Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

New solitary wave solutions and stability analysis of the Benney-Luke and the Phi-4 equations in mathematical physics

  • In this paper, we present new solitary wave solutions for the Benney-Luke equation (BLE) and Phi-4 equation (PE). The new generalized rational function method (GERFM) is used to reach such solutions. Moreover, the stability for the governing equations is investigated via the aspect of linear stability analysis. It is proved that, both the governing equations are stable. We can also solve other nonlinear system of PDEs which are involve in mathematical physics and many other branches of physical sciences with the help of this new method.

    Citation: Behzad Ghanbari, Mustafa Inc, Abdullahi Yusuf, Dumitru Baleanu. New solitary wave solutions and stability analysis of the Benney-Luke and the Phi-4 equations in mathematical physics[J]. AIMS Mathematics, 2019, 4(6): 1523-1539. doi: 10.3934/math.2019.6.1523

    Related Papers:

    [1] Gulnur Yel, Haci Mehmet Baskonus, Wei Gao . New dark-bright soliton in the shallow water wave model. AIMS Mathematics, 2020, 5(4): 4027-4044. doi: 10.3934/math.2020259
    [2] Stevo Stević, Bratislav Iričanin, Witold Kosmala . On a family of nonlinear difference equations of the fifth order solvable in closed form. AIMS Mathematics, 2023, 8(10): 22662-22674. doi: 10.3934/math.20231153
    [3] Y. Massoun, C. Cesarano, A. K Alomari, A. Said . Numerical study of fractional phi-4 equation. AIMS Mathematics, 2024, 9(4): 8630-8640. doi: 10.3934/math.2024418
    [4] Mohammed Aldandani, Abdulhadi A. Altherwi, Mastoor M. Abushaega . Propagation patterns of dromion and other solitons in nonlinear Phi-Four (ϕ4) equation. AIMS Mathematics, 2024, 9(7): 19786-19811. doi: 10.3934/math.2024966
    [5] Mahmoud A. E. Abdelrahman, S. Z. Hassan, R. A. Alomair, D. M. Alsaleh . Fundamental solutions for the conformable time fractional Phi-4 and space-time fractional simplified MCH equations. AIMS Mathematics, 2021, 6(6): 6555-6568. doi: 10.3934/math.2021386
    [6] Ikram Ullah, Muhammad Bilal, Aditi Sharma, Hasim Khan, Shivam Bhardwaj, Sunil Kumar Sharma . A novel approach is proposed for obtaining exact travelling wave solutions to the space-time fractional Phi-4 equation. AIMS Mathematics, 2024, 9(11): 32674-32695. doi: 10.3934/math.20241564
    [7] Khudhayr A. Rashedi, Musawa Yahya Almusawa, Hassan Almusawa, Tariq S. Alshammari, Adel Almarashi . Lump-type kink wave phenomena of the space-time fractional phi-four equation. AIMS Mathematics, 2024, 9(12): 34372-34386. doi: 10.3934/math.20241637
    [8] Zhao Li, Shan Zhao . Bifurcation, chaotic behavior and solitary wave solutions for the Akbota equation. AIMS Mathematics, 2024, 9(8): 22590-22601. doi: 10.3934/math.20241100
    [9] Umair Ali, Sanaullah Mastoi, Wan Ainun Mior Othman, Mostafa M. A Khater, Muhammad Sohail . Computation of traveling wave solution for nonlinear variable-order fractional model of modified equal width equation. AIMS Mathematics, 2021, 6(9): 10055-10069. doi: 10.3934/math.2021584
    [10] A. K. M. Kazi Sazzad Hossain, M. Ali Akbar . Solitary wave solutions of few nonlinear evolution equations. AIMS Mathematics, 2020, 5(2): 1199-1215. doi: 10.3934/math.2020083
  • In this paper, we present new solitary wave solutions for the Benney-Luke equation (BLE) and Phi-4 equation (PE). The new generalized rational function method (GERFM) is used to reach such solutions. Moreover, the stability for the governing equations is investigated via the aspect of linear stability analysis. It is proved that, both the governing equations are stable. We can also solve other nonlinear system of PDEs which are involve in mathematical physics and many other branches of physical sciences with the help of this new method.


    Due to their very broad spectrum of applicability in nonlinear science, nonlinear evolution equations (NLEEs) were very significant elements. Nonlinear physical phenomena are among the most important areas of research in science and engineering, such as plasma physics, fluid mechanics, gas dynamics, elasticity, relativity, chemical responses, ecology, optical fiber, solid state physics, biomechanics to mention few. All these equations are fundamentally controlled by NLEEs [1,2,3,4,5,6,7,8,9,10]. NLEEs are frequently used to demonstrate separate wave motion.

    It has been gaining more concentration ever since the arrival of the solitary wave in science aspects. Extracting precisely travelling wave alternatives to NLEEs is therefore essential. That's because getting accurate alternatives to NLEEs offers us the freedom to present data about the characteristics of complicated physical phenomenon. Thus, in the assessment of nonlinear physical phenomenon, the development of precise traveling wave solutions to NLEEs has become a concern. Several analytical methods were used to develop wave travel alternatives for NLEEs [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]. Full soliton stability is not yet mathematically or physically well understood. Although these solitons, owing to resonance with the continuous spectrum, have a natural tendency to leak energy, they can still withstand this inclination and stay strong. In this work, we will provide the exact travelling wave solutions and some dispersion relations for the governing equations [33].

    As follows, the paper is organized. Section Ⅱ presents the method descriptions. Section Ⅲ discusses the method's applications to the governing equations. Analysis of stability is being studied in Section Ⅳ. The paper is concluded by Section Ⅴ.

    In this section, we will state the main steps of GERFM as follows [34]:

    1. Let us take into account the NPDE in the form:

    L(ψ,ψx,ψt,ψxx,)=0. (2.1)

    Using the transformations ψ=ψ(ξ) and ξ=σxlt, Eq.(2.2) is reduced to following ODE as:

    L(ψ,ψ,ψ,)=0, (2.2)

    where the values of σ and l will be found later.

