
http://www.aimspress.com/journal/MBE

MBE, 18(4): 4226–4246.
DOI: 10.3934/mbe.2021212
Received: 06 April 2021
Accepted: 12 May 2021
Published: 17 May 2021

Research article

Adaptive harmony search algorithm utilizing differential evolution and
opposition-based learning

Di-Wen Kang, Li-Ping Mo∗, Fang-Ling Wang and Yun Ou

College of Information Science and Engineering, Jishou Unversity, Jishou 416000, China

* Correspondence: Email: zmx89@jsu.edu.cn.

Abstract: An adaptive harmony search algorithm utilizing differential evolution and opposition-
based learning (AHS-DE-OBL) is proposed to overcome the drawbacks of the harmony search (HS)
algorithm, such as its low fine-tuning ability, slow convergence speed, and easily falling into a local
optimum. In AHS-DE-OBL, three main innovative strategies are adopted. First, inspired by the
differential evolution algorithm, the differential harmonies in the population are used to randomly
perturb individuals to improve the fine-tuning ability. Then, the search domain is adaptively adjusted
to accelerate the algorithm convergence. Finally, an opposition-based learning strategy is introduced
to prevent the algorithm from falling into a local optimum. The experimental results show that the
proposed algorithm has a better global search ability and faster convergence speed than other selected
improved harmony search algorithms and selected metaheuristic approaches.

Keywords: harmony search algorithm; differential evolution; opposition-based learning; adaptive
adjustment strategy; optimization

1. Introduction

Metaheuristic algorithms (the genetic algorithm (GA) [1], the particle swarm optimization (PSO)
algorithm [2], the harmony search (HS) algorithm [3], etc.) are widely used to solve many
optimization problems due to the mechanisms providing high-quality solutions, reasonable processing
times, and other advantages. Among the series of classic metaheuristic algorithms, the HS algorithm
has several advantages. For example, all individuals have a chance to influence the generation of new
individuals, and the value of each dimension of the new individual is generated independently [4, 5].
Therefore, the HS algorithm is used in various field optimization problems, such as structural
design [6], object detection [7], economic dispatch [8], vehicle routing [9], the estimation of the
optimum number of wind turbines [10], buffer allocation problems [11], weighted Fuzzy production
rule extraction [12], and tool indexing [13]. Although research on the HS algorithm has gained

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2021212

4227

fruitful and meaningful achievements, the development of the algorithm is still in the initial era
because of the algorithm’s shortcomings, such as its slow convergence and easy falling into a local
optimum [4, 5, 14]. Currently, many improved HS algorithms have been suggested to obtain better
performance, and they have focused on two aspects: 1) Automatically adjusting related parameters
using dynamic mechanisms. E.g., [15] presents an improved harmony search (IHS) algorithm that
includes dynamic adaptation for the pitch adjustment rate (PAR) and bandwidth (bw). [16] replaces
the pitch adjustment step with a new strategy based on the optimal value in the harmony memory
(HM). [17] presents a global dynamic harmony search algorithm (GDHS). In the GDHS, all
parameters and the search domain can be adjusted adaptively. 2) Hybridization with other
metaheuristic algorithms results in unique highlights. E.g., [18] presents an improved
differential-based harmony search algorithm with linear dynamic domain (ID-HS-LDD), which has
two characteristics. On one hand, the fine-tuning parameter is generated by utilizing differential
evolution. On the other hand, an adaptively adjusted mechanism is used to control the search
domain. [19] uses a new harmony selection mechanism inspired by a global best concept of PSO and
the roulette wheel memory consideration. [20] presents an improved HS algorithm hybridized with
differential evolution. [21] modifies the HS algorithm using the cooling strategy of the simulated
annealing (SA) algorithm. The abovementioned HS variants all achieve better performance than the
HS algorithm. However, some variants accelerate the convergence speed but easily fall into local
optima, leading to premature convergence. Some variants do not consider the harmonies in HM when
fine-tuning, leading to low precision. Some variants even adopt the forced convergence strategy, but
this strategy is only effective for objective functions that can obtain the optimal solution at position
zero. It makes sense to find a new variant of the HS algorithm to overcome the above shortcomings.

Inspired by the above references, an adaptive HS algorithm utilizing differential evolution and
opposition-based learning (AHS-DE-OBL) is employed in this manuscript to solve the HS
algorithm’s existing shortcomings by hybridizing differential evolution (DE), opposition-based
learning (OBL), and the adaptive adjustment of algorithm parameters. The DE algorithm is an
optimization algorithm utilizing the theory of swarm intelligence to generate optimal values through
cooperation and competition among the individuals in a group [22]. The mutation operation in DE
considers the influence of the original individual on the new individual. In order to make the
fine-tuning parameter change with the distribution of the harmonies in HM, AHS-DE-OBL generates
a fine-tuning parameter utilizing DE in each iteration’s improvisation stage. The OBL strategy can
regularly generate new individuals and speed up convergence by comparing individuals’ adaptability
with their opposite individuals and retaining the fittest [23]. In order to increase the richness of HM
and avoid easily becoming stuck in the local optimum, AHS-DE-OBL generates extra harmonies
utilizing OBL. After updating, AHS-DE-OBL dynamically adjusts the search domain according to the
distribution of harmony in HM. In the experiment, ten classic benchmark functions are used to
compare AHS-DE-OBL with other HS variants. The experimental results show that the
AHS-DE-OBL algorithm has better performance than the selected HS variants and the selected other
metaheuristic algorithms.

