∈ R,

Φ3 = −
22n−2 cη

c (δ + λ) + γk

(
2 − 3 sech2

(
2n−2

(
kx + cy + 22n−2 kη t

)))
, n ∈ R. (2.13)

Ψ4 = −
22n−2 kη

c (δ + λ) + γk

(
2 + 3 csch2

(
2n−2

(
kx + cy + 22n−2 kη t

)))
, n ∈ R,

Φ4 = −
22n−2 cη

c (δ + λ) + γk

(
2 + 3 csch2

(
2n−2

(
kx + cy + 22n−2 kη t

)))
, n ∈ R. (2.14)

Ψ5,6 = −
2 kη

c(δ + λ) + γk

(
1 ∓

3i
sinh (kx + cy + kη t) ± i

)
,
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Φ5,6 = −
2 cη

c(δ + λ) + γk

(
1 ∓

3i
sinh (kx + cy + kη t) ± i

)
. (2.15)

Ψ7 = −
22n−2 3 kη

c (δ + λ) + γk
sec2

(
2n−2

(
k x + c y + 22n−2 kη t

))
, n ∈ R,

Φ7 = −
22n−2 3 cη

c (δ + λ) + γk
sec2

(
2n−2

(
k x + c y + 22n−2 kη t

))
, n ∈ R. (2.16)

Ψ8 = −
22n−2 3 kη

c (δ + λ) + γk
csc2

(
2n−2

(
k x + c y + 22n−2 kη t

))
, n ∈ R,

Φ8 = −
22n−2 3 cη

c (δ + λ) + γk
csc2

(
2n−2

(
k x + c y + 22n−2 kη t

))
, n ∈ R. (2.17)

Ψ9 =
22n−2 kη

c (δ + λ) + γk

(
2 − 3 sec2

(
2n−2

(
k x + c y − 22n−2 kη t

)))
, n ∈ R,

Φ9 =
22n−2 cη

c (δ + λ) + γk

(
2 − 3 sec2

(
2n−2

(
k x + c y − 22n−2 kη t

)))
, n ∈ R. (2.18)

Ψ10 =
22n−2 kη

c (δ + λ) + γk

(
2 − 3 csc2

(
2n−2

(
k x + c y − 22n−2 kη t

)))
, n ∈ R,

Φ10 =
22n−2 cη

c (δ + λ) + γk

(
2 − 3 csc2

(
2n−2

(
k x + c y − 22n−2 kη t

)))
, n ∈ R. (2.19)

Ψ11,12 =
2 kη

c(δ + λ) + γk

(
1 ∓

3
sin (kx + cy + kη t) ± 1

)
,

Φ11,12 =
2 cη

c(δ + λ) + γk

(
1 ∓

3
sin (kx + cy + kη t) ± 1

)
. (2.20)

Ψ13 = −
σ1

2
exp

−2 k
(
(δ + λ) x − γ y + 4k2 (βγ − α(δ + λ)) t

)
δ + λ

 ,
Φ13 = −

γσ1

2 (δ + λ)
exp

−2 k
(
(δ + λ) x − γ y + 4k2 (βγ − α(δ + λ)) t

)
δ + λ

 . (2.21)

All of these solutions refer to types of wave structures predicted by the GBSS. They mainly refer to
hyperbolic and trigonometric functions, including sech2, csch2, sec2, and csc2, each one characterizing
localized solitons or periodic waveforms. However, the hyperbolic functions usually represent
localized solitons that decay exponentially or quickly. While the trigonometric functions show
periodic wave structures with periodic peaks or troughs, the constants and parameters control these
solitons’ speed, shape, and direction, traveling in the x- and y-directions over time. While Ψ1 and
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Ψ2 demonstrate basic solitons with exponential decay in space (while also being strongly affected by
boundary conditions), Ψ3 and Ψ4 show the general complexity of solitons, where they can already
be multiple-peaked or even multi-dipped. However, solutions of the form Ψ7, Ψ8, and Ψ11,12, which
incorporate trigonometric functions, have a more oscillatory or periodic nature. These solutions are
composed of waveforms with sharply formed and highly arcane peaks or oscillations across space; they
lead to periodic activity rather than simply exponential decay. Due to combinations of constants with
secant or cosecant functions, some solutions like Ψ9 and Ψ10 produce solitons where noticeable peaks
or dips are present in their center. These solutions can describe different wave behaviors, including
localized solitons and periodic wave trains, and they consist of real physical representations due to the
types of functions used (trigonometric/hyperbolic) in many of them.

