Both differential evolution algorithm (DE) and Bare-bones algorithm (BB) are simple and efficient, but their performance in dealing with complex multimodal problems still has room for improvement. DE algorithm has great advantages in global search and BB algorithm has great advantages in local search. Therefore, how to combine these two algorithms' advantages remains open for further research. An adaptive differential evolution algorithm based on elite Gaussian mutation strategy and bare-bones operations (EGBDE) is proposed in this paper. Some elite individuals are selected and then the mean and the variance of the bare-bones operation are adjusted with the information from the selected elite individuals. This new mutation strategy enhances the global search ability and search accuracy of differential evolution with parameters free. It also helps algorithm get a better search direction and effectively balance the exploration and exploitation. An adaptive adjustment factor is adopted to dynamically balance between differential mutation strategy and the elite Gaussian mutation. Twenty test functions are chosen to verify the performance of EGBDE algorithm. The results show that EGBDE has excellent performance when comparing with other competitors.
Citation: Lingyu Wu, Zixu Li, Wanzhen Ge, Xinchao Zhao. An adaptive differential evolution algorithm with elite gaussian mutation and bare-bones strategy[J]. Mathematical Biosciences and Engineering, 2022, 19(8): 8537-8553. doi: 10.3934/mbe.2022396
Both differential evolution algorithm (DE) and Bare-bones algorithm (BB) are simple and efficient, but their performance in dealing with complex multimodal problems still has room for improvement. DE algorithm has great advantages in global search and BB algorithm has great advantages in local search. Therefore, how to combine these two algorithms' advantages remains open for further research. An adaptive differential evolution algorithm based on elite Gaussian mutation strategy and bare-bones operations (EGBDE) is proposed in this paper. Some elite individuals are selected and then the mean and the variance of the bare-bones operation are adjusted with the information from the selected elite individuals. This new mutation strategy enhances the global search ability and search accuracy of differential evolution with parameters free. It also helps algorithm get a better search direction and effectively balance the exploration and exploitation. An adaptive adjustment factor is adopted to dynamically balance between differential mutation strategy and the elite Gaussian mutation. Twenty test functions are chosen to verify the performance of EGBDE algorithm. The results show that EGBDE has excellent performance when comparing with other competitors.
[1] | A. E. Eiben, J. E. Smith, Introduction to evolutionary computing, Springer, (2003), 15-30. http://dx.doi.org/10.1007/978-3-662-05094-1 |
[2] | A. W. Mohamed, A. A. Hadi, A. K. Mohamed, Gaining-sharing knowledge-based algorithm for solving optimization problems: a novel nature-inspired algorithm, Int. J. Mach. Learn. Cybern., 11 (2020), 1501-1529. http://dx.doi.org/10.1007/s13042-019-01053-x doi: 10.1007/s13042-019-01053-x |
[3] | R. Storn, K. Price, Differential evolution a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11 (1997), 341-359. http://dx.doi.org/10.1023/a:1008202821328 doi: 10.1023/a:1008202821328 |
[4] | A. Qin, V. Huang, P. N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput., 13 (2008), 398-417. http://dx.doi.org/10.1109/TEVC.2008.927706 doi: 10.1109/TEVC.2008.927706 |
[5] | A. K. Bhandari, A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation, Neural Comput. Appl., 32 (2020), 4583-4613. http://dx.doi.org/10.1007/s00521-018-3771-z doi: 10.1007/s00521-018-3771-z |