The outline of the remainder of this article is summarized as follows. In Section 2, a simple
introduction to the HS algorithm is given. In Section 3, the influences of the parameters on the HS
algorithm are analyzed. In Section 4, the new algorithm, named AHS-DE-OBL, is described in detail.
Section 5 shows the experiment and discussions. Finally, Section 6 presents a summary.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4228

2. Brief introduction of the HS algorithm

Assume f (x) is the objective function, and the HS algorithm is used to search the minimum value
in the interval [L, U], where L and U represent the lower and upper bounds of the search domain,
respectively. The steps of the HS algorithm are as follows:

Step 1: Initialize the parameters. The parameters include the Harmony Memory Size (HMS),
Harmony Memory Consideration Rate (HMCR), Pitch Adjustment Rate (PAR), and bandwidth (bw).
The meaning of each parameter is shown in Table 1.

Table 1. Parameters and corresponding meanings.

Parameters Meaning
HMS Harmony memory size.
HMCR Probability of randomly selecting a harmony from the HM.
PAR Probability of fine-tuning randomly selecting a harmony.
bw Fine-tuning range.

Step 2: Initialize the HM. As shown in Eq (1), randomly generate HMS harmonies and store the
harmonies in the HM. In addition, a column is added to the HM to store the objective function value.

xi, j = L + (U − L) × rand (1)

where xi, j is the jth dimension value of the ith harmony, and rand is a random number between zero
and one.

Step 3: Improvisation. Generate a new harmony so that the HM can dynamically change. The
specific process is shown below.

Improvisation: Generate a new harmony
for j← 1 to D do

if rand < HMCR then
xnew, j = xi, j i ∈ [1, . . . ,HMS]
if rand < PAR then

if rand < 0.5 then
xnew, j = xnew, j + rand × bw

else
xnew, j = xnew, j − rand × bw

end
end

else
xnew, j = L + (U − L) × rand

end
end

where D is the dimension of the harmony.
Step 4: Update the HM. If the objective function of the new harmony is better than the worst

harmony in the HM, the worst harmony will be replaced by the new harmony.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4229

Step 5: Check the termination conditions. If not satisfied, repeat Steps 3 to 5; otherwise, the
algorithm ends.

3. Parameter analysis

The elements in a harmony are affected by some random numbers; hence, the variance of the
harmony vector in the HM is a random variable, and the expected variance will be a measure of the
algorithm’s exploration ability. The larger the expected variance is, the stronger the global search
ability; conversely, the smaller the expected variance is, and the stronger the local search ability [18].
After the HM is updated, the new harmony generated during the improvisation stage may change the
variance of the harmony in the HM. To avoid falling into the local optimum and to ensure that the
searched area is as wide as possible, the parameters must be able to adjust the overall variance to
achieve a proper balance between the global search and local search. In the HS algorithm, because the
disturbance of each decision variable in the harmony is independent, the analysis of one-dimensional
vectors does not lose generality and can be extended to multiple dimensions. Literature [24] analyzes
the influence of the parameters in the HS algorithm on the exploration ability of the algorithm when L
and U are symmetric about zero. To improve the universality of the conclusion in [24], the following
theorem can be obtained.

Theorem 1: Assume that the harmony variables in the initial HM are X = {x1, x2, . . . , xHMS }. After
several improvisation stages, the harmony variables in the HM are Y = {y1 , y2, . . . , yHMS }, and the
expected variance of Y can be described as Eq (2):

E(Var(Y)) =
HMS − 1

HMS
× [HMCR × Var(x) + HMCR × (1 − HMCR) × x̄2

1
3
× HMCR × PAR × bw2 + (1 − HMCR) × (

(U − L)2

12

+ HMCR ×
(U + L) × (U + L − 1)

4
)]

(2)

where Var(x) is the variance of the original harmony variable set, and x̄2 is the square of the mean of
the original harmony variable set.

Proof: According to the literature [24], we have

E(xr) = x̄ (3)

E(x2
r) = x̄2 (4)

E(Yl) =HMCR × (1 − PAR) × E(xr) + 0.5 × HMCR × PAR×

E(xr + bw × R) + 0.5 × HMCR × PAR × E(xr − bw × R)
(1 − HMCR) × E(xnew)

(5)

E(Y2
l) =HMCR × (1 − PAR) × E(x2

r) + 0.5 × HMCR × PAR×

E((xr + bw × R)2) + 0.5 × HMCR × PAR × E((xr − bw × R)2)
(1 − HMCR) × E((xnew)2)

(6)

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4230

E(Ȳ2) =
1

HMS
×

HMS∑
l=1

E(Y2
l) (7)

E(Ȳ2) =
1

HMS
× E(Ȳ2) +

HMS − 1
HMS

× E(Yl)2 (8)

E(Var(Y)) = E(Ȳ2) − E(Ȳ2) (9)

According to the step of randomly generating the harmony vector, we have

xnew = L + (U − L) × R (10)

x2
new = L2 + 2 × L × (U − L) × R + ((U − L) × R)2 (11)

where R represents a uniformly distributed stochastic number between 0 and 1. R is uniformly
distributed in the interval [0, 1]. Then,

ϕ(R) =

1, R ∈ [0, 1]
0, others

(12)

According to the continuous stochastic variable expectation calculation formula,

E(R) =

∫ 1

0
R × ϕ(R)dR =

1
2

(13)

E(R2) =

∫ 1

0
R2 × ϕ(R)dR =

1
3

(14)

Therefore,

E(xnew) = L + (U − L) × E(R) =
U + L

2
(15)

E(x2
new) = L2 + 2 × L × (U − L) × E(R) + (U − L)2 × E(R2)

=
U2 + U × L + L2

3

(16)

Then, from Eqs (5) and (6), we get Eqs (17) and (18) as

E(Yl) = HMCR × x̄ + (1 − HMCR) ×
U + L

2
(17)