    2. Suppose that solution of Eq. (2.2) is expressed by a finite series as:

    ψ(ξ)=A0+Mk=1AkΘ(ξ)k+Mk=1BkΘ(ξ)k. (2.3)

    where

    Θ(ξ)=p1eq1ξ+p2eq2ξp3eq3ξ+p4eq4ξ. (2.4)

    The values of constants pi,qi(1i4), A0,Ak and Bk(1kM) are determined, in such a way that solution (2.3) always persuade Eq. (2.2). By considering the homogenous balance principle the value of M is determined.

    3. Putting Eq. (2.3) into Eq. (2.2) and rearranging the terms in Eq. (2.2) lead to an algebraic equations P(Z1,Z2,Z3,Z4)=0 in terms of Zi=eqiξ with i=1,,4. Equating the coefficients of P to zero, a system of nonlinear equations in terms of pi,qi(1i4), and σ,l,A0,Ak and Bk(1kM) is reached.

    4. By solving the above system of equations using any symbolic computation software, the values of pi,qi(1i4), A0,Ak, and Bk(1kM) are determined, replacing these values in Eq. (2.3) provides us the soliton solutions of Eq. (2.1).

    Consider the BLE of the form [33]

    uttuxx+γuxxxxδuxxtt+utuxx+2uxuxt=0, (3.1)

    In order to find the solutions of Eq. (3.1), we utilize

    u(x)=u(ξ),ξ=Kx+Lt, (3.2)

    where K and L are arbitrary constants to be determined.

    If we use transformation (3.2) in Eq. (3.1), after an integration along with neglecting constant of integration, the following nonlinear ODE is obtained

    (L2K2)u+K2(γK2δL2)u+32LK2(u)2=0, (3.3)

    Balancing the terms of u and (u)2 in Eq. (3.3) gives M+3=2(M+1), and M=1. Using M=1 along with Eqs. (2.3) and (2.4), one gets:

    u(ξ)=A0+A1Φ(ξ)+B1Φ(ξ). (3.4)

    Using a methodology similar to the one adopted in Subsection 2, we get some solutions of (3.1), as bellows:

    Family 1: We attain p=[1,1,1,1] and q=[1,1,1,1], so we will obtain

    Φ(ξ)=cosh(ξ)sinh(ξ). (3.5)

    Case 1:

    K=K,L=K4K2γ14δK21,A0=A0,A1=4K(γδ)4δK214K2γ1,B1=0.

    So, the solitary wave solutions of Eq. (3.1) takes the form of

    u(ξ)=A04δK214K2γ14Kcoth(ξ)(δγ)4δK214K2γ1.

    Thus the solution of (3.1) is obtained as

    u1(x,t)=A04δK214K2γ14Kcoth(ξ)(δγ)4δK214K2γ1, (3.6)

    where ξ=K(x4K2γ14δK21t).

    Case 2:

    K=K,L=K16K2γ116δK21,
    A0=A0,A1=4K(γδ)16δK2116K2γ1,B1=4K(γδ)16δK2116K2γ1.

    So, the solitary wave solutions of Eq. (3.1) takes the form of

    u(ξ)=A016δK2116K2γ1coth(ξ)+4K((coth(ξ))2+1)(δγ)16δK2116K2γ1coth(ξ).

    Therefore the solution of (3.1) is attained as

    u2(x,t)=A016δK2116K2γ1coth(ξ)+4K((coth(ξ))2+1)(δγ)16δK2116K2γ1coth(ξ), (3.7)

    where ξ=K(x+16K2γ116δK21t).

    Case 3:

    K=K,L=K4K2γ14δK21,A0=A0,A1=4K(γδ)4δK214K2γ1,B1=0.

    So, the solitary wave solutions of Eq. (3.1) takes the form of

    u(ξ)=A04δK214K2γ1+4Kcoth(ξ)(δγ)4δK214K2γ1.

    Thus we attain the solution of (3.1) as follows

    u3(x,t)=A04δK214K2γ1+4Kcoth(ξ)(δγ)4δK214K2γ1, (3.8)

    where ξ=K(x+4K2γ14δK21t).

    Case 4:

    K=K,L=K16K2γ116δK21,
    A0=A0,A1=4K(γδ)16δK2116K2γ1,B1=4K(γδ)16δK2116K2γ1.

    So, the solitary wave solutions of Eq. (3.1) takes the form of

    u(ξ)=A016δK2116K2γ1coth(ξ)4K((coth(ξ))2+1)(δγ)16δK2116K2γ1coth(ξ).

    And hence we attain the solution of (3.1) in the form

    u4(x,t)=A016δK2116K2γ1coth(ξ)4K((coth(ξ))2+1)(δγ)16δK2116K2γ1coth(ξ), (3.9)

    where ξ=K(x16K2γ116δK21t).

    Family 2: We attain p=[i,i,1,1] and q=[i,i,i,i], so we will obtain

    Φ(ξ)=sin(ξ)cos(ξ). (3.10)

    Case 1:

    K=K,L=K4K2γ+14δK2+1,A0=A0,A1=4K(γδ)4δK2+14K2γ+1,B1=0.

    Inserting these values in Eqs.(3.4) and (3.10), one gets

    u(ξ)=A04δK2+14K2γ+1cos(ξ)4Ksin(ξ)(δγ)cos(ξ)4K2γ+14δK2+1.

    Therefore we attain the solution of (3.1) as follows

    u5(x,t)=A04δK2+14K2γ+1cos(ξ)4Ksin(ξ)(δγ)cos(ξ)4K2γ+14δK2+1, (3.11)

    where ξ=K(x4K2γ+14δK2+1t).

    Case 2:

    K=K,L=K16K2γ+116δK2+1,
    A0=A0,A1=4K(γδ)16δK2+116K2γ+1,B1=4K(γδ)16δK2+116K2γ+1.

