In this work, we construct and study a special isoparametric bilinear finite volume element scheme for solving anisotropic diffusion problems on general convex quadrilateral meshes. The new scheme is obtained by employing the Simpson rule to approximate the line integrals in the classical isoparametric bilinear finite volume element method. By using the cell analysis approach, we suggest a sufficient condition to ensure the coercivity of the new scheme. The sufficient condition has an analytic expression, which only involves the anisotropic diffusion tensor and the geometry of quadrilateral mesh. This yields that for any diffusion tensor and quadrilateral mesh, we can directly judge whether this sufficient condition is satisfied. Specifically, this condition covers the traditional h1+γ-parallelogram and some trapezoidal meshes with any full anisotropic diffusion tensor. An optimal H1 error estimate of the proposed scheme is also obtained for a quasi-parallelogram mesh. The theoretical results are verified by some numerical experiments.
Citation: Shengying Mu, Yanhui Zhou. An analysis of the isoparametric bilinear finite volume element method by applying the Simpson rule to quadrilateral meshes[J]. AIMS Mathematics, 2023, 8(10): 22507-22537. doi: 10.3934/math.20231147
[1] | Lakhlifa Sadek, Ali Akgül, Ahmad Sami Bataineh, Ishak Hashim . A cotangent fractional Gronwall inequality with applications. AIMS Mathematics, 2024, 9(4): 7819-7833. doi: 10.3934/math.2024380 |
[2] | Lakhlifa Sadek, Ali Algefary . Extended Hermite–Hadamard inequalities. AIMS Mathematics, 2024, 9(12): 36031-36046. doi: 10.3934/math.20241709 |
[3] | Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193 |
[4] | Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018 |
[5] | Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On ψ-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005 |
[6] | Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112 |
[7] | Saima Rashid, Fahd Jarad, Khadijah M. Abualnaja . On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative. AIMS Mathematics, 2021, 6(10): 10920-10946. doi: 10.3934/math.2021635 |
[8] | Saleh S. Redhwan, Sadikali L. Shaikh, Mohammed S. Abdo, Wasfi Shatanawi, Kamaleldin Abodayeh, Mohammed A. Almalahi, Tariq Aljaaidi . Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions. AIMS Mathematics, 2022, 7(2): 1856-1872. doi: 10.3934/math.2022107 |
[9] | Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013 |
[10] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
In this work, we construct and study a special isoparametric bilinear finite volume element scheme for solving anisotropic diffusion problems on general convex quadrilateral meshes. The new scheme is obtained by employing the Simpson rule to approximate the line integrals in the classical isoparametric bilinear finite volume element method. By using the cell analysis approach, we suggest a sufficient condition to ensure the coercivity of the new scheme. The sufficient condition has an analytic expression, which only involves the anisotropic diffusion tensor and the geometry of quadrilateral mesh. This yields that for any diffusion tensor and quadrilateral mesh, we can directly judge whether this sufficient condition is satisfied. Specifically, this condition covers the traditional h1+γ-parallelogram and some trapezoidal meshes with any full anisotropic diffusion tensor. An optimal H1 error estimate of the proposed scheme is also obtained for a quasi-parallelogram mesh. The theoretical results are verified by some numerical experiments.
Fractional calculus (FC) has long been devoted to studying integrals and derivatives of non-integer order. In recent years, researchers have been growing interest in finding the most suitable fractional derivative (FD) for modeling real-world problems. While classical calculus equations are sometimes inadequate for capturing complex systems, fractional calculus methods have proven to be highly effective in modeling phenomena observed in various disciplines such as physics, chemistry, electricity, and mechanics, thanks to their ability to handle long-memory processes [1,2,3,4,5,6,7,8].
Traditionally, the focus of FC was primarily on Riemann-Liouville (RL) and Caputo fractional derivatives. However, as we entered the new millennium, researchers began introducing new types of fractional operators (FO), expanding the field of fractional calculus [9,10,11,12,13,14,15]. It is noteworthy that the FOs proposed in this work are distinct instances of fractional derivatives/integrals compared to those described in [16,17,18]. Nevertheless, they share one crucial characteristic with other FOs, which is nonlocality.
In [19], the authors introduced a local FD, known as the conformable derivative (CD). The conceptualization of these local FD eventually led to the rediscovery of nonlocal FD previously described in [14]. We provide an overview of the fundamental principles behind the CD and propose a derivative consistent with both the left and right versions. Furthermore, we find that the nonlocal FD version proposed in [20,21] can be derived from [13].