E(Y2
l) =HMCR × x̄2 + (1 − HMCR) ×

U2 + U × L + L2

3

+ HMCR × PAR ×
bw3

3

(18)

From Eqs (7) and (8), we get

E(Ȳ2) =HMCR × x̄2 + (1 − HMCR) ×
U2 + U × L + L2

3

+ HMCR × PAR ×
bw3

3

(19)

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4231

E(Ȳ2) =
1

HMS
× E(Ȳ2) +

HMS − 1
HMS

× [HMCR × x̄

+ (1 − HMCR) ×
U + L

2
]2

(20)

Therefore, Eq (9) can be further described as Eq (21)

E(Var(Y)) =
HMS − 1

HMS
× [HMCR × Var(x) + HMCR × (1 − HMCR) × x̄2

1
3
× HMCR × PAR × bw2 + (1 − HMCR) × (

(U − L)2

12

+ HMCR ×
(U + L) × (U + L − 1)

4
)]

(21)

and the theorem is proved.
From Theorem 1, HMS has a limited impact on E(Var(Y)). For example, assuming HMS = 10,

then (HMS − 1)/HMS = 0.9; and assuming HMS = 100, then (HMS − 1)/HMS = 0.99. Therefore,
choosing a smaller suitable HMS helps to reduce the calculation but can obtain similar results with
larger ones. The larger the HMCR is, the greater the influence of Var(x) and bw2 on E(Var(Y));
therefore, the process is most likely to select a harmony in the HM as the basis of new harmony that is
generated. The smaller the HMCR is, the greater the influence of (U − L)2on E(Var(Y)), and the new
harmony is most likely to be generated randomly. The larger PAR is, the greater the influence of bw2

on E(Var(Y)) and the greater the disturbance of the harmony vector. The influences of the parameters
on the algorithm are shown in Table 2.

Table 2. The influence of the parameters on the algorithm.

Parameters Influence
HMS HMS has a limited impact on E(Var(Y)).

HMCR
A larger HMCR is beneficial to the local search,
and a smaller HMCR is beneficial to increasing
the diversity of the HM.

PAR
A larger PAR is beneficial to improving the precision,
and a smaller PAR makes the algorithm stable.

bw
A larger bw makes the fine-tuning ability lower,
and a wider area can be searched; A smaller bw helps to
precisely fine-tune the algorithm.

U, L
A wider search range can increase the diversity of the HM,
and a smaller search range can improve local search capabilities.

4. Adaptive harmony search utilizing differential evolution and opposition-based learning

Based on the above analysis, this paper improves the HS algorithm from the following three
aspects: 1) adaptively adjusts the HMCR, PAR and search domain with the iterations of the algorithm;
2) let the generated bw be related to the harmonies in the HM, which makes the new harmony

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4232

approach the best harmony in the HM; and 3) to ensure that the algorithm does not fall into the local
optimum when the search domain is reduced, the outside domain can also be searched. The
corresponding improvement strategies are as follows: (i) dynamic parameter adjustment strategy,
including the HMCR, PAR and search domain; (ii) bw generation strategy based on differential
evolution; and (iii) new harmony generation strategy based on opposition-based learning. The three
strategies are analyzed as follows. The main modifications are shown in Table 3.

Table 3. The main modifications of AHS-DE-OBL.

Strategy Measures

Dynamic parameter
adjustment strategy

As shown in Algorithm 2, the HMCR and PAR are dynamically
adjusted with the iteration; And, add four matrices xmaxbound,
xminbound, xUnew and xLnew , that represent the maximum and
minimum values in the current HM and the upper and lower
boundary of the new search domain, respectively. When
the algorithm is iterated, the four equations to calculate each
dimension are Eqs (24–27), respectively.

bw generation strategy bw is replaced by the distance between 3 harmonies in the HM.
New harmony
generation strategy

After improvisation, switch the best and worst harmony
in the HM.

4.1. Analysis of the dynamic parameter adjustment strategy

In the early stage, the search domain should be as wide as possible to avoid becoming stuck in the
local optimum, the HMCR needs to set to a small value, and the PAR needs to be as large as possible.
However, in the later iteration process, the probability of fine-tuning should be increased to improve
the search precision, and the HMCR should be as large as possible. Considering the stability, the
PAR should be appropriately reduced to gradually make the harmonies in the HM approach the best
harmony and increase the probability of fine-tuning the best harmony. The adjustment algorithm is as
follows.

Algorithm: Dynamic parameter adjustment algorithm
if gn < NI/4 then

HMCR = 0.3 + 0.6 × gn
NI

PAR = 0.99
else

HMCR = 0.9
PAR = 0.99 − 0.09 × gn

NI
end

where gn is the current iteration number, and NI is the maximum number of iterations.
With the iterations, gradually narrowing the search boundary can make the algorithm focus on the

optimal search domain. [18] proposes a linear dynamic domain mode that calculates the new boundary
by utilizing the maximum and minimum values of the harmony to gradually change the boundary. For
each dimension, the new boundary is calculated by the following equations.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4233

The initial equations are:
xUnew, j = U (22)

xLnew, j = L (23)

The equations during iteration are:

xmaxbound, j = max(HM(:, j)) (24)

xminbound, j = min(HM(:, j)) (25)

xUnew, j = (1 −
gn
NI

) × xUnew, j +
gn
NI
× xmaxbound, j (26)

xLnew, j = (1 −
gn
NI

) × xLnew, j +
gn
NI
× xminbound, j (27)

where xmaxbound, j and xminbound, j are the maximum and minimum values of the jth dimension in the HM,
respectively, and xUnew, j and xLnew, j are the upper and lower boundary values of the new search domain
of the jth dimension, respectively.