    Plugging these values in Eqs.(3.4) and (3.10), one gets

    u(ξ)=A016δK2+116K2γ+1cos(ξ)sin(ξ)8(cos2(ξ)1/2)(δγ)Kcos(ξ)sin(ξ)16δK2+116K2γ+1.

    Thus the solution of (3.1) is given by

    u6(x,t)=A016δK2+116K2γ+1cos(ξ)sin(ξ)8(cos2(ξ)1/2)(δγ)Kcos(ξ)sin(ξ)16δK2+116K2γ+1, (3.12)

    where ξ=K(x+16K2γ+116δK2+1t).

    Family 3: We attain p=[2i,2+i,1,1] and q=[i,i,i,i], so we will obtain

    Φ(ξ)=sin(ξ)2cos(ξ)cos(ξ). (3.13)

    Case 1:

    K=K,L=K4K2γ+14δK2+1,A0=A0,A1=0,B1=20K(γδ)4δK2+14K2γ+1.

    Imposing these values in Eqs. (3.4) and (3.13), one gets

    u(ξ)=20Kcos(ξ)4K2γ+1(δγ)4δK2+1+E1A0(4K2γ+1)(4δK2+1)(4δK2+1)(4K2γ+1)(sin(ξ)+2cos(ξ)),

    where E1=(2cos(ξ)sin(ξ)), we then reach the solution of (3.1 stated as

    u7(x,t)=20Kcos(ξ)4K2γ+1(δγ)4δK2+1+E1A0(4K2γ+1)(4δK2+1)(4δK2+1)(4K2γ+1)(sin(ξ)+2cos(ξ)), (3.14)

    where ξ=K(x4K2γ+14δK2+1t).

    Case 2:

    K=K,L=K4K2γ+14δK2+1,A0=A0,A1=4K(γδ)4δK2+14K2γ+1,B1=0.

    Inserting these values in Eqs. (3.4) and (3.13), one reaches

    u(ξ)=4(2cos(ξ)sin(ξ))4K2γ+1(δγ)K4δK2+1+cos(ξ)E2(4δK2+1)(4K2γ+1)cos(ξ),

    where E2=A0(4K2γ+1)(4δK2+1). Therefore we attain the solution of (3.1) as

    u8(x,t)=4(2cos(ξ)sin(ξ))4K2γ+1(δγ)K4δK2+1+cos(ξ)E2(4δK2+1)(4K2γ+1)cos(ξ), (3.15)

    where ξ=K(x+4K2γ+14δK2+1t).

    Family 4: We attain p=[1i,1+i,1,1] and q=[i,i,i,i], so we will obtain

    Φ(ξ)=cos(ξ)+sin(ξ)cos(ξ). (3.16)

    Case 1:

    K=K,L=K4K2γ+14δK2+1,A0=A0,A1=4K(γδ)4δK2+14K2γ+1,B1=0.

    Putting these values in Eqs.(3.4) and (3.16), one gets

    u(ξ)=4K4K2γ+1(cos(ξ)+sin(ξ))(δγ)4δK2+1+cos(ξ)E3(4δK2+1)(4K2γ+1)cos(ξ),

    where E3=A0(4K2γ+1)(4δK2+1). Therefore we attain the solution of (3.1) in the following form

    u9(x,t)=4K4K2γ+1(cos(ξ)+sin(ξ))(δγ)4δK2+1+cos(ξ)E3(4δK2+1)(4K2γ+1)cos(ξ), (3.17)

    where ξ=K(x4K2γ+14δK2+1t).

    Case 2:

    K=K,L=K4K2γ+14δK2+1,A0=A0,A1=0,B1=8K(γδ)4δK2+14K2γ+1.

    So, the solitary wave solutions of Eq. (3.1) takes the form of

    u(ξ)=8Kcos(ξ)4K2γ+1(δγ)4δK2+1+(cos(ξ)+sin(ξ))E4(4δK2+1)(4K2γ+1)(cos(ξ)+sin(ξ)),

    E4=A0(4K2γ+1)(4δK2+1). Therefore one can reach the solution of (3.1) as comes next

    u10(x,t)=8Kcos(ξ)4K2γ+1(δγ)4δK2+1+(cos(ξ)+sin(ξ))E4(4δK2+1)(4K2γ+1)(cos(ξ)+sin(ξ)), (3.18)

    where ξ=K(x4K2γ+14δK2+1t).

    Family 5: We attain p=[1,3,1,1] and q=[1,1,1,1], so we will obtain

    Φ(ξ)=cosh(ξ)2sinh(ξ)sinh(ξ). (3.19)

    Case 1:

    K=K,L=K4K2γ14δK21,A0=A0,A1=4K(γδ)4δK214K2γ1,B1=0.

    Imposing these values in Eqs. (3.4) and (3.19), one gets

    u(ξ)=4K4K2γ1(cosh(ξ)2sinh(ξ))(δγ)4δK21+A0E5(4δK21)(4K2γ1)sinh(ξ),

    where E5=sinh(ξ)(4K2γ1)(4δK21). Therefore we attain the solution of (3.1) as

    u11(x,t)=4K4K2γ1(cosh(ξ)2sinh(ξ))(δγ)4δK21+A0E5(4δK21)(4K2γ1)sinh(ξ), (3.20)

    where ξ=K(x4K2γ14δK21t).

    Family 6: We attain p=[3,1,1,1] and q=[1,1,1,1], so we will obtain

    Φ(ξ)=2cosh(ξ)sinh(ξ)cosh(ξ). (3.21)

    Case 1:

    K=K,L=K4K2γ14δK21,A0=A0,A1=4K(γδ)4δK214K2γ1,B1=0.