In any form of FC or calculus with derivatives, it is essential for a function's order zero to be equal to the function itself. However, the CD lacks this crucial property, which can be seen as a deficiency. To address this, the authors in [22,23] redefined the CD to ensure that it yields the function itself when the local FD has an order of zero. Subsequently, Sadek [24] introduced the FD version of this redefined CD called cotangent fractional derivative which features the that they achieve a semi-group property, the kernel operator is the exponential of the cotangent function, and is a generalization of the Riemann-Liouville FD and Caputo FD.
The existence and uniqueness of solutions represent significant qualitative properties of fractional differential problems. Several mathematicians have addressed the existence and uniqueness of solutions for fractional differential problems involving various types of FD and boundary/initial conditions (see [25,26,27,28,29,30,31,32,33,34,35]).
From the works of [36,37], we introduce an innovative FD called the Hilfer cotangent fractional derivative. Building upon this newly defined derivative, we investigate the solutions' existence and uniqueness for a distinct class of nonlinear fractional differential problems that feature nonlocal initial conditions. The Hilfer cotangent fractional differential equation is formulated as follows:
{DG,q,rc+x(ℓ)=f(ℓ,x(ℓ)),ℓ∈L=[c,d],d>c≥0,r∈(0,1],0≤q≤1,I1−σ,rc+x(c)=m∑i=1cix(τi),G≤σ=G+q−Gq,τi∈(c,d). | (1.1) |
In this equation, DG,q,rc+(⋅) represents the Hilfer cotangent fractional derivative (HCFD), and I1−σ,rc+(⋅) denotes the cotangent fractional integral (CFI) with an order of 1−σ>0. Here, ci belongs to the set of real numbers, f:L×R→R is a continuous function, and τi are elements of the interval L satisfying c<τ1<⋯<τm<d, i=1,…,m. The Hilfer fractional model, along with other fractional calculus models, provides a powerful mathematical framework for describing and understanding complex systems and processes that do not conform to traditional integer-order calculus. Its applications are diverse and span various scientific and engineering disciplines. Notably, the existence and uniqueness of solutions for Eq (1.1) have not been previously discussed using this new fractional definition.
The Hilfer fractional model, named after the mathematician Rudolf Gorenflo Hilfer, is a mathematical framework used to describe systems and processes that exhibit non-integer order fractional behavior. Unlike traditional integer-order calculus, fractional calculus, including the Hilfer fractional model, deals with derivatives and integrals of non-integer orders, which allows it to capture more complex dynamics in various domains. Here are some applications of the Hilfer fractional model:
● Anomalous diffusion: The Hilfer fractional model is often used to describe anomalous diffusion, where particles or information spread in a non-standard way. This can be applied to fields like physics (e.g., diffusion in porous media), biology (e.g., cell migration), and finance (e.g., modeling price movements in financial markets).
● Viscoelasticity: The Hilfer fractional model is used to describe the behavior of viscoelastic materials, which exhibit both viscous (liquid-like) and elastic (solid-like) properties. This is relevant in materials science and engineering, especially for modeling polymers and complex fluids.
● Fractional differential equations (FDEs): FDEs based on the Hilfer fractional model are used to describe a wide range of dynamic systems, such as electrical circuits, mechanical systems, and chemical reactions. These equations can capture non-standard responses and memory effects in these systems.
● Control systems: The Hilfer fractional model has applications in control theory for describing and controlling complex systems with fractional dynamics. It's used in areas like robotics, automation, and mechatronics to design controllers for systems with non-integer order behavior.
● Signal processing: Fractional calculus, including the Hilfer fractional model, is applied to signal processing for tasks like noise reduction, image processing, and data compression, where it can capture long-range dependencies in signals.
● Biomedical engineering: The Hilfer fractional model is used in modeling biological and physiological systems, such as modeling drug delivery in the human body or describing the dynamics of neurons in the brain.
● Geophysics: In geophysics, the Hilfer fractional model can be applied to model seismic phenomena, groundwater flow, and other geological processes that exhibit complex, non-integer order behavior.
● Environmental science: Environmental processes that exhibit anomalous behavior, such as pollutant transport in groundwater, can be described using the Hilfer fractional model.
● Economics: Fractional calculus models, including the Hilfer fractional model, have been applied to financial time series analysis and modeling to capture long-term dependencies and improve predictions in financial markets.
● Renewable energy: The modeling of energy storage systems, battery behavior, and renewable energy generation can benefit from the Hilfer fractional model to account for the complex and non-standard behavior of these systems.