4.2. Analysis of the bw generation strategy based on differential evolution

Differential evolution is an efficient population-based heuristic algorithm used to find the global
optimal value through cooperation and competition between individuals in the population [22].
According to this idea, the adaptive ability of bw can be described by Eq (28) as follows.

bw = xbest, j − xi, j + xbest, j − xworst, j (28)

where xbest, j is the value of the jth dimension of the best harmony in the current HM, xi, j is the value of
the jth dimension of a random harmony in the current HM, and xworst, j is the value of the jth dimension
of the worst harmony in the current HM. Assuming each harmony is 2-dimensional, the geometric
meaning of Eq (28) is shown in Figure 1.

Figure 1. The geometric meaning of the bw generation strategy.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4234

where x0 and x1 respectively represent the 1st dimension and the 2nd dimension, xbest is the best
harmony in the HM, xrand1 and xrand2 are randomly selected harmonies from the HM, xnew = xrand2 ±

bw × rand, and rand ∈ (0, 1). xnew has a 50 percent probability of xrand2 + bw × rand and a 50 percent
probability of xrand2 − bw × rand. In the case of Figure 1, xnew has a certain probability of approaching
xbest or moving away from xbest. This strategy ensures that xnew does not blindly approach xbest and is
helpful to increasing the diversity of the population.

4.3. Analysis of new harmony generation strategy based on opposition-based learning

Although the above strategies can improve the local search ability of the algorithm, they may fall
into the local optimum and cannot jump out. And the random generation of a solution from the current
population often leads to revisiting the hopeless areas in the search space [25]. During the search
process, generating a random solution and its opposition solution can search areas outside the new
search domain and improve the efficiency of the algorithm [23]. In the improvisation stage, two extra
opposition solutions are generated by Eqs (29) and (30).

x
′

new, j = L + (U − xworst, j) (29)

x
′′

new, j = L + (U − xbest, j) (30)

where x
′

new, j and x
′′

new, j express the jth dimension of the opposition solutions.
Assuming that the harmony has a dimension of two, according to xbest, j, the opposition solution is

generated, as shown in Figure 2. When the new search area is the shaded part of Figure 2, the algorithm
can still search for areas outside the new search domain.

Figure 2. The geometric meaning of the new harmony generation strategy.

4.4. Description of the AHS-DE-OBL algorithm

In the early stage, the search domain should be as wide as possible The AHS-DE-OBL algorithm
can be described by the following steps.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4235

Step 1: Initialize the parameters. The pseudocode is as follows.

Initialization: Initialize the parameters
for j← 1 to D do

xmaxbound, j = U
xminbound, j = L
xUnew, j = U
xLnew, j = L

end

Step 2: Initialize the HM. Randomly generate HMS harmonies and store them in the HM.
Step 3: Improvisation. Generate three harmonies randomly. The pseudocode is as follows. In the

code, xUnew, j and xLnew, j are the upper and lower bounds of the jth dimension, respectively. HMCR and
PAR are dynamically adjusted with the number of iterations; and bw is generated by the best, the worst,
and a random harmony.

Algorithm: Generate three harmonies
if gn < NI/4 then

HMCR = 0.3 + 0.6 × gn
NI

PAR = 0.99
else

HMCR = 0.9
PAR = 0.99 − 0.09 × gn

NI
end
for j← 1 to D do

if rand < HMCR then
xnew, j = xi, j i ∈ [1, . . . ,HMS]
if rand < PAR then

bw = xbest, j − xrand, j + xbest, j − xworst, j

if rand < 0.5 then
xnew, j = xnew, j + rand × bw

else
xnew, j = xnew, j − rand × bw

end
end

else
xnew, j = xLnew, j + (xUnew, j − xLnew, j) × rand

end
end
for j← 1 to D do

x
′

new, j = L + (U − xworst, j)
x
′′

new, j = L + (U − xbest, j)
end

Step 4: Update the HM. If the objective function value of the new harmony is better than that of the
worst harmony, the worst harmony is replaced by the new harmony.

Step 5: Dynamically adjust the parameters. Update the parameters based on the current iteration

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4236

number and harmony in the HM. The pseudocode is as follows.

Algorithm: Dynamic adjustment of the parameters
for j← 1 to D do

xmaxbound, j = max(HM(:, j))
xminbound, j = min(HM(:, j))
xUnew, j = (1 − gn

NI) × xUnew, j +
gn
NI × xmaxbound, j

xLnew, j = (1 − gn
NI) × xLnew, j +

gn
NI × xminbound, j

end

Step 6: Check the termination conditions. If the condition is not satisfied, repeat Step 3 to Step 6;
otherwise, the algorithm ends.

4.5. Time complexity analysis

According to the steps of the algorithms, the time complexity of the HS algorithm and the AHS-
DE-OBL algorithm is discussed below, where only one iteration is considered. In the HS algorithm,
the initialization assignment of HMS harmonies in the N-dimensional search space requires N×HMS
operations, and N operations are needed to calculate the fitness function of an individual. Thus, this
stage’s time complexity is O(N×HMS). The improvisation stage’s time complexity is O(N). The other
stages’ time complexity is O(1). In the AHS-DE-OBL, Step 5’s time complexity is O(N × HMS), the
other stages are the same as the HS algorithm. Therefore, in T iterations, the time complexity of the HS
algorithm is O(T × HMS × N), and the AHS-DE-OBL is also. Theoretically, the improved algorithm
does not increase the time complexity compared with the original algorithm.

Table 4. Ten benchmark functions used in the experiment.