    Putting these values in Eqs.(3.4) and (3.21), one gets

    u(ξ)=4(2cosh(ξ)+sinh(ξ))4K2γ1(δγ)K4δK21+cosh(ξ)(4δK21)(4K2γ1)cosh(ξ),

    E6=(4δK21)A0(4K2γ1). Therefore we reach the solution of (3.1) as follows

    u12(x,t)=4(2cosh(ξ)+sinh(ξ))4K2γ1(δγ)K4δK21+cosh(ξ)E6(4δK21)(4K2γ1)cosh(ξ), (3.22)

    where ξ=K(x+4K2γ14δK21t).

    Family 7: We attain p=[3,2,1,1] and q=[0,1,0,1], so we will obtain

    Φ(ξ)=32eξ1+eξ. (3.23)

    Case 1:

    K=K,L=KK2γ1δK21,A0=A0,A1=0,B1=24K(γδ)δK21K2γ1.

    Plugging these values in Eqs.(3.4) and (3.23), one attains

    u(ξ)=24KK2γ1(1+eξ)(δγ)δK21+2(δK21)A0E7(δK21)(K2γ1)(3+2eξ),

    where E7=(K2γ1)(3/2+eξ). Therefore we attain the solution of (3.1) as

    u13(x,t)=24KK2γ1(1+eξ)(δγ)δK21+2(δK21)A0E7(δK21)(K2γ1)(3+2eξ), (3.24)

    where ξ=K(xK2γ1δK21t).

    Family 8: We attain p=[1,0,1,1] and q=[1,0,1,0], so we will obtain

    Φ(ξ)=eξeξ+1. (3.25)

    Case 1:

    K=K,L=KK2γ1δK21,A0=A0,A1=4K(γδ)δK21K2γ1,B1=0.

    Putting these values in Eqs.(3.4) and (3.25), one reaches

    u(ξ)=4KeξK2γ1(δγ)δK21+A0(δK21)(K2γ1)(1+eξ)(δK21)(K2γ1)(1+eξ).

    Therefore we attain the solution of (3.1) as comes next

    u14(x,t)=4KeξK2γ1(δγ)δK21+A0(δK21)(K2γ1)(1+eξ)(δK21)(K2γ1)(1+eξ), (3.26)

    where ξ=K(x+K2γ1δK21t).

    Family 9: We attain p=[2,1,1,1] and q=[1,0,1,0], so we will obtain

    Φ(ξ)=2eξ+1eξ+1. (3.27)

    Case 1:

    K=K,L=KK2γ1δK21,A0=A0,A1=4K(γδ)δK21K2γ1,B1=0.

    Putting these values in Eqs.(3.4) and (3.27), we have

    u(ξ)=4K2γ1(2eξ+1)(δγ)KδK21+A0(δK21)(K2γ1)(1+eξ)(δK21)(K2γ1)(1+eξ).

    Therefore we reach the solution of (3.1) as comes next

    u15(x,t)=4K2γ1(2eξ+1)(δγ)KδK21+A0(δK21)(K2γ1)(1+eξ)(δK21)(K2γ1)(1+eξ), (3.28)

    where ξ=K(xK2γ1δK21t).

    Family 10: We attain p=[1,0,1,1] and q=[0,1,0,1], so we will obtain

    Φ(ξ)=1eξ+1. (3.29)

    Case 1:

    K=K,L=KK2γ1δK21,A0=A0,A1=4K(γδ)δK21K2γ1,B1=0.

    Employing these values to Eqs. (3.4) and (3.29), one reaches

    u(ξ)=4KK2γ1(δγ)δK21+A0(δK21)(K2γ1)(1+eξ)(δK21)(K2γ1)(1+eξ).

    Therefore we attain the solution of (3.1) is as comes next

    u16(x,t)=4KK2γ1(δγ)δK21+A0(δK21)(K2γ1)(1+eξ)(δK21)(K2γ1)(1+eξ), (3.30)

    where ξ=K(x+K2γ1δK21t).

    Now, let us Consider the PE given by [33]

    uttuxx+m2u+σu3=0, (3.31)

    To solve Eq. (3.31), we again apply the travelling wave transformation (3.2). Then Eq. (3.31) turns to the following nonlinear ODE as

    (L2K2)u+m2u+σu3=0, (3.32)

    Balancing the terms of u and u3 in Eq. (3.32) gives 3N=N+2, so N=1. So, the solution of Eq. (3.31) will be as:

    u(ξ)=A0+A1Φ(ξ)+B1Φ(ξ). (3.33)

    Family 1: We attain p=[1+i,1i,1,1] and q=[i,i,i,i], so we will obtain

    Φ(ξ)=sin(ξ)+cos(ξ)cos(ξ). (3.34)

    Case 1:

    K=K,L=4K22m22,A0=mσ,A1=0,B1=2mσ.

    Putting these values into Eqs. (3.33) and (3.34), one gets

    u(ξ)=m(cos(ξ)+sin(ξ))σ(sin(ξ)+cos(ξ)).

    Therefore we attain the solution of (3.31) given by

    u1(x,t)=m(cos(Kx+4K22m22)+sin(Kx+4K22m22))σ(sin(Kx+4K22m22)+cos(Kx+4K22m22)). (3.35)

    Case 2:

    K=K,L=4K22m22,A0=mσ,A1=mσ,B1=0.

    Inserting these values into Eqs. (3.33) and (3.34), one gets

    u(ξ)=msin(ξ)σcos(ξ).

    Therefore we attain the solution of (3.31) stated as

    u2(x,t)=msin(Kx+4K22m22)σcos(Kx+4K22m22). (3.36)

    Family 2: We attain p=[1i,1i,1,1] and q=[i,i,i,i], so we will obtain

    Φ(ξ)=cos(ξ)+sin(ξ)cos(ξ). (3.37)

    Case 1:

    K=K,L=4K22m22,A0=mσ,A1=0,B1=2mσ.

    Putting these values into Eqs. (3.33) and (3.37), one gets

    u(ξ)=m(sin(ξ)+cos(ξ))σ(cos(ξ)+sin(ξ)).