[6] | W. Liu, Y. Gong, W. Chen, Z. Liu, H. Wang, J. Zhang, Coordinated charging scheduling of electric vehicles: a mixed-variable differential evolution approach, IEEE Trans. Intell. Transp. Syst., 21 (2019), 5094-5109. http://dx.doi.org/10.1109/TITS.2019.2948596 doi: 10.1109/TITS.2019.2948596 |
[7] | E. N. Dragoi, V. Dafinescu, Parameter control and hybridization techniques in differential evolution: a survey, Artif. Intell. Rev., 45 (2016), 447-470. http://dx.doi.org/10.1007/s10462-015-9452-8 doi: 10.1007/s10462-015-9452-8 |
[8] | Y. Kharchouf, R. Herbazi, A. Chahboun, Parameter's extraction of solar photovoltaic models using an improved differential evolution algorithm, Energy Conv. Manag., 251 (2022), 114972. http://dx.doi.org/10.1016/j.enconman.2021.114972 doi: 10.1016/j.enconman.2021.114972 |
[9] | D. Liu, Z. Hu, Q. Su, M. Liu, A niching differential evolution algorithm for the large-scale combined heat and power economic dispatch problem, Appl. Soft. Comput., 133 (2021), 108017. https://doi.org/10.1016/j.asoc.2021.108017 doi: 10.1016/j.asoc.2021.108017 |
[10] | S. Khalfi, A. Draa, G. Iacca, A compact compound sinusoidal differential evolution algorithm for solving optimization problems in memory-constrained environments, Expert Syst. Appl., 186 (2021), 115705. http://dx.doi.org/10.1016/j.eswa.2021.115705 doi: 10.1016/j.eswa.2021.115705 |
[11] | A. W. Mohamed, A. A. Hadi, A. K. Mohamed, Differential evolution mutations: taxonomy, comparison and convergence analysis, IEEE Access, 9 (2021), 68629-68662. https://doi.org/10.1109/ACCESS.2021.3077242 doi: 10.1109/ACCESS.2021.3077242 |
[12] | M. Yang, C. Li, Z. Cai, J. Guan, Differential evolution with auto-enhanced population diversity, IEEE Trans. Cybern., 45 (2014), 302-315. https://doi.org/10.1109/TCYB.2014.2339495 doi: 10.1109/TCYB.2014.2339495 |
[13] | S. Das, P. N. Suganthan, Differential evolution: A survey of the state-of-the-art, IEEE Trans. Evol. Comput., 15 (2010), 4-31. http://dx.doi.org/10.1109/TEVC.2010.2059031 doi: 10.1109/TEVC.2010.2059031 |
[14] | J. Zhang, A. C. Sanderson, JADE: Adaptive differential evolution with optional external archive, IEEE Trans. Evol. Comput., 13 (2009), 945-958. https://doi.org/10.1109/TEVC.2009.2014613 doi: 10.1109/TEVC.2009.2014613 |
[15] | A. Qin, V. Huang, P. N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput., 13 (2008), 398-417. http://dx.doi.org/10.1109/TEVC.2008.927706 doi: 10.1109/TEVC.2008.927706 |
[16] | S. Rahnamayan, H. R. Tizhoosh, M. M. A. Salama, Opposition-based differential evolution, IEEE Trans. Evol. Comput., 12 (2008), 64-79. http://dx.doi.org/10.1109/TEVC.2007.894200 doi: 10.1109/TEVC.2007.894200 |
[17] | M. A. Ahandani, H. Alavi-Rad, Opposition-based learning in the shuffled differential evolution algorithm, Soft Comput., 16 (2012), 1303-1337. http://dx.doi.org/10.1007/s00500-012-0813-9 doi: 10.1007/s00500-012-0813-9 |
[18] | H. Liu, J. Han, L. Yuan, B. Yu, Self-adaptive bare-bones differential evolution based on bi-mutation strategy, J. Commun., 38 (2017), 201-212. http://dx.doi.org/10.11959/j.issn.1000-436x.2017051 doi: 10.11959/j.issn.1000-436x.2017051 |
[19] | G. Xu, R. Li, J. Hao, X. Zhao, A new multi-stage perturbed differential evolution with multi-parameter adaption and directional difference, Nat. Comput., 19 (2020), 683-698. http://dx.doi.org/10.1007/s11047-018-9692-z doi: 10.1007/s11047-018-9692-z |
[20] | J. Kennedy, Bare bones particle swarms, in Proceedings of the 2003 IEEE Swarm Intelligence Symposium (SIS03), (2003), 80-87. http://dx.doi.org/10.1109/SIS.2003.1202251 |
[21] | Y. Wang, Z. Cai, Combining multi-objective optimization with differential evolution to solve constrained optimization problems, IEEE Trans. Evol. Comput., 16 (2012), 117-134. https://doi.org/10.1109/TEVC.2010.2093582 doi: 10.1109/TEVC.2010.2093582 |