Function Formula D Interval GOV
Sphere F1 =

∑D
i=1 x2

i 10,30 [-100, 100] 0
Schwefel 2.21 F2 = max{|xi|, 1 ≤ i ≤ D} 10,30 [-100, 100] 0
Step F3 =

∑D
i=1(xi + 0.5)2 10, 30 [-100, 100] 0

Rastrigin F4 =
∑D

i=1(x2
i − 10 × cos(2πxi) + 10) 10,30 [-5.12, 5.12] 0

Ackley
F5 = −20 × exp(−0.2 ×

√
1
D

∑D
i=1(x2

i))−

exp(−0.2 ×
√

1
D

∑D
i=1 cos(2πxi)) + 20 + e

10,30 [-32, 32] 0

Ackley shift
F6 = −20 × exp(−0.2 ×

√
1
D

∑D
i=1((xi − 1)2))−

exp(−0.2 ×
√

1
D

∑D
i=1 cos(2π(xi − 1)) + 20 + e

10, 30 [-31, 33] 0

Griewank F7 = 1
4000

∑D
i=1(x2

i) −
∏D

i=1 cos(xi√
i
) + 1 10,30 [-600, 600] 0

Matyas F8 = 0.26(x2
1 + x2

2) − 0.48x1x2 2 [-10, 10] 0
Three Hump Camel F9 = 2x2

1 − 1.05x4
1 +

x6
1

6 + x1x2 + x2
2

2 [-5, 5] 0

Drop Wave F10 = −
1+cos(12

√
x2

1+x2
2)

0.5(x2
1+x2

2)+2
2 [-5.12, 5.12] -1

Note: GOV is the global optimal value.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4237

5. Experiments

5.1. Test functions used in the experiment

The experiment is conducted using a computer with an Intel R© Core TM i5 – 3470 CPU @ 3.20 GHz,
4 GB memory, the Windows 10 operating system, and the Python 3.7 programming environment. The
ten benchmark functions used in the experiment are listed in Table 4.

5.2. Experiment results and discussions

To verify the performance of AHS-DE-OBL, it was compared with IHS, GDHS, ID-HS-LDD using
ten benchmark functions. Each algorithm was run 30 times independently with 7000 iterations per run.
By referring to the relevant literature [15, 17, 18] of the selected algorithms, the parameter settings are
shown in Table 5.

Table 5. Parameter setting for each HS variant.

Algorithm Parameters

IHS
HMS = 5,HMCR = 0.95, PARmin = 0.01, PARmax = 0.99
bwmin = 0.001,and bwmax = (U − L)/20

GDHS HMS = 5

ID-HS-LDD
HMS = 30,HMCRmax = 0.99,HMCRmin = 0.3,
PARmin = 0.9, PARmax = 0.1

AHS-DE-OBL HMS = 5

Figures 3–10 show the optimization curves of the ten test functions.

(a) 10-dimension situation (b) 30-dimension situation

Figure 3. Performance comparison on F1.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4238

(a) 10-dimension situation (b) 30-dimension situation

Figure 4. Performance comparison on F2.

(a) 10-dimension situation (b) 30-dimension situation

Figure 5. Performance comparison on F3.

(a) 10-dimension situation (b) 30-dimension situation

Figure 6. Performance comparison on F4.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4239

(a) 10-dimension situation (b) 30-dimension situation

Figure 7. Performance comparison on F5.

(a) 10-dimension situation (b) 30-dimension situation

Figure 8. Performance comparison on F6.

(a) 10-dimension situation (b) 30-dimension situation

Figure 9. Performance comparison on F7.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4240

(a) F8 (b) F9 (c) F10

Figure 10. Performance comparison on F8, F9, and F10.

Table 6 shows the results of the four HS variants running 30 times for 10 functions. The values in
bold font in Table 6 show the optimal values among all algorithms.

Table 6. Experimental results.

IHS GDHS ID-HS-LDD Ours
D Mean±std Mean±std Mean±std Mean±std

F1
10
30

1.06E-02±5.47E-02
8.52E+01±3.32E+01

4.47E-28±1.84E-27
5.95E-12±8.22E-12

2.04E-124±4.37E-124
8.24E-85±1.56E-84

0.00±0.00
6.51E-255±0.00

F2
10
30

3.55±1.32
1.77E+01±2.72

6.35E-04±2.98E-03
1.28±7.11E-01

7.75E-57±2.64E-57
6.60E-40±9.78E-40

6.86E-161±3.69E-160
7.77E-83±4.03E-82

F3
10
30

1.62E-06±3.99E-07
8.91E+01±4.25E+01

2.93E-18±1.57E-17
5.14E-12±6.12E-12

3.64E-17±9.10E-16
2.45±6.04E-01

1.64E-33±1.90E-33
1.94E-14±1.01E-13

F4
10
30

3.17E-01±4.92E-01
8.78±2.74

3.48E-02±1.85E-01
6.77±2.77

0.00±0.00
0.00±0.00

0.00±0.00
0.00±0.00

F5
10
30

1.30±8.14E-01
3.09±4.16E-01

1.50E-10±8.09E-10
1.76E-08±2.79E-08

0.00±0.00
0.00±0.00

3.52E-15±1.21E-15
4.23E-15±8.86E-16

F6
10
30

1.13±6.60E-01
3.18±4.23E-01

3.61E-10±1.94E-09
2.14E-08±2.07E-08

2.53E-09±3.04E-09
3.03±4.20E-01

2.93E-15±1.63E-15
4.24E-15±1.21E-15

F7
10
30

4.08E-01±2.07E-01
1.80±2.39E-01

4.10E-02±2.35E-02
4.51E-03±6.79E-03

0.00±0.00
0.00±0.00

0.00±0.00
0.00±0.00

F8 2 3.85E-03±1.02E-02 3.32E-02±7.22E-02 4.36E-204±0.00 0.00±0.00
F9 2 8.96E-02±1.37E-01 1.04E-01±3.27E-01 1.88E-261±0.00 0.00±0.00
F10 2 -9.27E-01±6.01E-02 -9.19E-01±7.10E-02 -1.00±0.00 -1.00±0.00

As seen from Figures 3–10 and Table 6, AHS-DE-OBL has better global search abilities and a faster
convergence speed than the other three HS variants.