The remainder of the manuscript is structured as follows. In Section 2, we provide a review of essential definitions and theoretical results necessary for our subsequent analysis. In Section 3, we introduce our proposed derivatives, namely the Hilfer cotangent fractional derivatives, along with their preliminary properties. Additionally, we explore the connection between an initial value problem and a cotangent Volterra integral equation, establishing uniqueness and the existence of the solution using Banach's fixed point theorem and Kransnoselskii's fixed point theorem. Furthermore, we present two examples to illustrate our findings. Finally, we conclude the paper in Section 4.
In this section, we present preliminary information, definitions, and results related to cotangent fractional derivative, which is fundamental for the rest of the paper. Let us consider finite and infinite intervals −∞<c<d<∞ within the real numbers R+. We denote the space of continuous functions x defined on [c,d] as C[c,d]. The norm for this space is defined as in [4]:
‖x‖C[c,d]=maxℓ∈[c,d]|x(ℓ)|. |
Additionally, we define ACn[c,d], the space of functions x that are n times absolutely continuous differentiable, as:
ACn[c,d]={x:(c,d]→R;xn−1∈AC([c,d])}. |
The weighted space Cσ[c,d] for functions f on (c,d] is defined as:
Cσ[c,d]={x:(c,d]→R;(ℓ−c)σx(ℓ)∈C([c,d])},0≤σ<1, |
where the corresponding norm:
‖x‖Cσ[c,d]=‖(ℓ−c)σx(ℓ)‖C[c,d]=maxℓ∈[c,d]|(ℓ−c)σx(ℓ)|. |
Similarly, the weighted space Cnσ[c,d] for functions x on (c,d] is defined as:
Cnσ[c,d]={x:(c,d]→R;x(ℓ)∈Cn−1([c,d]);xn(ℓ)∈Cσ([c,d])},0≤σ<1, |
where the corresponding norm:
‖x‖Cnσ[c,d]=n−1∑k=0‖xk‖C[c,d]+‖xn‖Cσ[c,d]. |
It is worth noting that C0σ[c,d]=Cσ[c,d] when n=0.
Definition 2.1. [4] Suppose that x∈L1([c,d],R). Then the RL integral of order G>0 of the function x is defined by
IGc+x(ℓ)=1Γ(G)∫ℓc(ℓ−μ)G−1x(μ)dμ,ℓ>c, |
with Γ(⋅) is the gamma function.
Definition 2.2. [4] Let x∈C([c,d]). The RL fractional derivative of order G such that n−1<G<n,n∈N of the function x is defined by
LDGc+x(ℓ)=1Γ(n−G)dndℓn∫ℓc(ℓ−μ)n−G−1x(μ)dμ,ℓ>c. |
Definition 2.3. [4] Let x∈Cn([c,d]) and p>0 such that n−1<G<n,n∈N. Then the Caputo fractional derivative of order G of the function x is defined by
CDGc+x(ℓ)=1Γ(n−G)∫ℓc(ℓ−μ)n−G−1xn(μ)dμ, |
where xn(μ)=dnx(μ)dμn.
Definition 2.4. [24] Let G∈C,Re(G)>0 and r∈(0,1]. The CFI of order G of the function x is defined by
IG,rc+x(ℓ)=1sin(rπ2)GΓ(G)∫ℓce−cot(rπ2)(ℓ−μ)(ℓ−μ)G−1x(μ)dμ,ℓ>c. | (2.1) |
Remark 2.5. [24] Let
Drx(ℓ)=cos(rπ2)x(ℓ)+sin(rπ2)x′(ℓ), |
and
(Dn,rx)(ℓ)=(Dr Dr⋯Dr⏟ntimesx)(ℓ). |
Definition 2.6. [24] The left cotangent fractional derivative of order G∈C (Re(G)>0) and r∈(0,1] of a function x is defined by
DG,rc+x(ℓ)=Dn,rsin(rπ2)n−GΓ(n−G)∫ℓce−cot(rπ2)(ℓ−μ)(ℓ−μ)n−G−1x(μ)dμ, | (2.2) |
where n=[G]+1.
Definition 2.7. [24] Let r∈(0,1]. Then the left-sided cotangent fractional derivative in the sense of Caputo of order G of the function x is defined by
CDG,rc+x(ℓ)=1sin(rπ2)n−pΓ(n−G)×∫ℓce−cot(rπ2)(ℓ−μ)(ℓ−μ)n−G−1(Dn,rx)(μ)dμ,G∈C,Re(G)>0, | (2.3) |
where n=[G]+1.
Remark 2.8. For r=1, Definitions 2.4–2.7 coincide the Definitions 2.1–2.3, respectively.
