An adaptive harmony search algorithm utilizing differential evolution and opposition-based learning (AHS-DE-OBL) is proposed to overcome the drawbacks of the harmony search (HS) algorithm, such as its low fine-tuning ability, slow convergence speed, and easily falling into a local optimum. In AHS-DE-OBL, three main innovative strategies are adopted. First, inspired by the differential evolution algorithm, the differential harmonies in the population are used to randomly perturb individuals to improve the fine-tuning ability. Then, the search domain is adaptively adjusted to accelerate the algorithm convergence. Finally, an opposition-based learning strategy is introduced to prevent the algorithm from falling into a local optimum. The experimental results show that the proposed algorithm has a better global search ability and faster convergence speed than other selected improved harmony search algorithms and selected metaheuristic approaches.
Citation: Di-Wen Kang, Li-Ping Mo, Fang-Ling Wang, Yun Ou. Adaptive harmony search algorithm utilizing differential evolution and opposition-based learning[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4226-4246. doi: 10.3934/mbe.2021212
An adaptive harmony search algorithm utilizing differential evolution and opposition-based learning (AHS-DE-OBL) is proposed to overcome the drawbacks of the harmony search (HS) algorithm, such as its low fine-tuning ability, slow convergence speed, and easily falling into a local optimum. In AHS-DE-OBL, three main innovative strategies are adopted. First, inspired by the differential evolution algorithm, the differential harmonies in the population are used to randomly perturb individuals to improve the fine-tuning ability. Then, the search domain is adaptively adjusted to accelerate the algorithm convergence. Finally, an opposition-based learning strategy is introduced to prevent the algorithm from falling into a local optimum. The experimental results show that the proposed algorithm has a better global search ability and faster convergence speed than other selected improved harmony search algorithms and selected metaheuristic approaches.
[1] | D. E. Goldberg, Genetic Algorithm in Search Optimization and Machine Learning, Addison-Wesley Professional, 1989. |
[2] | G. C. Chen, J. S. Yu, Particle swarm optimization algorithm, Inf. Control, 186 (2005), 454–458. |
[3] | Z. W. Geem, J. H. Kim, G. V. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation, 76 (2001), 60–68. doi: 10.1177/003754970107600201 |
[4] | O. M. Alia, R. Mandava, The variants of the harmony search algorithm: an overview, Artif. Intell. Rev., 36 (2011), 49-68. doi: 10.1007/s10462-010-9201-y |
[5] | T. Zhang, Z. W. Geem, Review of harmony search with respect to algorithm structur, Swarm Evol. Comput., 48 (2019), 31–43. doi: 10.1016/j.swevo.2019.03.012 |
[6] | M. Shaqfa, Z. Orbán, Modified parameter-setting-free harmony search (PSFHS) algorithm for optimizing the design of reinforced concrete beams, Struct. Multidiplinary Optim., 60 (2019), 999–1019. doi: 10.1007/s00158-019-02252-4 |
[7] | Y. Song, Q. Pan, L. Gao, B. Zhang, Improved non-maximum suppression for object detection using harmony search algorithm, Appl. Soft Comput., 81 (2019), 105478. doi: 10.1016/j.asoc.2019.05.005 |
[8] | A. A. Vasebi, B. M. Fesanghary, A. S. M. T. Bathaee, Combined heat and power economic dispatch by harmony search algorithm, Int. J. Electr. Power Energy Syst., 29 (2007), 713–719. doi: 10.1016/j.ijepes.2007.06.006 |
[9] | Z. W. Geem, K. S. Lee, Y. Park, Application of harmony search to vehicle routing, Am. J. Appl. Sci., 2 (2005), 1552–1557. doi: 10.3844/ajassp.2005.1552.1557 |
[10] | C. A. Christodoulou, V. Vita, G. C. Seritan, L. Ekonomou, A harmony search method for the estimation of the optimum number of wind turbines in a wind farm, Energies, 13 (2020), 2777. doi: 10.3390/en13112777 |
[11] | M. Z. Mistarihi, R. A. Okour, G. M. Magableh, H. B. Salameh, Integrating advanced harmony search with fuzzy logic for solving buffer allocation problems, Arabian J. Sci. Eng., 45 (2020), 3233–3244. doi: 10.1007/s13369-020-04348-2 |
[12] | H. C. Li, K. Q. Zhou, L. P. Mo, A. M. Zain, F. Qin, Weighted fuzzy production rule extraction using modified harmony search algorithm and BP neural network framework, IEEE Access, 8 (2020), 186620–186637. doi: 10.1109/ACCESS.2020.3029966 |
[13] | A. Soumen, S. P. Ranjan, M. Anirban, Solving tool indexing problem using harmony search algorithm with harmony refinement, Soft Comput., 23 (2019), 7407–7423. doi: 10.1007/s00500-018-3385-5 |
[14] | J. H. Yoon, Z. W. Geem, Empirical convergence theory of harmony search algorithm for box-constrained discrete optimization of convex function, Mathematics, 9 (2021), 545. doi: 10.3390/math9050545 |
[15] | M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput., 188 (2007), 1567–1579. |
[16] | C. M. Wang, Y. F. Huang, Self-adaptive harmony search algorithm for optimization, Expert Syst. Appl., 37 (2010), 2826–2837. doi: 10.1016/j.eswa.2009.09.008 |
[17] | M. Khalili, R. Kharrat, K. Salahshoor, M. H. Sefat, Global dynamic harmony search algorithm: GDHS, Appl. Math. Comput., 228 (2014), 195–219. |
[18] | Q. Zhu, X. Tang, Y. Li, M. O. Yeboah, An improved differential-based harmony search algorithm with linear dynamic domain, Knowl.-Based Syst., 187 (2020), 104809. doi: 10.1016/j.knosys.2019.06.017 |
[19] | M. A. Al-Betar, A. T. A. Khader, F. Nadi, Selection mechanisms in memory consideration for examination timetabling with harmony search, in Proceedings of the 12th annual conference on Genetic and evolutionary computation, (2010), 1203–1210. |
[20] | P. Chakraborty, G. G. Roy, S. Das, An improved harmony search algorithm with differential mutation operator, Fundam. Informaticae, 95 (2004), 401–426. |
[21] | N. Taherinejad, Highly reliable harmony search algorithm, in 2009 European Conference on Circuit Theory and Design, IEEE, (2009), 818–822. |
[22] | R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11 (1997) 341–359. |
[23] | H. R. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, in International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06), 1 (2005), 695–701. |
[24] | S. Das, A. Mukhopadhyay, A. Roy, A. Abraham, B. K. Panigrahi, Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization, IEEE Trans. Syst. Man Cybern. Part B (Cybern.), 41 (2010), 89–106. |
[25] | X. Ma, Q. Zhang, G. Tian, J. Yang, Z. Zhu, On Tchebycheff decomposition approaches for multiobjective evolutionary optimization, IEEE Trans. Evol. Comput., 22 (2017), 226–244. |
[26] | S. Mirjalili, SCA: A sine cosine algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120–133. doi: 10.1016/j.knosys.2015.12.022 |
[27] | X. M. Tao, F. R. Li, Z. J. Tong, Multi-Scale cooperative mutation particle swarm optimization algorithm, J. Software, 23 (2012), 1805–1815. doi: 10.3724/SP.J.1001.2012.04128 |