In AHS-DE-OBL, three strategies are adopted. The strategy of opposition-based learning can
improve the search efficiency of the solution space, the bw generation strategy based on differential
evolution, and the adaptive parameter adjustment strategy can improve the precision. Therefore, for

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4241

most of the selected test functions, AHS-DE-OBL has a faster convergence speed and higher accuracy
than the others. For unimodal functions F1 (a convex and bowl-shaped unimodal function), F2 (a
tapering-shaped function), F3 (a bowl-shaped function with the optimal solution not at position zero),
and F8 (a plate-shaped function), regardless of whether there are 2, 10 or 30 dimensions,
AHS-DE-OBL has better performance than the other three methods. For multimodal functions F4 (a
multimodal function with a regular distribution of the local minima), F6 (a nearly flat outer region and
a large hole at the center multimodal function), F7 (a multimodal function with widely distributed
local minima), F9 (a valley-shaped multimodal function), and F10 (a multimodal and highly complex
function), which can detect the ability of the algorithm to jump out of the local optimum,
AHS-DE-OBL obtains all of the best results. For F5, because ID-HS-LDD uses a forced convergence
strategy, which forces the value of the harmony to approach zero in a later iteration stage, it can find
the optimal value of F5. However, for F6, which is obtained by moving F5 one unit in the positive
direction, the performance of ID-HS-LDD was significantly reduced, and AHS-DE-OBL still
maintained fairly good performance. For the 30-dimensional F3, ID-HS-LDD also has a bad
optimization result.

To verify the improved algorithm does not increase the time complexity compared with the original
algorithm, the execution time of the four algorithms in the same experimental environment is recorded.
As shown in Tables 6 and 7, although it takes less time to execute IHS and GDHS than the proposed
algorithm, their optimization accuracy is lower than the proposed algorithm. The accuracy of ID-HS-
LDD is the same as the proposed algorithm, however, it takes more time to execute than the proposed
algorithm.

Table 7. Execution time of the four algorithms.

IHS GDHS ID-HS-LDD Ours
D Time Time Time Time

F1
10
30

0.52 s
0.98 s

0.48 s
0.83 s

1.43 s
4.47 s

0.87 s
2.02 s

F2
10
30

0.50 s
0.73 s

0.47 s
0.76 s

1.43 s
3.83 s

0.72 s
1.78 s

F3
10
30

0.53 s
0.77 s

0.49 s
0.79 s

1.45 s
3.99 s

0.79 s
1.82 s

F4
10
30

0.57 s
0.97 s

0.57 s
0.95 s

1.51 s
4.36 s

0.94 s
2.45 s

F5
10
30

0.74 s
1.08 s

0.65 s
1.13 s

1.68 s
4.55 s

1.28 s
2.90 s

F6
10
30

0.67 s
1.13 s

0.65 s
1.27 s

1.69 s
4.98 s

1.22 s
2.95 s

F7
10
30

0.57 s
0.90 s

0.55 s
0.96 s

1.53 s
4.15 s

0.93 s
2.33 s

F8 2 0.39 s 0.36 s 0.40 s 0.29 s
F9 2 0.40 s 0.35 s 0.41 s 0.32 s
F10 2 0.41 s 0.36 s 0.42 s 0.31 s

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4242

To further verify the performance of AHS-DE-OBL, it was compared with Sine Cosine Algorithm
(SCA), self-adaptive DE (SaDE), and multi-scale cooperative mutatingly self-adaptive escape PSO
(MAEPSO) using ten benchmark functions. Each algorithm was run 30 times independently with
7000 iterations per run. By referring to the relevant literature [18, 26, 27] of the selected algorithms,
the parameter settings are shown in Table 8.

Table 8. Parameter Setting for selected metaheuristic algorithms.

Algorithm Parameters
SCA populationsize = 50

SaDE
populaitonsize = 20, crm = 0.5, learningPeriod = 50, crPeriod = 5,
crmU pdatePeriod = 25, p = 0.5

MAEPSO
M = 5, subP = 20, c1 = 1.4, c2 = 1.4,
k1 = 5, k2 = 10

where populaitonsize is population size, crm is the initial value of adaptive crossover rate,
learningPeriod is the update period of parameter p, p is the selection probability of mutation strategy,
crPeriod controls the update frequency of the crossover rate for each individual, crmU pdatePeriod
controls the update frequency of the parameter crm, M is the number of multi-scale Gaussian
mutation operators, subP is the number of individuals in a subgroup, c1 and c2 is the learning factor,
k1 and k2 is the escape threshold. Table 9 shows the experimental reuslts.

Table 9. Experimental results.