    Therefore we attain the solution of (3.31) as comes next

    u3(x,t)=m(sin(Kx+4K22m22)+cos(Kx+4K22m22))σ(cos(Kx+4K22m22)+sin(Kx+4K22m22)). (3.38)

    Family 3: We attain p=[2i,2+i,1,1] and q=[i,i,i,i], so we will obtain

    Φ(ξ)=2cos(ξ)+sin(ξ)cos(ξ). (3.39)

    Case 1:

    K=K,L=4K22m22,A0=2mσ,A1=0,B1=5mσ

    Imposing these values into Eqs. (3.33) and (3.39), one gets

    u(ξ)=m(2sin(ξ)+cos(ξ))σ(2cos(ξ)sin(ξ)).

    Hence we reach the solution of (3.31) as follows

    u4(x,t)=m(2sin(Kx+4K22m22)+cos(Kx+4K22m22))σ(2cos(Kx+4K22m22)sin(Kx+4K22m22)). (3.40)

    Family 4: We attain p=[1i,1i,1,1] and q=[i,i,i,i], so we will obtain

    Φ(ξ)=sin(ξ)+cos(ξ)sin(ξ). (3.41)

    Case 1:

    K=K,L=4K22m22,A0=mσ,A1=mσ,B1=0.

    Putting these values into Eqs. (3.33) and (3.41), one gets

    u(ξ)=u(ξ)=mcos(ξ)σsin(ξ).

    Therefore we attain the solution of (3.31) as comes next

    u5(x,t)=u(ξ)=mcos(Kx+4K22m22)σsin(Kx+4K22m22). (3.42)

    Family 5: We attain p=[2i,2i,1,1] and q=[i,i,i,i], so we will obtain

    Φ(ξ)=cos(ξ)2sin(ξ)sin(ξ). (3.43)

    Case 1:

    K=K,L=4K22m22,A0=2mσ,A1=0,B1=5mσ.

    Inserting these values into Eqs. (3.33) and (3.43), one gets

    u(ξ)=m(sin(ξ)+2cos(ξ))σ(cos(ξ)2sin(ξ)).

    Therefore we attain the solution of (3.31) given as

    u6(x,t)=m(sin(Kx+4K22m22)+2cos(Kx+4K22m22))σ(cos(Kx+4K22m22)2sin(Kx+4K22m22)). (3.44)

    Family 6: We attain p=[i,i,1,1] and q=[i,i,i,i], so we will obtain

    Φ(ξ)=sin(ξ)cos(ξ). (3.45)

    Case 1:

    K=K,L=16K22m24,A0=0,A1=m2σ,B1=m2σ.

    Employing these values into Eqs. (3.33) and (3.45), one gets

    u(ξ)=(2(cos(ξ))21)m2σcos(ξ)sin(ξ).

    Therefore we attain the solution of (3.31) is as comes next

    u7(x,t)=(2(cos(Kx+16K22m24t))21)m2σcos(Kx+16K22m24t)sin(Kx+16K22m24t). (3.46)

    Family 7: We attain p=[1,1,1,1] and q=[1,1,1,1], so we will obtain

    Φ(ξ)=cosh(ξ)sinh(ξ). (3.47)

    Case 1:

    K=K,L=4K2m22,A0=0,A1=1/22mσ,B1=1/22mσ.

    Putting these values into Eqs. (3.33) and (3.47), one gets

    u(ξ)=2m2σsinh(ξ)cosh(ξ).

    Therefore we attain the solution of (3.31) as follows

    u8(x,t)=2m2σsinh(Kx+4K2m22t)cosh(Kx+4K2m22t). (3.48)

    In this section, the stability analysis [35,36,37] for the governing equations that is (3.1) and (3.31) will be analyzed.

    Consider the perturbed solution of the form [37]

    u(x,t)=τw(x,t)+P0, (4.1)

    it can be easily seen that, any constant P0 is a steady state solution for (3.1). Plugging (4.1) into (3.1), one arrives at

    τwtt+2τ2wxwxtτwxx+τ2wtwxxδτwxxtt+γτwxxxx=0, (4.2)

    linearizing the above equation in τ, we reach

    τwttτwxxδτwxxtt+γτwxxxx=0. (4.3)

    Assume that (4.3) has a solution of the form

    w(x,t)=ei(kx+tω), (4.4)

    where k is the normalized wave number, plugging (4.4) into (4.3)

    γk4+k2(1δω2)ω2=0, (4.5)

    solving for ω, we obtain

    ω=γk4+k2δk2+1. (4.6)

    From (4.6), one can see that the real part is negative for all k values, then any superposition of the solutions will appear to decay. Thus, the dispersion is stable.

    In a similar manner, consider the perturbed solution of the form

    u(x,t)=τw(x,t)+P1, (4.7)

    it is plainly to see that in (4.7) any constant P1 is a steady state solution for (3.31). Plugging (4.7) into (3.31), one gets

    m2(τw(x,t)+P1)+σ(τw(x,t)+P1)3+τwttτwxx=0, (4.8)

    linearizing the above equation in τ, one gets

    m2τw(x,t)+3στP21w(x,t)+τwttτwxx=0. (4.9)

    Suppose again that (4.9) has a formal solution of the form (4.4), inserting (4.4) into (4.9), one gets

    k2+m2+3P21σω2=0, (4.10)

    solving for ω from the immediate equation, we acquire

    ω=k2+m2+3P21σ. (4.11)

    From (4.11), it can be seen that the real part is negative for all k,m,P21 values. Thus, any superposition of the solutions will appear to decay. Hence, the dispersion is stable.

    In this work, we present new solitary wave solutions for the BLE and PE. We applied the new GERFM to reach such solutions. Moreover, the stability for the governing equations is investigated via the aspect of linear stability analysis. It has been proved that, both the governing equations are stable. These new families of solutions are shown the power, effectiveness and fruitfulness of this method. These fresh solutions have many applications in physics and other physical sciences branches. Other nonlinear PDEs involving mathematical physics and other different branches of physical sciences can also be solved through this method.