The cotangent fractional derivative and integral exhibit the following significant properties:
Proposition 2.9. [24] Let r∈(0,1] and δ,G∈C such that Re(δ)>0 and Re(G)≥0. Then we have
(IG,rc+e−cot(rπ2)(s−c)(s−c)δ−1)(ℓ)=Γ(δ)sin(rπ2)GΓ(δ+G)e−cot(rπ2)(ℓ−c)(ℓ−c)δ+G−1,(DG,rc+e−cot(rπ2)(s−c)(s−c)δ−1)(ℓ)=sin(rπ2)GΓ(δ)Γ(δ−G)e−cot(rπ2)(ℓ−c)(ℓ−c)δ−G−1,(IG,rde−cot(rπ2)(d−s)(d−s)δ−1)(ℓ)=Γ(δ)sin(rπ2)GΓ(δ+G)e−cot(rπ2)(d−ℓ)(d−ℓ)δ+G−1,(DG,rde−cot(rπ2)(d−s)(d−s)q−1)(ℓ)=sin(rπ2)GΓ(δ)Γ(δ−G)e−cot(rπ2)(d−ℓ)(d−ℓ)δ−G−1. | (2.4) |
Theorem 2.10. [24] Let r∈(0,1],Re(G)>0, Re(q)>0 and x∈C([c,d],R), then we have
IG,rc+(Iq,rc+x)(ℓ)=Iq,rc+(IG,rc+x)(ℓ)=(IG+q,rc+x)(ℓ),ℓ≥c. | (2.5) |
Theorem 2.11. [24] Let x∈L1([c,d]). Suppose that r∈(0,1] and 0≤m<[Re(G)]+1. Then
Dm,rc+(IG,rc+x)(ℓ)=(IG−m,rc+x)(ℓ),ℓ>c. | (2.6) |
Corollary 2.12. [24] Let 0<Re(q)<Re(G) and m−1<Re(q)≤m. Then we get
Dq,rc+IG,rc+x(ℓ)=IG−q,rc+x(ℓ). |
Theorem 2.13. [24] Let x∈L1([c,d]),Re(G)>0, n=[Re(G)]+1 and r∈(0,1]. Then
DG,rc+IG,rc+x(ℓ)=x(ℓ),ℓ≥c. |
Lemma 2.14. [24] Let m∈Z+, G>0 and r∈(0,1]. Then
(IG,rc+Dm,rc+x)(ℓ)=(Dm,rc+IG,rc+x)(ℓ)−m−1∑k=0e−cot(rπ2)(ℓ−c)(ℓ−c)G−m+ksin(rπ2)G−m+kΓ(G+k−m+1)(Dk,rc+x)(c). | (2.7) |
In particular, if m=1, we get
(IG,rc+Drc+x)(ℓ)=(Drc+IG,rc+x)(ℓ)−e−cot(rπ2)(ℓ−c)(ℓ−c)G−1sin(rπ2)G−1Γ(G)x(c). | (2.8) |
Theorem 2.15. [24] Let x∈L1(c,d) and (IG,rc+x)(ℓ)∈ACn[c,d], Re(G)>0,n=−[−Re(G)]. Then
(IG,rc+DG,rc+x)(ℓ)=x(ℓ)−e−cot(rπ2)(ℓ−c)n∑j=1(ℓ−c)G−jsin(rπ2)G−jΓ(G−j+1)(Iccj−G,rx)(c+). | (2.9) |
In this section, we present the HCFD and explore its properties. Furthermore, we establish the equivalence between the given problem (1.1) and a cotangent fractional integral equation of Volterra type. By utilizing fixed point theorems, we then demonstrate the existence and uniqueness of solutions for Eq (1.1).
Definition 3.1. Let n∈N such that n−1<G<n,r∈(0,1] and 0≤q≤1. The left/right HCFD of order G and type q of a function x is defined by
(DG,q,rc±x)(ℓ)=Iq(n−G),rc±[Dr(I(1−q)(n−G),rc±x)](ℓ), | (3.1) |
where I is the CFI defined in Eq (2.1).
In particular, if n=1, Eq (3.1) is equivalent with
(DG,q,rc±x)(ℓ)=Iq(1−G),rc±[Dr(I(1−q)(1−G),rc±x)](ℓ). | (3.2) |
Thus, throughout this work, we discuss the case where 0<G<1,n=1,0≤q≤1 and σ=G+q−Gq.
This definition can be used in many ways, including: A robust scheme for variable-order time-fractional diffusion-type equations [38], a fractal-fractional-order modified predator-prey mathematical model with immigrations [39], a pseudo-operational collocation method for variable-order time-space fractional KdV-Burgers-Kuramoto equation [40], Leffler-Galerkin method to solve Riccati differential equation of fractional order [41], stability of fractional linear systems [42], and controllability, observability of fractional linear systems [43].