[22] | J. Chen, Y. Gong, W. Chen, M. Li, J. Zhang, Elastic differential evolution for automatic data clustering, IEEE Trans. Cybern., 51 (2019), 4134-4147. https://doi.org/10.1109/TCYB.2019.2941707 doi: 10.1109/TCYB.2019.2941707 |
[23] | K. S. Tey, S. Mekhilef, M. Seyedmahmoudian, B. Horan, A. T. Oo, A. Stojcevski, Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation, IEEE Trans. Ind. Inform., 14 (2018), 4322-4333. https://doi.org/10.1109/TII.2018.2793210 doi: 10.1109/TII.2018.2793210 |
[24] | M. G. H. Omran, A. P. Engelbrecht, A. Salman, Bare bones differential evolution, Eur. J. Oper. Res., 196 (2009), 128-139. http://dx.doi.org/10.1016/j.ejor.2008.02.035 doi: 10.1016/j.ejor.2008.02.035 |
[25] | H. Wang, S. Rahnamayan, H. Sun, M. G. H. Omran, Gaussian bare-bones differential evolution, IEEE Trans. Cybern., 43 (2013), 634-647. https://doi.org/10.1109/TSMCB.2012.2213808 doi: 10.1109/TSMCB.2012.2213808 |
[26] | H. Peng, Z. Wu, X. Zhou, C. Deng, Bare-bones differential evolution algorithm based on trigonometry, J. Comput. Res. Dev., 52 (2015), 2776. http://dx.doi.org/10.7544/issn1000-1239.2015.20140230 doi: 10.7544/issn1000-1239.2015.20140230 |
[27] | S. Wang, H. Yang, Y. Li, S. Han, B. Yang, Multi-runways independent approach scheduling using self-adaptive differential evolution algorithm with elite archive, Adv. Eng. Sci., 49 (2017), 153-161. http://dx.doi.org/10.15961/j.jsuese.201600468 doi: 10.15961/j.jsuese.201600468 |
[28] | Y. Li, Z. Zhan, Y. Gong, W. Chen, J. Zhang, Y. Li, Differential evolution with an evolution path: A DEEP evolutionary algorithm, IEEE Trans. Cybern., 45 (2014), 1798-1810. http://dx.doi.org/10.1109/TCYB.2014.2360752 doi: 10.1109/TCYB.2014.2360752 |
[29] | L. Cui, G. Li, Z. Zhu, Q. Lin, K. Wong, J. Chen, et al, Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism, Inf. Sci., 422 (2018), 122-143. http://dx.doi.org/10.1016/j.ins.2017.09.002 doi: 10.1016/j.ins.2017.09.002 |
[30] | X. Zhao, S. Feng, J. Hao, X. Zuo, Y. Zhang, Neighborhood opposition-based differential evolution with Gaussian perturbation, Soft Comput., 25 (2021), 27-46. http://dx.doi.org/10.1007/s00500-020-05425-2 doi: 10.1007/s00500-020-05425-2 |
[31] | Y. He, X. Wang, K. Liu, Y. Wang, Convergent analysis and algorithmic improvement of differential evolution, J. Softw., 21 (2010), 875-885. http://dx.doi.org/10.3724/SP.J.1001.2010.03486 doi: 10.3724/SP.J.1001.2010.03486 |
[32] | R. Li, X. Zhao, X. Zuo, J. Yuan, X. Yao, Memetic algorithm with non-smooth penalty for capacitated arc routing problem, Knowl.-Based Syst., 220 (2021), 106957. http://dx.doi.org/10.1016/j.knosys.2021.106957 doi: 10.1016/j.knosys.2021.106957 |
[33] | Q. Fan, W. Wang, X. Yan, Differential evolution algorithm with strategy adaptation and knowledge-based control parameters, Artif. Intell. Rev., 51 (2019), 219-253. http://dx.doi.org/10.1007/s10462-017-9562-6 doi: 10.1007/s10462-017-9562-6 |
[34] | R. D. Al-Dabbagh, F. Neri, N. Idris, M. S. Baba, Algorithmic design issues in adaptive differential evolution schemes: review and taxonomy, Swarm Evol. Comput., 43 (2018), 284-311. http://dx.doi.org/10.1016/j.swevo.2018.03.008 doi: 10.1016/j.swevo.2018.03.008 |
[35] | Y. Zuo, F. Zhao, Z. Li, A knowledge-based differential covariance matrix adaptation cooperative algorithm, Expert Syst. Appl., 184 (2021), 115495. https://doi.org/10.1016/j.eswa.2021.115495 doi: 10.1016/j.eswa.2021.115495 |
[36] | J. Liang, B. Qu, P. N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization, in Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, 635 (2013), 490. Available from: http://www5.zzu.edu.cn/cilab/fblw/jsbg.htm. |
[37] | L. Ma, M. Huang, S. Yang, R. Wang, X. Wang, An adaptive localized decision variable analysis approach to large-scale multi-objective and many-objective optimization, IEEE Trans. Cybern., 2021. https://doi.org/10.1109/TCYB.2020.3041212 |