    We would like to express our thanks to the anonymous referees who help us improved this paper.

    All authors declared that there is no conflict of interest in this paper.



    [1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform, Cambridge University Press, Cambridge, 1990.
    [2] F. Tchier, A. I. Aliyu, A. Yusuf, et al. Dynamics of solitons to the ill-posed Boussinesq equation, Eur. Phys. J. Plus, 132 (2017), 136.
    [3] F. Tchier, A. Yusuf, A. I. Aliyu, et al. Soliton solutions and conservation laws for lossy nonlinear transmission line equation, Superlattices Microstruct, 107 (2017), 320-336. doi: 10.1016/j.spmi.2017.04.003
    [4] W. X. Ma, A soliton hierarchy associated with so (3,R), Appl. Math. Comput., 220 (2013), 117-122.
    [5] E. Bas, B. Acay, R. Ozarslan, The price adjustment equation with different types of conformable derivatives in market equilibrium, AIMS Mathematics, 4 (2019), 805-820. doi: 10.3934/math.2019.3.805
    [6] B. Acay, E. Bas, T. Abdeljawad, Non-local fractional calculus from different viewpoint generated by truncated M-derivative, J. Comput. Appl. Math., 366 (2020), 112410.
    [7] S. Ali, M. Younis, M. O. Ahmad, et al. Rogue wave solutions in nonlinear optics with coupled Schrodinger equations, Opt. Quant. Electron., 50 (2018), 266.
    [8] N. Raza, I. G. Murtaza, S. Sial, et al. On solitons: the biomolecular nonlinear transmission line models with constant and time variable coefficients, Wave. Random Complex, 28 (2018), 553-569. doi: 10.1080/17455030.2017.1368734
    [9] M. Younis, S. T. R. Rizvi, S. Ali, Analytical and soliton solutions: Nonlinear model of nano-bioelectronics transmission lines, Appl. Math. Comput., 265 (2015), 994-1002.
    [10] S. Ali, S. T. R. Rizvi, M. Younis, Traveling wave solutions for nonlinear dispersive water-wave systems with time-dependent coefficients, Nonlinear Dynam., 82 (2015), 1755-1762. doi: 10.1007/s11071-015-2274-z
    [11] B. Younas, M. Younis, M. O. Ahmed, et al. Chirped optical solitons in nanofibers, Mod. Phys. Lett. B, 32 (2018), 1850320.
    [12] K. Ali, S. T. R. Rizvi, A. Khalil, et al. Chirped and dipole soliton in nonlinear negative-index materials, Optik, 172 (2018), 657-661. doi: 10.1016/j.ijleo.2018.06.063
    [13] K. U. Tariq, M. Younis, Bright, dark and other optical solitons with second order spatiotemporal dispersion, Optik, 142 (2017), 446-450. doi: 10.1016/j.ijleo.2017.06.003
    [14] M. Younis, Optical solitons in (n+1) dimensions with Kerr and power law nonlinearities, Mod. Phys. Lett. B, 31 (2017), 1750186.
    [15] M. Younis, U. Younas, S. ur Rehman, et al. Optical bright-dark and Gaussian soliton with third order dispersion, Optik, 134 (2017), 233-238. doi: 10.1016/j.ijleo.2017.01.053
    [16] E. Bas, B. Acay, R. Ozarslan, Fractional models with singular and non-singular kernels for energy efficient buildings, Chaos, 29 (2019), 023110.
    [17] J. H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals, 19 (2004), 847-851. doi: 10.1016/S0960-0779(03)00265-0
    [18] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston, 1994.
    [19] K. Khan, M. A. Akbar, Exact and solitary wave solutions for the Tzitzeica-Dodd-Bullough and the modified KdV-Zakharov-Kuznetsov equations using the modified simple equation method, Ain Shams Eng. J., 4 (2013), 903-909. doi: 10.1016/j.asej.2013.01.010
    [20] K. Khan, M. A. Akbar, Traveling wave solutions of the (2+1)-dimensional Zoomeron equation and the Burgers equations via the MSE method and the Exp-function method, Ain Shams Eng. J., 5 (2014), 247-256. doi: 10.1016/j.asej.2013.07.007
    [21] A. Bekir, A. Boz, Exact solutions for nonlinear evolution equation using Exp-function method, Phys. Lett. A, 372 (2008), 1619-1625. doi: 10.1016/j.physleta.2007.10.018
    [22] H. O. Roshid, N. Rahman, M. A. Akbar, Traveling waves solutions of nonlinear Klein Gordon equation by extended (G/G)-expasion method, Ann. Pure Appl. Math., 3 (2013), 10-16.
    [23] A. Javid, N. Raza, M. S. Osman, Multi-solitons of Thermophoretic Motion Equation Depicting the Wrinkle Propagation in Substrate-Supported Graphene Sheets, Commun. Theor. Phys., 71 (2019), 362.
    [24] M. S. Osman, One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation, Nonlinear Dyn., 96 (2019), 1491-1496. doi: 10.1007/s11071-019-04866-1
    [25] M. S. Osman, New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamics, Pramana-J. Phys., 93 (2019), 26.
    [26] M. S. Osman, D. Lu, M. M. A. Khater, et al. Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model, Optik, 192 (2019), 162927.
    [27] D. Lu, K. U. Tariq, M. S. Osman, et al. New analytical wave structures for the (3 + 1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications, Results phys., 14 (2019), 102491.
    [28] H. I. Abdel-Gawad, N. S. Elazab, M. Osman, Exact Solutions of Space Dependent Korteweg-de Vries Equation by The Extended Unified Method, J. Phys. Soc. Jpn, 82 (2013), 044004.
    [29] M. Osman, Multi-soliton rational solutions for some nonlinear evolution equations, Open Phys., 14 (2016), 26-36.
    [30] H. I. Abdel-Gawad and M. Osman, On shallow water waves in a medium withtime-dependent dispersion and nonlinearitycoefficients, J. Adv. Res., 6 (2015), 593-599. doi: 10.1016/j.jare.2014.02.004
    [31] B. Ghanbari, M. S. Osman, D. Baleanu, Generalized exponential rational function method for extended Zakharov-Kuzetsov equation with conformable derivative, Mod. Phys. Lett. A, 34 (2019), 1950155.
    [32] M. S. Osman, A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Mathematical Methods in the Applied Sciences.
    [33] U. Khan, R. Ellahi, R. Khan, et al. Extracting new solitary wave solutions of Benny-Luke equation and Phi-4 equation of fractional order by using (G'/G)-expansion method, Opt. Quant. Electron., 49 (2017), 362.
    [34] B. Ghanbari, M. Inc, A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation, Eur. Phys. J. Plus, 133 (2018), 142.
    [35] M. Saha, A. K. Sarma, Solitary wave solutions and modulation instability analysis of the nonlinear Schrodinger equation with higher order dispersion and nonlinear terms, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 2420-2425. doi: 10.1016/j.cnsns.2012.12.028
    [36] A. R. Seadawy, M. Arshad, D. Lu, Stability analysis of new exact traveling wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems, Eur. Phys. J. Plus, 132 (2017), 162.
    [37] M. Inc, A. Yusuf, A. I. Aliyu, et al. Soliton solutions and stability analysis for some conformable nonlinear partial differential equations in mathematical physics, Opt. Quant. Electron., 50 (2018), 190.
  • This article has been cited by:

    1. U. Younas, Aly R. Seadawy, M. Younis, S.T.R. Rizvi, Construction of analytical wave solutions to the conformable fractional dynamical system of ion sound and Langmuir waves, 2020, 1745-5030, 1, 10.1080/17455030.2020.1857463
    2. Aly R Seadawy, S U Rehman, M Younis, S T R Rizvi, Saad Althobaiti, M M Makhlouf, Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer-Chree equation, 2021, 96, 0031-8949, 045202, 10.1088/1402-4896/abdcf7
    3. Shafqat ur Rehman, Jamshad Ahmad, Modulation instability analysis and optical solitons in birefringent fibers to RKL equation without four wave mixing, 2021, 60, 11100168, 1339, 10.1016/j.aej.2020.10.055
    4. Yue Li, Dianchen Lu, Muhammad Arshad, Xu Xu, New exact traveling wave solutions of the unstable nonlinear Schrödinger equations and their applications, 2021, 226, 00304026, 165386, 10.1016/j.ijleo.2020.165386
    5. A. Houwe, M. Inc, S. Y. Doka, B. Acay, L. V. C. Hoan, The discrete tanh method for solving the nonlinear differential-difference equations, 2020, 34, 0217-9792, 2050177, 10.1142/S0217979220501775
    6. Muhammad Bilal, Wencheng Hu, Jingli Ren, Different wave structures to the Chen–Lee–Liu equation of monomode fibers and its modulation instability analysis, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01383-2
    7. Muhammad Bilal, Usman Younas, Haci Mehmet Baskonus, Muhammad Younis, Investigation of shallow water waves and solitary waves to the conformable 3D-WBBM model by an analytical method, 2021, 03759601, 127388, 10.1016/j.physleta.2021.127388
    8. S. Ahmed, R. Ashraf, Aly R. Seadawy, S.T. R. Rizvi, M. Younis, Ali Althobaiti, Ahmed M. El-Shehawi, Lump, multi-wave, kinky breathers, interactional solutions and stability analysis for general (2 + 1)-rth dispersionless Dym equation, 2021, 25, 22113797, 104160, 10.1016/j.rinp.2021.104160
    9. K. Nonlaopon, Shiraz E.A. Elhussein, Mawadda E.E. Eboelhasan, S. Abdel-Khalek, Musaad S. Aldhabani, B. Günay, WITHDRAWN: Some families of novel solutions to a third-order nonlinear Schrödinger’s equation arising in optical communication, 2022, 22113797, 106056, 10.1016/j.rinp.2022.106056
    10. Kalim U. Tariq, Abdul-Majid Wazwaz, Rizwan Javed, Construction of different wave structures, stability analysis and modulation instability of the coupled nonlinear Drinfel’d–Sokolov–Wilson model, 2023, 166, 09600779, 112903, 10.1016/j.chaos.2022.112903
    11. Shahram Rezapour, B. Günay, Hamed Al Shamsi, Kamsing Nonlaopon, On soliton solutions of a modified nonlinear Schrödinger’s equation of third-order governing in optical fibers, 2022, 41, 22113797, 105919, 10.1016/j.rinp.2022.105919
    12. S. Liu, Z. Yang, A. Althobaiti, Y. Wang, Lump solution and lump-type solution to a class of water wave equation, 2023, 45, 22113797, 106221, 10.1016/j.rinp.2023.106221
    13. Muhammad Bilal, Usman Younas, Jingli Ren, Propagation of diverse solitary wave structures to the dynamical soliton model in mathematical physics, 2021, 53, 0306-8919, 10.1007/s11082-021-03189-z
    14. Usman Younas, Muhammad Bilal, Jingli Ren, Propagation of the pure-cubic optical solitons and stability analysis in the absence of chromatic dispersion, 2021, 53, 0306-8919, 10.1007/s11082-021-03151-z
    15. Ayten ÖZKAN, ANALYTICAL SOLUTIONS OF THE NONLINEAR (2 + 1)-DIMENSIONAL SOLITON EQUATION BY USING SOME METHODS, 2022, 2548-0391, 10.30931/jetas.1108028
    16. A. Althobaiti, Su Liu, B. Atamuratova, S. Rezaei, On closed-form optical solutions to the nonlinear model with the Kerr law nonlinearity, 2023, 44, 22113797, 106200, 10.1016/j.rinp.2022.106200
    17. Kamsing Nonlaopon, B. Günay, Shahram Rezapour, Musaad S. Aldhabani, A.M. Alotaibi, S.K. Elagan, On novel application of piece-wise fractional operators for a predator–prey model, 2022, 39, 22113797, 105683, 10.1016/j.rinp.2022.105683
    18. Musaad S. Aldhabani, Kamsing Nonlaopon, S. Rezaei, Fatimah S.Bayones, S.K. Elagan, Sobhy A.A. El-Marouf, Abundant solitary wave solutions to a perturbed Schrödinger equation with Kerr law nonlinearity via a novel approach, 2022, 35, 22113797, 105385, 10.1016/j.rinp.2022.105385
    19. Kamsing Nonlaopon, Hamed Al Shamsi, Shahram Rezapour, B. Günay, Explicit soliton solutions to a modified coupled nonlinear Schrödinger’s equation, 2022, 41, 22113797, 105918, 10.1016/j.rinp.2022.105918