For the next sections, the analysis will concern the properties and types of soliton solutions. This
will be enhanced by an analysis of their dynamics, evolution, and importance within the framework of
the non-linear system being investigated (1.1).

Figure 1 illustrates the exact solutionsΨ1(x, t) andΨ3(x, t) for a set of values of n taken with step 0.5.
Ψ1 is symmetric and localized around the center at x = 0, whose amplitude increases drastically
with n. This behavior reveals a soliton-like structure that is more localized for larger values of n.
However, the right figure of Figure 1 shows Ψ3, which has more localized peaks along with flat regions
asymptotically. The solution will have a sign change, creating a dip (negative parts) and a peak (positive
parts) around x = 0 and, for higher numbers, n, sharp changes. This indicates that parameter n controls
the generalized shape and general amplitude of the solutions, which can be helpful in finding solutions
to non-linear wave propagation that resembles waves such as solitons or localized energy regions.
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Figure 1. Exact solutions for Ψ1(x, t) and Ψ3(x, t) plotted for different values of n (ranging
from 0 to 2 in steps of 0.5).
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Figure 2 shows the impact of varying parameters α, β, γ, δ, λ on the behavior and dynamics of
soliton at t = 2 for Ψ1 and Ψ3. The top and bottom left figures show the effects of α and β on t = 2,
saying that when we increase both parameters for a fixed time moment, the soliton is more enhanced
and local with a significant positive change in amplitude. The soliton for negative values becomes
wider and smoother, with a lower peak, indicating that the energy is spread over a larger area. The
positive values of α and β yield peaks higher and sharper, thus indicating energy more localized. The
figures on the top and bottom right demonstrate the effects of γ, δ, and λ at t = 2, showing an identical
behavior. Higher values of these parameters result in sharper solitons with increased amplitude, while
lower or negative values lead to wider and less pronounced waves. In both cases, the soliton behavior
shows that increasing the parameter values presses into a more compact high energy field configuration
and decreasing them causes wave flattening and diluting.
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Figure 2. Plots of Ψ1(x, t) (top) and Ψ3(x, t) (bottom) for varying α, β, γ, δ, and λ.

Figure 3 shows the evolution of the soliton solutions Ψ1(x, y, t) and Ψ3(x, y, t) over increasing time,
with five time-steps shown: t = 0, 4, 8, 12, 16, while the parameters used in these figures are as follows:
α = 2.0, β = 0.5, γ = 0.6, δ = −1.0, λ = 1.2, k = c = 1.0, and n = 1.0. In figure (a), Ψ1 moves in the
positive x-direction in time while keeping the same shape and localization. In the figure (b), Ψ3 instead
evolves in the negative x-direction over time. This behavior illustrates the time and space evolution of
the soliton solutions dynamic and directionality of Ψ1 and Ψ3 as they continue to evolve in opposite
temporal and spatial directions.
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Figure 3. Two 3D figures of solitons are shown via the temporal development of exact
solutions for Ψ1(x, y, t) and Ψ3(x, y, t) at times (t = 0, 4, 8, 12, 16). The parameter values are
taken by α = 2.0, β = 0.5, γ = 0.6, δ = −1.0, λ = 1.2, k = c = 1.0, and n = 1.0.

3. Numerical solutions of GBSS

This section discusses numerical solutions to the resulting ODE (2.8) using various numerical
approaches. This approach aims to validate the accuracy of the analytical solutions. As a representative
model, we selected one of the above analytic solutions, (2.11). The non-linear shooting and boundary
value problem (BVP) methods, implemented at t = 0, utilize the value of ρ at the right endpoint of the
domain ζ = 0 while making an initial guess for ρζ . The goal is to get the second boundary condition
of ρ at the other endpoint. After getting the numerical results, we compare them with the analytical
solution. The MATLAB solvers ODE15s and FSOLVE [39] are utilized to explore the numerical
solution. To implement the BVP method, we discretize the resultant ODE (2.8) as follows:

f (ρ) = 0,

f (ρi) = −w ρi +
k2 (k α + c β )

∆2
ζ

(ρi+1 − 2ρi + ρi−1) +

1
2 (k γ + c δ + c λ)

2∆ζ

(
ρ2

i+1 − ρ
2
i−1

)
.

(3.1)

To apply the non-linear shooting method, the ODE (2.8) is discretized as follows:

ρζζ =
1

k2 (k α + c β )

(
wρ −

(
1
2

(k γ + c δ + c λ)
)
ρ2

)
. (3.2)

Figure 4 compares the respective analytical solution to the numerical solution obtained by the
shooting and the BVP methods. The numerical solutions are evaluated at t = 0, y = 1.5, and the spatial
range x ∈ [−55, 15]. The analytical solution roughly matches both numerical solutions, including the
narrow symmetric peak after x = −1.55. There is a comparison of methods studied and numerical
problems solution efficiency. Results from the shooting or the BVP approaches provide a numerical
solution, which will be used as the basis for the following numerical scheme. More specifically, these
results will serve as initial conditions for the numerical scheme presented in the next section. This
guarantees that the numerical scheme always begins with the correct and cohesive data, aiding in
convergence for the controlling equations around the problem parameters and boundary conditions.
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problem approaches against the analytical solution (2.13) at t = 0, y = 1.5, and x = −55 : 15.
The parameter values are taken as α = 0.6, β = 1.1, γ = −0.6, δ = 1.3, λ = 0.3, k = c = 1.1,
and n = 1 with M = 600.

3.1. Numerical scheme

This section employs the finite-difference method to derive the numerical results of system (1.1)
within the domain [x0, xM] × [y0, yN]. In this context, x0, y0, xM, and yN define the bounds of the
rectangular domain along the x- and y-axes, with T f signifying a specific time. The domain is divided
into (M + 1) × (N + 1) mesh points:

xi = x0 + i hx i = 0, 1, . . . ,M,
y j = y0 + j hy j = 0, 1, . . . ,N,

where hx and hy denote the step sizes for the x and y domains, respectively. The system (1.1) is
transformed into an ODE system by discretising the spatial derivatives while maintaining the continuity
of the time derivative. Performing this results in

Ψt|
k
m,n +

α

2h3
x

(
Ψ k+1

m+2,n − 2Ψ k+1
m+1,n + 2Ψ k+1

m−1,n − Ψ
k+1
m−2,n

)
+

β

2h2
xhy

(
Ψ k+1

m+1,n+1 − Ψ
k+1
m+1,n−1 − 2

(
Ψ k+1

m,n+1 − Ψ
k+1
m,n−1

)
+ Ψ k+1

m−1,n+1 − Ψ
k+1
m−1,n−1

)
+

γ

2hx
Ψ k+1

m,n

(
Ψ k+1

m+1,n − Ψ
k+1
m−1,n

)
+

δ

2hx
Ψ k+1

m,n

(
Φk+1

m+1,n −Φ
k+1
m−1,n

)
+

λ

2hx

(
Ψ k+1

m+1,n − Ψ
k+1
m−1,n

)
Φk+1

m,n = 0

1
2hy

(
Ψ k+1

m,n+1 − Ψ
k+1
m,n−1

)
=

1
2hx

(
Φk+1

m+1,n −Φ
k+1
m−1,n

)
(3.3)
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subject to the boundary conditions:

Ψx(x0, y, t) = Ψx(xm, y, t) = 0, ∀y ∈ [y0, ym],

Ψy(x, y0, t) = Ψy(x, ym, t) = 0, ∀x ∈ [x0, xm],
(3.4)

where α, β, γ, δ, λ, k, and c are user-defined parameters. Equation (3.4) allows for the use of fictitious
points in the calculation of spatial derivatives at the boundaries of the domain. In the numerical results
provided in this section, the parameter values are established as follows: α = 0.6, β = 1.1, γ =

−0.6, δ = 1.3, λ = 0.3, x0 = −20, y = 0→ 5, x = −55→ 15, and t = 0→ 20.
We used MATLAB version R2023b on a PC equipped with an Intel® CoreTM i7 processor operating

at 3.40 GHz, 16 GB of RAM, and running Windows 11 to carry out our simulations. To solve implicit
ODEs (3.3), the solver ODE15i uses the implicit, multi-step numerical method called the backward
differentiation formulas (BDF). The technique has proven very effective in stiff systems and equations
with complicated implicit conditions as it approximates derivatives with the previous time steps of the
solution. Algorithms like Newton’s iteration are used to solve non-linear systems resulting from the
implicit formulation. The ODE15i solver is well-known for its accuracy and efficiency, especially with
systems that are challenging for explicit methods. This is demonstrated by Figure 5.
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Figure 5. Numerical solution of Ψ1(x, y = 1.5, t) over space x for various time steps t =

0, 4, 8, 12, 16, and 20, illustrating the evolution of the solution and its convergence towards
the exact solution at t = 20.

Figure 6 illustrates the comparison of the exact solution and the numerical solution of Ψ3(x, y =

1.5, t = 20) as the number of points varies. As can be seen, Figure 6 provides an appropriate agreement
between numerical and exact solutions, which is evidence of the high reliability of numerical models.
It also shows improved numerical precision as the spatial resolution is now finer.
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Figure 6. Comparison of approximation solutions Ψ3 at y = 1.5 for different spatial grade
for t = 20. Insets illustrate the convergence behavior as M grows.

Figure 7 offers a graphical illustration of how closely the numerical computations approximated
the third wave function Ψ3. The comparison enables us to appreciate the degree of effectiveness and
correctness of the numerical method and highlights the inherent problems and quantifies the extent
of stability of the solution within the specified domain. The following values were taken for the
calculations: α = 0.6, β = 1.1, γ = −0.6, δ = 1.3, and λ = 0.3. Additionally, the spatio-temporal
limits are x ∈ [−55, 15], y ∈ [0, 5], and t ∈ [0, 20], respectively. Finally, in the respect to the resolution
numerical parameters, a total of M = 2300 and N = 150 are set for the x- and y-directions, respectively,
enabling for high precision to be maintained throughout the range set earlier on.

Figure 7. Comparison of exact and numerical solutions for Ψ3, visualized across a two-
dimensional plane.

3.2. Stability of the numerical scheme

Von Neumann analysis is applied to determine the stability of the scheme (3.3). Von Neumann
analysis, sometimes referred to as Fourier analysis, is applied exclusively in the context of linear
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systems. Therefore, we propose that the linear version is represented by

Ψt + αΨxxx + βΨyyy + r0Ψx + r1Ψy + r2Ψx = 0, (3.5)

where r0 = γΨ , r1 = δΨ , and r2 = λΦ are constant quantities defined as

r0 = max
1≤m≤M
1≤n≤N

(
γΨ k

m,n

)
, r1 = max

1≤m≤M
1≤n≤N

(
δΨ k

m,n

)
, r2 = max

1≤m≤M
1≤n≤N

(
λΦk

m,n

)
.

We assume a solution form:

Ψ k
m,n = exp

(
a k ht + i b m hx + i c n hy

)
. (3.6)

As a result, we are able to write

Ψ k+1
m,n = exp(a ht)Ψ k

m,n, Ψ k
m±2,n = exp(±2i b hx)Ψ k

m,n, Ψ k
m,n±2 = exp(±2i c hy) Ψk

m,n,

Ψ k
m±1,n = exp(±i b hx)Ψ k

m,n, Ψ k
m,n±1 = exp(±i c hy) Ψk

m,n.

Substituting (3.6) into (3.5) and doing some operations yields

1 = exp(aht)

1 − i ht

α (2 sin (bhx) − sin (2bhx))
h3

x
+
β
(
2 sin

(
chy

)
− sin

(
2chy

))
h3

y

−
r1 sin

(
chy

)
hy

−
(r0 + r2) sin (bhx)

hx


 .

(3.7)

Hence,

exp(aht) =
1

1 − F i
, (3.8)

where

F = ht

α (2 sin (bhx) − sin (2bhx))
h3

x
+
β
(
2 sin

(
chy

)
− sin

(
2chy

))
h3

y

−
r1 sin

(
chy

)
hy

−
(r0 + r2) sin (bhx)

hx

 .
Thus, ∣∣∣exp(aht)

∣∣∣ =
1

√
1 + F2

≤ 1. (3.9)

Equation (3.9) indicates the absence of growth, thus the stability condition of the von Neumann analysis
is satisfied. As a result, the scheme is unconditionally stable.

3.3. Error analysis

To effectively evaluate the accuracy of numerical scheme (3.3), we perform a comprehensive
investigation of the truncation error, T (x, y, t), using Taylor series expansions. This method allows
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a systematic analysis of the error’s behavior and provides a basis for evaluating the scheme’s accuracy
under various circumstances. Suppose that the error is

ek+1
m,n = Ψ k+1

m,n − Ψ (xm, yn, tk+1), (3.10)

where Ψ (xm, yn, tk+1) denotes the analytical solution, whereas Ψ k+1
m,n denotes the approximate numerical

solution. Substituting (3.10) into (3.3) gives

ek+1
m,n − ek

m,n

ht
= T k+1

m,n −

(
α

2h3
x

(
ek+1

m+2,n − 2ek+1
m+1,n + 2ek+1

m−1,n − ek+1
m−2,n

)
+

β

2h3
y

(
ek+1

m,n+2 − 2ek+1
m,n+1 + 2ek+1

m,n+1 + ek+1
m,n+2

)
+

(r0 + r2)
2hx

(
ek+1

m+1,n − ek+1
m−1,n

)
+

r1

2hx

(
Ψ k+1

m,n−1 − Ψ
k+1
m,n−1

))
.

(3.11)

We are given that

T k+1
m,n =

α

2h3
x

(Ψ (xm+2, yn, tk+1) − 2Ψ (xm+1, yn, tk+1) + 2Ψ (xm−1, yn, tk+1) − Ψ (xm−2, yn, tk+1))

+
β

2h3
y

(Ψ (xm, yn+2, tk+1) − 2Ψ (xm, yn+1, tk+1) + 2Ψ (xm, yn−1, tk+1) − Ψ (xm, yn−2, tk+1))

+
(r0 + r2)

2hx
(Ψ (xm+1, yn, tk+1) − Ψ (xm−1, yn, tk+1))

+
r1

2hx
(Ψ (xm, yn+1, tk+1) − Ψ (xm, yn−1, tk+1)) .

Thus

T k+1
m,n ≤

ht

2
∂2Ψ (xm, yn, ξk+1)

∂t2 −
h2

x

4
∂5Ψ (ζm, yn, tk+1)

∂x5 −
h2

y

4
∂5Ψ (xm, ηn, tk+1)

∂y5

−
h2

y

6
∂3Ψ (xm, ηn, tk+1)

∂y3 −
h2

x

6
∂3Ψ (ζm, yn, tk+1)

∂x3 .

Consequently, the truncation error of the numerical scheme is

T k+1
m,n = O(ht, h2

x, h
2
y).

Table 2 and Figure 8 demonstrate the relationship between numerical accuracy and computational
effort across varying (hx) at t = 20. Table 2 illustrates the relative error in the L2 norm with
corresponding CPU time, which indicates that fine (hx) will lead to increased accuracy, although with
more significant computational needs. This trade-off points out the computational expense that is
linked to achieving reduced errors. Figure 8 displays the convergence of the numerical method, which
exhibits a slope of roughly 1.9, which indicates its second-order accuracy. The analysis emphasises
a specific variable (y = 0.5) and computational domain (x ∈ [−55, 15]), which provides an accurate
measurement of the method’s performance. This finding highlights the necessary balance between
accuracy and efficiency in computational simulations.
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Table 2. Relative error in L2 norm and CPU time for various grid resolutions (hx) at t = 20.
The data shows the computational accuracy-time trade-off.

∆x Relative Error CPU
0.6000 1.030 × 100 1.140 × 10−1 s
0.3000 4.870 × 10−2 4.310 × 10−1 s
0.1500 2.600 × 10−3 2.649 × 100 s
0.0750 3.145 × 10−4 3.012 × 101 s
0.0375 2.810 × 10−5 2.795 × 102 s
0.0187 2.310 × 10−5 4.0230 × 103 s
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Figure 8. Log-log plot of the relative error (L2 norm) against grid spacing (hx), which shows
numerical convergence with a slope of roughly 1.9, which signifies the second-order accuracy
of the numerical method (see Table 2). In this instance, we selected a specific value for the
variable, y = 0.5, at t = 20 and x ∈ [−55, 15].

4. Conclusions

We addressed numerical and analytical investigations for the (2+1)-dimensional GBSS model. In
this paper, we applied more improved analytical and computational approaches, such as the modified F-
expansion, and were able to extract exact solutions. These solutions exhibit the remarkable property of
solitons, which is the ability to keep their shape and remain stable over particularly large distances for
broad periods of time, which plays a key role in cases of non-linear wave dynamics. Theoretical models
were validated by the use of robust numerical algorithms such as finite difference and boundary-value
problem approaches. The results that were predicted during the numerical simulations corresponded
to predictions made by the theories that were posed, and our analytical approaches were also proved
correct. Moreover, the results suggest potential practical applications of these solutions as solitons.
Consider the case where solitons can travel through fibers, neither changing shape nor dissipating
energy, in optical communication systems. If so, they could increase channel capacity and lower
bit-error rates, enabling data to travel more smoothly. Similarly, the insights gained may be helpful
in fluid mechanics and plasma physics, where managing non-linear wave propagation is crucial. The
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contribution of analytical and numerical solutions not only contributes to a deeper understanding of the
complex processes describing the GBSS but also shows the efficiency of our approaches in modeling
complicated non-linear phenomena. In general, this study serves as a theoretical foundation for further
scientific advancements and offers practical means for technological advancements in spheres that
require extensive insights into non-linear wave behaviors.
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