Remark 3.2. It is important to mention that:
(1) If q=0, we get Definition 2.6.
(2) If q=1, we get Definition 2.7.
(3) The parameter σ satisfies
0<σ≤1,σ≥G,σ>q,1−σ<1−q(1−G). |
Proposition 3.3. We have
DG,q,rc+x=Iq(1−G),rc+DrI(1−σ),rc+x=Iq(1−G),rc+Dσ,rc+x,σ=G+q−Gq. |
Proof. From Eq (3.2) and Definition 2.6, we get
(DG,q,rc+x)(ℓ)=Iq(1−G),rc+[Dr(I(1−q)(1−G),rc+x)](ℓ)=Iq(1−G),rc+{Drsin(rπ2)(1−σ)Γ((1−σ))∫ℓce−cot(rπ2)(ℓ−τ)(ℓ−τ)(1−σ)−1x(τ)dτ}=(Iq(1−G),rc+Dσ,rx)(ℓ). |
Let us examine the weighted function spaces defined on (c,d] as follows:
CG,q1−σ[c,d]={x∈C1−σ[c,d],DG,q,rc+x∈C1−σ[c,d]}, |
and
Cσ1−σ[c,d]={x∈C1−σ[c,d],Dσ,rc+x∈C1−σ[c,d]}, |
since
DG,q,rc+=Iq(1−G),rc+Dσ,rc+,Cσ1−σ[c,d]⊂CG,q1−σ[c,d]. |
Lemma 3.4. Suppose r∈(0,1],0<G<1, 0≤σ<1 and x∈Cσ[c,d], then
IG,rc+x(c)=limℓ→c+IG,rc+x(ℓ)=0,0≤σ<G. |
Proof. If we consider x∈C[c,d], it indicates that x belongs to Cσ[c,d] and (ℓ−c)σ belongs to C[c,d]. Consequently, there exists a positive constant M such that
(ℓ−c)σx(ℓ)<M, for all ℓ∈[c,d], |
and
|IG,rc+e−cot(rπ2)ℓx(ℓ)|<M[IG,rc+e−cot(rπ2)ℓ(ℓ−c)−σ](ℓ). |
It follows from Proposition 2.9, that
|IG,rc+e−cot(rπ2)ℓx(ℓ)|<M[Γ(1−σ)Γ(G+1−σ)e−cot(rπ2)ℓ(ℓ−c)G−σ], |
this implies that as ℓ approaches to a from the right, the right-hand side tends to zero.
Lemma 3.5. Let 0<G<1,0≤q≤1,r∈(0,1], σ=G+q−Gq and x∈Cσ1−σ[c,d], then
Iσ,rc+Dσ,rc+x=IG,rc+Dμ,q,rc+x, |
and
Dσ,rc+IG,rc+x=Dq(1−G),rc+x. |
Proof. By utilizing Theorem 2.10 and Proposition 3.3, we can proceed to
Iσ,rc+Dσ,rc+x=Iσ,rc+(I−q(1−G),rc+DG,q,rc+x)=IG+q−Gq,rc+I−q(1−G),rc+DG,q,rc+x=IG,rc+DG,q,rc+x. |
Moreover, considering Theorem 2.10 and Eq (3.2), it is evident that
Dσ,rc+IG,rc+x=Drc+I1−σ,rc+IG,rc+x=Drc+I1−q+Gq,rc+x=Dq(1−G),rc+x. |
Lemma 3.6. Suppose x∈L1(c,d) such that Dq(1−G),pc+x exists in L1(c,d). Then
DG,q,rc+IG,rc+x=Iq(1−G),rc+Dq(1−G),rc+x. |
Proof. By utilizing Definition 2.6 and Eq (3.2), we can deduce that
DG,q,rc+IG,rc+x=Iq(1−G),rc+Drc+I(1−q)(1−G),rc+x=Iq(1−G),rc+Drc+I1−q(1−G),rc+x=Iq(1−G),rc+Dq(1−G),rc+x. |
Lemma 3.7. Let 0<G<1 and 0≤σ<1, r∈(0,1]. Let x∈Cσ[c,d] and I1−p,rc+x∈C1σ[c,d], then
IG,rc+DG,rc+x(ℓ)=x(ℓ)−e−cot(rπ2)(ℓ−c)(ℓ−c)G−1sin(rπ2)G−1Γ(G)(I1−G,rcx)(c+), |
for all ℓ∈(c,d].
Proof. The proof follows a similar approach to the ones presented in [24].