    20. Siyuan Liu, S. Rezaei, S.A. Najati, Mohamed S. Mohamed, Novel wave solutions to a generalized third-order nonlinear Schrödinger’s equation, 2022, 37, 22113797, 105457, 10.1016/j.rinp.2022.105457
    21. U. Younas, J. Ren, Diversity of wave structures to the conformable fractional dynamical model, 2022, 24680133, 10.1016/j.joes.2022.04.014
    22. Md. Abdul Kayum, Ripan Roy, M. Ali Akbar, M. S. Osman, Study of W-shaped, V-shaped, and other type of surfaces of the ZK-BBM and GZD-BBM equations, 2021, 53, 0306-8919, 10.1007/s11082-021-03031-6
    23. Kamsing Nonlaopon, Shahram Rezapour, Musaad S. Aldhabani, Samirah H. Alsulami, S.K. Elagan, On an efficient approach to solutions of a perturbed nonlinear Schrödinger’s equation, 2022, 39, 22113797, 105738, 10.1016/j.rinp.2022.105738
    24. Muhammad S. Iqbal, Aly R. Seadawy, Muhammad Z. Baber, Muhammad Qasim, Application of modified exponential rational function method to Jaulent–Miodek system leading to exact classical solutions, 2022, 164, 09600779, 112600, 10.1016/j.chaos.2022.112600
    25. K. Nonlaopon, B. Günay, Mohamed S. Mohamed, S.K. Elagan, S.A. Najati, Shahram Rezapour, On extracting new wave solutions to a modified nonlinear Schrödinger’s equation using two integration methods, 2022, 38, 22113797, 105589, 10.1016/j.rinp.2022.105589
    26. Usman Younas, T.A. Sulaiman, Jingli Ren, A. Yusuf, Investigation of optical solitons and other solutions in optic fibers modeled by the improved perturbed nonlinear Schrödinger equation, 2022, 24680133, 10.1016/j.joes.2022.06.038
    27. Behzad Ghanbari, Kottakkaran Sooppy Nisar, Determining new soliton solutions for a generalized nonlinear evolution equation using an effective analytical method, 2020, 59, 11100168, 3171, 10.1016/j.aej.2020.07.032
    28. Kamsing Nonlaopon, Mohammed Shaaf Alharthi, M.S. Alqurashi, B. Günay, On extracting novel optical solutions to a higher order nonlinear Schrödinger’s equation, 2022, 42, 22113797, 106026, 10.1016/j.rinp.2022.106026
    29. Muhammad Bilal, Jamshad Ahmad, Dispersive solitary wave solutions for the dynamical soliton model by three versatile analytical mathematical methods, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-02897-z
    30. Usman Younas, Muhammad Bilal, Tukur Abdulkadir Sulaiman, Jingli Ren, Abdullahi Yusuf, On the exact soliton solutions and different wave structures to the double dispersive equation, 2022, 54, 0306-8919, 10.1007/s11082-021-03445-2
    31. Ghazala Akram, Maasoomah Sadaf, Iqra Zainab, Observations of fractional effects of β-derivative and M-truncated derivative for space time fractional Phi-4 equation via two analytical techniques, 2022, 154, 09600779, 111645, 10.1016/j.chaos.2021.111645
    32. Fei Long, Shami A.M. Alsallami, S. Rezaei, Kamsing Nonlaopon, E.M. Khalil, New interaction solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equation, 2022, 37, 22113797, 105475, 10.1016/j.rinp.2022.105475
    33. Adnan Mahmud, Tanfer Tanriverdi, Kalsum Abdulrahman Muhamad, Haci Baskonus, Structure of the analytic solutions for the complex non-linear (2+1)-dimensional conformable time-fractional Schrödinger equation by, 2023, 27, 0354-9836, 211, 10.2298/TSCI23S1211M
    34. Behzad Ghanbari, 2024, 9780443315008, 75, 10.1016/B978-0-44-331500-8.00012-6
    35. A. Tripathy, S. Sahoo, Abundant explicit and exact solutions for the space–time fractional Vakhnenko–Parkes model in the relaxing medium with stability analysis, 2023, 37, 0217-9792, 10.1142/S0217979223502867
    36. 2024, 9780443315008, 263, 10.1016/B978-0-44-331500-8.00018-7
    37. Mustafa Inc, Muhammad S. Iqbal, Muhammad Z. Baber, Muhammad Qasim, Zafar Iqbal, Muhammad Akhtar Tarar, Ali Hasan Ali, Exploring the solitary wave solutions of Einstein's vacuum field equation in the context of ambitious experiments and space missions, 2023, 82, 11100168, 186, 10.1016/j.aej.2023.09.071
    38. Jamshad Ahmad, Kanza Noor, Sonia Akram, Stability analysis and solitonic behaviour of Schrödinger’s nonlinear (2+1) complex conformable time fractional model, 2024, 56, 1572-817X, 10.1007/s11082-024-06521-5
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4528) PDF downloads(689) Cited by(38)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog