Citation: Behzad Ghanbari, Mustafa Inc, Abdullahi Yusuf, Dumitru Baleanu. New solitary wave solutions and stability analysis of the Benney-Luke and the Phi-4 equations in mathematical physics[J]. AIMS Mathematics, 2019, 4(6): 1523-1539. doi: 10.3934/math.2019.6.1523
[1] | M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform, Cambridge University Press, Cambridge, 1990. |
[2] | F. Tchier, A. I. Aliyu, A. Yusuf, et al. Dynamics of solitons to the ill-posed Boussinesq equation, Eur. Phys. J. Plus, 132 (2017), 136. |
[3] | F. Tchier, A. Yusuf, A. I. Aliyu, et al. Soliton solutions and conservation laws for lossy nonlinear transmission line equation, Superlattices Microstruct, 107 (2017), 320-336. doi: 10.1016/j.spmi.2017.04.003 |
[4] | W. X. Ma, A soliton hierarchy associated with so (3,R), Appl. Math. Comput., 220 (2013), 117-122. |
[5] | E. Bas, B. Acay, R. Ozarslan, The price adjustment equation with different types of conformable derivatives in market equilibrium, AIMS Mathematics, 4 (2019), 805-820. doi: 10.3934/math.2019.3.805 |
[6] | B. Acay, E. Bas, T. Abdeljawad, Non-local fractional calculus from different viewpoint generated by truncated M-derivative, J. Comput. Appl. Math., 366 (2020), 112410. |
[7] | S. Ali, M. Younis, M. O. Ahmad, et al. Rogue wave solutions in nonlinear optics with coupled Schrodinger equations, Opt. Quant. Electron., 50 (2018), 266. |
[8] | N. Raza, I. G. Murtaza, S. Sial, et al. On solitons: the biomolecular nonlinear transmission line models with constant and time variable coefficients, Wave. Random Complex, 28 (2018), 553-569. doi: 10.1080/17455030.2017.1368734 |
[9] | M. Younis, S. T. R. Rizvi, S. Ali, Analytical and soliton solutions: Nonlinear model of nano-bioelectronics transmission lines, Appl. Math. Comput., 265 (2015), 994-1002. |
[10] | S. Ali, S. T. R. Rizvi, M. Younis, Traveling wave solutions for nonlinear dispersive water-wave systems with time-dependent coefficients, Nonlinear Dynam., 82 (2015), 1755-1762. doi: 10.1007/s11071-015-2274-z |
[11] | B. Younas, M. Younis, M. O. Ahmed, et al. Chirped optical solitons in nanofibers, Mod. Phys. Lett. B, 32 (2018), 1850320. |
[12] | K. Ali, S. T. R. Rizvi, A. Khalil, et al. Chirped and dipole soliton in nonlinear negative-index materials, Optik, 172 (2018), 657-661. doi: 10.1016/j.ijleo.2018.06.063 |
[13] | K. U. Tariq, M. Younis, Bright, dark and other optical solitons with second order spatiotemporal dispersion, Optik, 142 (2017), 446-450. doi: 10.1016/j.ijleo.2017.06.003 |
[14] | M. Younis, Optical solitons in (n+1) dimensions with Kerr and power law nonlinearities, Mod. Phys. Lett. B, 31 (2017), 1750186. |
[15] | M. Younis, U. Younas, S. ur Rehman, et al. Optical bright-dark and Gaussian soliton with third order dispersion, Optik, 134 (2017), 233-238. doi: 10.1016/j.ijleo.2017.01.053 |
[16] | E. Bas, B. Acay, R. Ozarslan, Fractional models with singular and non-singular kernels for energy efficient buildings, Chaos, 29 (2019), 023110. |
[17] | J. H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals, 19 (2004), 847-851. doi: 10.1016/S0960-0779(03)00265-0 |
[18] | G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston, 1994. |
[19] | K. Khan, M. A. Akbar, Exact and solitary wave solutions for the Tzitzeica-Dodd-Bullough and the modified KdV-Zakharov-Kuznetsov equations using the modified simple equation method, Ain Shams Eng. J., 4 (2013), 903-909. doi: 10.1016/j.asej.2013.01.010 |
[20] | K. Khan, M. A. Akbar, Traveling wave solutions of the (2+1)-dimensional Zoomeron equation and the Burgers equations via the MSE method and the Exp-function method, Ain Shams Eng. J., 5 (2014), 247-256. doi: 10.1016/j.asej.2013.07.007 |
[21] | A. Bekir, A. Boz, Exact solutions for nonlinear evolution equation using Exp-function method, Phys. Lett. A, 372 (2008), 1619-1625. doi: 10.1016/j.physleta.2007.10.018 |
[22] | H. O. Roshid, N. Rahman, M. A. Akbar, Traveling waves solutions of nonlinear Klein Gordon equation by extended (G/G)-expasion method, Ann. Pure Appl. Math., 3 (2013), 10-16. |
[23] | A. Javid, N. Raza, M. S. Osman, Multi-solitons of Thermophoretic Motion Equation Depicting the Wrinkle Propagation in Substrate-Supported Graphene Sheets, Commun. Theor. Phys., 71 (2019), 362. |
[24] | M. S. Osman, One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation, Nonlinear Dyn., 96 (2019), 1491-1496. doi: 10.1007/s11071-019-04866-1 |
[25] | M. S. Osman, New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamics, Pramana-J. Phys., 93 (2019), 26. |
[26] | M. S. Osman, D. Lu, M. M. A. Khater, et al. Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model, Optik, 192 (2019), 162927. |
[27] | D. Lu, K. U. Tariq, M. S. Osman, et al. New analytical wave structures for the (3 + 1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications, Results phys., 14 (2019), 102491. |
[28] | H. I. Abdel-Gawad, N. S. Elazab, M. Osman, Exact Solutions of Space Dependent Korteweg-de Vries Equation by The Extended Unified Method, J. Phys. Soc. Jpn, 82 (2013), 044004. |
[29] | M. Osman, Multi-soliton rational solutions for some nonlinear evolution equations, Open Phys., 14 (2016), 26-36. |
[30] | H. I. Abdel-Gawad and M. Osman, On shallow water waves in a medium withtime-dependent dispersion and nonlinearitycoefficients, J. Adv. Res., 6 (2015), 593-599. doi: 10.1016/j.jare.2014.02.004 |
[31] | B. Ghanbari, M. S. Osman, D. Baleanu, Generalized exponential rational function method for extended Zakharov-Kuzetsov equation with conformable derivative, Mod. Phys. Lett. A, 34 (2019), 1950155. |
[32] | M. S. Osman, A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Mathematical Methods in the Applied Sciences. |
[33] | U. Khan, R. Ellahi, R. Khan, et al. Extracting new solitary wave solutions of Benny-Luke equation and Phi-4 equation of fractional order by using (G'/G)-expansion method, Opt. Quant. Electron., 49 (2017), 362. |
[34] | B. Ghanbari, M. Inc, A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation, Eur. Phys. J. Plus, 133 (2018), 142. |
[35] | M. Saha, A. K. Sarma, Solitary wave solutions and modulation instability analysis of the nonlinear Schrodinger equation with higher order dispersion and nonlinear terms, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 2420-2425. doi: 10.1016/j.cnsns.2012.12.028 |
[36] | A. R. Seadawy, M. Arshad, D. Lu, Stability analysis of new exact traveling wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems, Eur. Phys. J. Plus, 132 (2017), 162. |
[37] | M. Inc, A. Yusuf, A. I. Aliyu, et al. Soliton solutions and stability analysis for some conformable nonlinear partial differential equations in mathematical physics, Opt. Quant. Electron., 50 (2018), 190. |