Lemma 3.8. Let 0<G<1,r∈(0,1],0≤q≤1 and σ=G+q−Gq. Let x∈C1−σ[c,d] and DG,q,rc+x then DG,q,rc+IG,rc+x exists in (c,d) and
DG,q,rc+IG,rc+x(ℓ)=x(ℓ),ℓ∈(c,d]. |
Proof. By employing Lemmas 3.4, 3.6, and 3.7, we obtain the following result
(DG,q,rc+IG,rc+x)(ℓ)=(Iq(1−G),rc+Dq(1−G),rc+x)(ℓ)=x(ℓ)−e−cot(rπ2)(ℓ−c)(ℓ−c)q(1−G)−1sin(rπ2)q(1−G)−1Γ(q(1−G))(I1−q(1−G),rax)(c+)=x(ℓ). |
Lemma 3.9. Let r∈(0,1],0<G<1,0≤q≤1, 0<σ<1, x∈C1−σ[c,d] and I1−σ,rc+x, then
IG,rc+DG,q,rc+x(ℓ)=x(ℓ)−e−cot(rπ2)(ℓ−c)(ℓ−c)σ−1sin(rπ2)σ−1Γ(σ)(I1−σ,rcx)(c+),ℓ∈(c,d]. |
Proof. From Definition 3.1 and Lemma 3.7 we have
(IG,rc+DG,q,rc+x)(ℓ)=IG,rc+(Iσ−G,rc+Dσ,rc+x)(ℓ)=Iσ,rc+Dσ,rc+x(ℓ)=x(ℓ)−e−cot(rπ2)(ℓ−c)(ℓ−c)σ−1sin(rπ2)σ−1Γ(σ)(I1−σ,rcx)(c+). |
The subsequent lemma establishes the equivalence between the proposed Eq (1.1) and a CVIE.
Lemma 3.10. Consider 0<G<1, 0≤q≤1, and σ=G+q−Gq. Let f:L×R→R such that f∈C1−σ[L,R] for any x∈C1−σ[L,R]. If x∈Cσ1−σ[L,R], then x satisfies Eq (1.1) if and only if it satisfies the CVIE given by:
x(ℓ)=Λsin(rπ2)GΓ(G)e−cot(rπ2)(ℓ−c)(ℓ−c)σ−1m∑i=1ci∫τic+e−cot(rπ2)(τi−s)(τi−s)G−1f(s,x(s))ds+1sin(rπ2)GΓ(G)∫ℓc+e−cot(rπ2)(ℓ−s)(ℓ−s)G−1f(s,x(s))ds, | (3.3) |
where
Λ=1sin(rπ2)σ−1Γ(σ)−m∑i=1cie−cot(rπ2)(τi−c)(τi−c)σ−1. | (3.4) |
Proof. Let x∈Cσ1−σ[L,R] be a solution of (1.1). We aim to demonstrate that x is also a solution of (3.3). Based on Lemma 3.9, we can conclude that
x(ℓ)=(ℓ−c)σ−1sin(rπ2)σ−1Γ(σ)e−cot(rπ2)(ℓ−c)I1−σ,rc+x(c+)+1sin(rπ2)GΓ(G)∫ℓc+e−cot(rπ2)(ℓ−s)(ℓ−s)G−1f(s,x(s))ds. | (3.5) |
By substituting ℓ=τi and multiplying both sides of Eq (3.5) by ci, we obtain
cix(τi)=(τi−c)σ−1sin(rπ2)σ−1Γ(σ)e−cot(rπ2)(τi−c)ciI1−σ,rc+x(c+)+ciIG,rc+f(τi) |
which implies that
m∑i=1cix(τi)=1sin(rπ2)σ−1Γ(σ)m∑i=1cie−cot(rπ2)(τi−c)(τi−c)σ−1I1−σ,rc+x(c+)+1sin(rπ2)GΓ(G)m∑i=1ci∫τic+e−cot(rπ2)(τi−s)(τi−s)G−1f(s,x(s))ds. | (3.6) |
From the initial condition I1−σ,rc+x(c)=∑mi=1cix(τi), we get
I1−σ,rc+x(c+)=sin(rπ2)σ−1Γ(σ)sin(rπ2)GΓ(G)Λm∑i=1ci∫τic+e−cot(rπ2)(τi−s)(τi−s)G−1f(s,x(s))ds. | (3.7) |
Hence, by substituting Eq (3.7) into Eq (3.5), we can conclude that x(ℓ) satisfies Eq (3.3).
Conversely, let us assume that x∈Cσ1−σ satisfies Eq (3.3). Our goal is to show that x also satisfies Eq (1.1).