SCA SaDE MAEPSO Ours
D Mean±std Mean±std Mean±std Mean±std

F1
10
30

7.88E-230±0.00
6.27E-42±1.88E-41

5.00E-324±0.00
6.26E-86±1.88E-85

7.58E-82±1.50E-81
3.28E-28±6.54E-28

0.00±0.00
6.51E-255±0.00

F2
10
30

1.67E-72±4.99E-72
8.21E-02±2.39E-01

6.47E-35±1.15E-34
5.63E-04±2.87E-04

2.12E-06±6.03E-06
1.09±6.56E-01

6.86E-161±3.69E-160
7.77E-83±4.03E-82

F3
10
30

1.36E-01±8.22E-02
3.50±2.52E-01

0.00±0.00
0.00±0.00

0.00±0.00
6.37E-26±1.35E-25

1.64E-33±1.90E-33
1.94E-14±1.01E-13

F4
10
30

0.00±0.00
0.00±0.00

0.00±0.00
0.00±0.00

0.00±0.00
2.44E-08±4.86E-08

0.00±0.00
0.00±0.00

F5
10
30

1.42E-15±1.74E-15
1.31E+01±7.89

3.55E-15±0.00
6.75E-15±1.07E-15

6.04E-15±1.63E-15
7.65E-12±1.48E-11

3.52E-15±1.21E-15
4.23E-15±8.86E-16

F6
10
30

2.52±2.36E-01
1.17E+01±8.02

3.20E-15±1.07E-15
7.12E-15±0.00

5.33E-15±1.78E-15
8.72E-12±2.60E-11

2.93E-15±1.63E-15
4.24E-15±1.21E-15

F7
10
30

0.00±0.00
4.61E-03±1.38E-02

6.65E-03±4.93E-03
0.00±0.00

9.69E-02±6.18E-02
1.18E-02±8.15E-03

0.00±0.00
0.00±0.00

F8 2 0.00±0.00 0.00±0.00 4.88E-221±0.00 0.00±0.00
F9 2 0.00±0.00 0.00±0.00 2.35E-215±0.00 0.00±0.00
F10 2 -1.00 ± 0.00 -1.00±0.00 -1.00±0.00 -1.00±0.00

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4243

As shown in Table 9, except for F3 and F5 of 10 dimensions, the proposed algorithm has achieved
better results than other methods. About the SCA, it has obtained better values in seven cases, among
which the F5 with 10-dimension is better than the proposed algorithm, but there is little difference in
accuracy between them. For the SaDE, it has obtained better values in eight cases, among which the
F3 is better than the proposed algorithm. However, it performs better in F7 with 30-dimension than in
F7 with 10-dimension, showing its instability. While for the MAEPSO, it has obtained better values in
three cases, among which the F3 with 10-dimension is better than the. But it performs relatively worse
for the other cases.

To further analyze the experimental results, the Wilcoxon test is used, and Table 10 shows the
results. Where the Wilcoxon column represents the comparison result of the selected algorithms and
the proposed algorithm, ’+’ means the proposed algorithm is better than the selected algorithms in this
case, ’-’ is the opposite. ’≈’ means the two algorithms achieve the same results. the Rank column
is the ranking of their mean solution accuracy. For the selected test function, it can be seen that the
performance of IHS and GDHS is not good, therefore SCA, SaDE, MAEPOS, and ID-HS-LDD are
chosen to compare with the proposed algorithm.

Table 10. The Wilcoxon test results.

SCA SaDE MAEPSO ID-HS-LDD Ours
D Wilcoxon Rank Wilcoxon Rank Wilcoxon Rank Wilcoxon Rank Rank

F1
10
30

+

+

3
4

+

+

2
2

+

+

5
5

+

+

4
3

1
1

F2
10
30

+

+

2
5

+

+

4
3

+

+

5
4

+

+

3
2

1
1

F3
10
30

+

+

5
5

-
-

1
2

-
-

1
1

+

+

4
4

3
3

F4
10
30

≈

≈

1
1

≈

≈

1
1

≈

+

1
5

≈

≈

1
1

1
1

F5
10
30

-
+

1
5

+

+

4
3

+

+

5
4

-
-

2
1

3
2

F6
10
30

+

+

5
5

+

+

2
2

+

+

3
3

+

+

4
4

1
1

F7
10
30

≈

+

1
4

+

≈

4
1

+

+

5
5

≈

≈

1
1

1
1

F8 2 ≈ 1 ≈ 1 + 4 + 5 1
F9 2 ≈ 1 ≈ 1 + 5 + 4 1
F10 2 ≈ 1 ≈ 1 ≈ 1 ≈ 1 1
Ave 2.94 2.01 3.65 2.65 1.41
Final 4 2 5 3 1
Note: Ave is average rank, and Final is finally rank.

As shown in Table 10, for low-dimensional functions, the proposed algorithm can obtain the same
results as some improved algorithms. As the dimensionality increases, in most cases, the performance
of the proposed algorithm is significantly better than the selected improved algorithms.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4244

6. Conclusions

Aiming to address the inherent shortcomings of the HS algorithm, such as its slow convergence
speed and low search precision, an improved HS algorithm, named AHS-DE-OBL, was proposed.
AHS-DE-OBL is based on differential evolution, opposition-based learning, and a search domain
adaptive adjustment strategy. In the improvisation stage, which uses the best and worst harmonies to
affect bw, an opposition-based learning strategy is used to increase the diversity of the harmony in
HM. After improvisation is completed, the range of the search domain is dynamically adjusted to
increase the search efficiency. The experimental results also show that AHS-DE-OBL has better
robustness and a better adaptive ability than the three selected HS variants and the selected
metaheuristic algorithms.

Acknowledgments

This work was supported by the Natural Science Foundation of Hunan Province, China
(Nos.2019JJ40234 and 2020JJ5458), the Research Foundation of Education Bureau of Hunan
Province, China (No.19A414 and 18B317), the Special Project of Language and Writing Application
Research of Hunan Provincial Language Commission (No. XYJ2019GB09), the National Natural
Science Foundation of China (No.62066016), and Jishou University Graduate Research and
Innovation Project (No. JGY202032).

Conflict of interests

The authors declare there is no conflict of interest.

References

1. D. E. Goldberg, Genetic Algorithm in Search Optimization and Machine Learning, Addison-
Wesley Professional, 1989.

2. G. C. Chen, J. S. Yu, Particle swarm optimization algorithm, Inf. Control, 186 (2005), 454–458.

3. Z. W. Geem, J. H. Kim, G. V. Loganathan, A new heuristic optimization algorithm: harmony
search, Simulation, 76 (2001), 60–68.

4. O. M. Alia, R. Mandava, The variants of the harmony search algorithm: an overview, Artif. Intell.
Rev., 36 (2011), 49-68.

5. T. Zhang, Z. W. Geem, Review of harmony search with respect to algorithm structur, Swarm
Evol. Comput., 48 (2019), 31–43.

6. M. Shaqfa, Z. Orbán, Modified parameter-setting-free harmony search (PSFHS) algorithm for
optimizing the design of reinforced concrete beams, Struct. Multidiplinary Optim., 60 (2019),
999–1019.

7. Y. Song, Q. Pan, L. Gao, B. Zhang, Improved non-maximum suppression for object detection
using harmony search algorithm, Appl. Soft Comput., 81 (2019), 105478.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4245

8. A. A. Vasebi, B. M. Fesanghary, A. S. M. T. Bathaee, Combined heat and power economic dispatch
by harmony search algorithm, Int. J. Electr. Power Energy Syst., 29 (2007), 713–719.

9. Z. W. Geem, K. S. Lee, Y. Park, Application of harmony search to vehicle routing, Am. J. Appl.
Sci., 2 (2005), 1552–1557.

10. C. A. Christodoulou, V. Vita, G. C. Seritan, L. Ekonomou, A harmony search method for the
estimation of the optimum number of wind turbines in a wind farm, Energies, 13 (2020), 2777.

11. M. Z. Mistarihi, R. A. Okour, G. M. Magableh, H. B. Salameh, Integrating advanced harmony
search with fuzzy logic for solving buffer allocation problems, Arabian J. Sci. Eng., 45 (2020),
3233–3244.

12. H. C. Li, K. Q. Zhou, L. P. Mo, A. M. Zain, F. Qin, Weighted fuzzy production rule extraction
using modified harmony search algorithm and BP neural network framework, IEEE Access, 8
(2020), 186620–186637.

13. A. Soumen, S. P. Ranjan, M. Anirban, Solving tool indexing problem using harmony search
algorithm with harmony refinement, Soft Comput., 23 (2019), 7407–7423.

14. J. H. Yoon, Z. W. Geem, Empirical convergence theory of harmony search algorithm for box-
constrained discrete optimization of convex function, Mathematics, 9 (2021), 545.

15. M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving
optimization problems, Appl. Math. Comput., 188 (2007), 1567–1579.

16. C. M. Wang, Y. F. Huang, Self-adaptive harmony search algorithm for optimization, Expert Syst.
Appl., 37 (2010), 2826–2837.

17. M. Khalili, R. Kharrat, K. Salahshoor, M. H. Sefat, Global dynamic harmony search algorithm:
GDHS, Appl. Math. Comput., 228 (2014), 195–219.

18. Q. Zhu, X. Tang, Y. Li, M. O. Yeboah, An improved differential-based harmony search algorithm
with linear dynamic domain, Knowl.-Based Syst., 187 (2020), 104809.

19. M. A. Al-Betar, A. T. A. Khader, F. Nadi, Selection mechanisms in memory consideration for
examination timetabling with harmony search, in Proceedings of the 12th annual conference on
Genetic and evolutionary computation, (2010), 1203–1210.

20. P. Chakraborty, G. G. Roy, S. Das, An improved harmony search algorithm with differential
mutation operator, Fundam. Informaticae, 95 (2004), 401–426.

21. N. Taherinejad, Highly reliable harmony search algorithm, in 2009 European Conference on
Circuit Theory and Design, IEEE, (2009), 818–822.

22. R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization
over continuous spaces, J. Global Optim., 11 (1997) 341–359.

23. H. R. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, in
International conference on computational intelligence for modelling, control and automation and
international conference on intelligent agents, web technologies and internet commerce (CIMCA-
IAWTIC’06), 1 (2005), 695–701.

24. S. Das, A. Mukhopadhyay, A. Roy, A. Abraham, B. K. Panigrahi, Exploratory power of the
harmony search algorithm: analysis and improvements for global numerical optimization, IEEE
Trans. Syst. Man Cybern. Part B (Cybern.), 41 (2010), 89–106.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

4246

25. X. Ma, Q. Zhang, G. Tian, J. Yang, Z. Zhu, On Tchebycheff decomposition approaches for
multiobjective evolutionary optimization, IEEE Trans. Evol. Comput., 22 (2017), 226–244.

26. S. Mirjalili, SCA: A sine cosine algorithm for solving optimization problems, Knowl.-Based Syst.,
96 (2016), 120–133.

27. X. M. Tao, F. R. Li, Z. J. Tong, Multi-Scale cooperative mutation particle swarm optimization
algorithm, J. Software, 23 (2012), 1805–1815.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4226–4246.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Brief introduction of the HS algorithm
	Parameter analysis
	Adaptive harmony search utilizing differential evolution and opposition-based learning
	Analysis of the dynamic parameter adjustment strategy
	Analysis of the bw generation strategy based on differential evolution
	Analysis of new harmony generation strategy based on opposition-based learning
	Description of the AHS-DE-OBL algorithm
	Time complexity analysis

	Experiments
	Test functions used in the experiment
	Experiment results and discussions

	Conclusions