By applying Dσ,rc+ of Eq (3.3), and considering Proposition 2.9, Theorem 2.11, and Definition 3.1, we obtain
Dσ,rc+x(ℓ)=Dσ,rc+(Λsin(rπ2)GΓ(G)e−cot(rπ2)(ℓ−c)(ℓ−c)σ−1m∑i=1ci∫τic+e−cot(rπ2)(τi−s)(τi−s)G−1f(s,x(s))ds)+Dσ,rc+(1sin(rπ2)GΓ(G)∫ℓc+e−cot(rπ2)(ℓ−s)(ℓ−s)G−1f(s,x(s))ds)=(Dq(1−G),rc+f(ℓ,x(ℓ)))(ℓ). | (3.8) |
Since DG,q,rc+x∈C1−σ[L,R], by the definition of Cσ1−σ[L,R] Eq (3.8) implies that
Dq(1−G),rc+f=DrI1−q(1−r),rc+f∈C1−σ,r[L,R]. |
Considering f∈C1−σ[L,R] and using Theorem 2.13, we observe that I1−q(1−G),rc+f∈C1−σ,r[L,R]. Consequently, we can conclude that I1−q(1−G),rc+f∈C11−σ[L,R] based on the definition of Cnσ[L,R].
By applying Iq(1−G),rc+ to both sides of Eq (3.8), considering Proposition 2.9, Lemma 3.7, and Definition 3.1, we obtain
Iq(1−G),rc+Dσ,rc+x(ℓ)=Iq(1−G),rc+Dq(1−G),rc+f(ℓ,x(ℓ)).=f(ℓ,x(ℓ))−(I1−q(1−G),rc+f)(c)Γ(q(1−G))(ℓ−c)q(G−1)−1=f(ℓ,x(ℓ)). | (3.9) |
Hence, its remains to show that if x∈Cσ1−σ[L,R] satisfies (3.3), it also satisfies the initial condition. So, by applying I1−σ,rc+ to both sides of Eq (3.3) and using Proposition 2.9, Theorem 2.10 and Corollary 2.12, we obtain
I1−σ,rc+x(ℓ)=I1−σ,rc+(Λsin(rπ2)GΓ(G)e−cot(rπ2)(ℓ−c)(ℓ−c)σ−1m∑i=1ci∫τic+e−cot(rπ2)(τi−s)(τi−s)G−1f(s)ds)+I1−σ;φc+(1sin(rπ2)GΓ(G)∫ℓc+e−cot(rπ2)(ℓ−s)(ℓ−s)G−1f(s)ds)=sin(rπ2)σ−1Γ(σ)sin(rπ2)GΓ(G)Λe−cot(rπ2)(ℓ−c)m∑i=1ci∫τic+e−cot(rπ2)(τi−s)(τi−s)G−1f(s)ds+I1−q(1−G),rc+f(ℓ). | (3.10) |
Taking the limit as ℓ→c+in Eq (3.10) and the fact that 1−q<1−G(1−r) get
I1−σ,rc+x(c+)=sin(rπ2)σ−1Γ(σ)sin(rπ2)GΣ(G)Λm∑i=1ci∫τic+e−cot(rπ2)(τi−s)(τi−s)G−1f(s,x(s))ds. | (3.11) |
Substituting t=τi and multiplying through by ci in Eq (3.3),
cix(τi)=Λsin(rπ2)GΓ(G)e−cot(rπ2)(τi−c)(τi−c)σ−1m∑i=1ci∫τic+e−cot(rπ2)(τi−s)(τi−s)G−1f(s)ds+cisin(rπ2)GΓ(G)∫τic+e−cot(rπ2)(τi−s)(τi−s)G−1f(s,x(s))ds, | (3.12) |
which implies that
m∑i=1cix(τi)=Λm∑i=1ciIG,rc+f(τi)m∑i=1cie−cot(rπ2)(τi−c)(τi−c)σ−1+m∑i=1ciIG,rc+f(τi)=m∑i=1ciIG,rc+f(τi)(1+Λm∑i=1cie−cot(rπ2)(τi−c)(τi−c)σ−1). | (3.13) |
Thus
m∑i=1cix(τi)=sin(rπ2)σ−1Γ(σ)sin(rπ2)GΓ(G)Λm∑i=1ci∫τic+e−cot(rπ2)(τi−s)(τi−s)G−1f(s,x(s))ds. | (3.14) |
So, in view of (3.11) and (3.14), we have
\begin{equation} \mathcal{I}_{c^{+}}^{1-\sigma, r} x\left(c^{+}\right) = \sum\limits_{i = 1}^m c_i x\left(\tau_i\right) . \end{equation} | (3.15) |
Remark 3.11. The introduced Hilfer cotangent fractional derivative (as defined in Definition 3.1) consolidates the previously existing Riemann-Liouville, cotangent, and Hilfer fractional derivatives.
In this subsection, we will present a comprehensive proof of the uniqueness of solutions for the given Eq (1.1) by employing the principles of the Banach contraction. To accomplish this, we rely on the following assumptions:
\left(H_1\right) Let f: L \times \mathbb{R} \rightarrow \mathbb{R} such that f\in \mathcal{C}_{1-\sigma}^{q(1-G)}[L, \mathbb{R}] for any x \in \mathcal{C}_{1-\sigma}^\sigma[L, \mathbb{R}] .
\left(H_2\right) There exists a constant K > 0 such that
|f(\ell, z)-f(\ell, \bar{z})| \leq K|z-\bar{z}|, |
for any z, \bar{z} \in \mathbb{R} and \ell\in L .
\left(H_3\right) Suppose that K \psi < 1, where
\begin{equation} \psi = \frac{\mathcal{B}(\sigma, G)}{\sin(r\frac{\pi}{2})^G \Gamma(G)}\left(|\Lambda| \sum\limits_{i = 1}^m c_i\left(\tau_i-c\right)^{G+\sigma-1}+(d-c)^G\right), \end{equation} | (3.16) |
and \mathcal{B}(\sigma, G) is the Beta function [4]
\mathcal{B}(\sigma, G) = \int_0^1 \ell^{\sigma-1}(1-\ell)^{G-1} d\ell. |
Theorem 3.12. Let 0 < G < 1 , 0 \leq q \leq 1 , and \sigma = G+q-G q . Assuming that the conditions \left(H_1\right) – \left(H_3\right) hold. Then the Eq (1.1) possesses a unique solution within the space \mathcal{C}_{1-\sigma}^\sigma[L, \mathbb{R}] .
Proof. Let the operator T: \mathcal{C}_{1-\sigma}[L, \mathbb{R}] \rightarrow \mathcal{C}_{1-\sigma}[L, \mathbb{R}] by
\begin{equation} \begin{aligned} (T x)(\ell) = & \frac{\Lambda}{\sin(r\frac{\pi}{2})^G \Gamma(G)} e^{-\cot(r\frac{\pi}{2})(\ell-c)}(\ell-c)^{\sigma-1} \sum\limits_{i = 1}^m c_i \int_c^{\tau_i} e^{-\cot(r\frac{\pi}{2})\left(\tau_i-s\right)}\left(\tau_i-s\right)^{G-1} f(s, x(s)) d s \\ & +\frac{1}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \int_c^\ell e^{-\cot(r\frac{\pi}{2})(\ell-s)}(\ell-s)^{G-1} f(s, x(s)) d s . \end{aligned} \end{equation} | (3.17) |
Consequently, the operator T is unambiguously defined. For arbitrary x_1, x_2 \in \mathcal{C}_{1-\sigma}[L, \mathbb{R}] and \ell\in L , the following expression holds:
\begin{equation} \begin{aligned} &\left|\left(\left(T x_1\right)(\ell)-\left(T x_2\right)(\ell)\right)(\ell-c)^{1-\sigma}\right| \\ &\leq \frac{|\Lambda|}{\sin(r\frac{\pi}{2})^G \Gamma(G)}\left|e^{-\cot(r\frac{\pi}{2})(\ell-c)}\right| \sum\limits_{i = 1}^m b_i\int_c^{\tau_i}\left|e^{-\cot(r\frac{\pi}{2})\left(\tau_i-s\right)}\right|\left(\tau_i-s\right)^{G-1}\left|f\left(s, x_1(s)\right)-f\left(s, x_2(s)\right)\right| d s \\ &+\frac{1}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \int_c^\ell\left|e^{-\cot(r\frac{\pi}{2})(\ell-s)}\right|(\ell-s)^{G-1}\left|f\left(s, x_1(s)\right)-f\left(s, x_2(s)\right)\right| d s. \end{aligned} \end{equation} | (3.18) |
Since \left|e^{-\cot(r\frac{\pi}{2})\ell}\right| < 1 , we get
\begin{equation} \begin{aligned} &\left|\left(\left(T x_1\right)(\ell)-\left(T x_2\right)(\ell)\right)(\ell-c)^{1-\sigma}\right| \\ &\leq \frac{K|\Lambda|}{\sin(r\frac{\pi}{2})^G \Gamma(G)}\left(\sum\limits_{i = 1}^m b_i \int_{c^{+}}^{\tau_i}\left(\tau_i-s\right)^{G-1}(s-c)^{\sigma-1} d s\right)\|x_1-x_2\|_{\mathcal{C}_{1-\sigma}[L, \mathbb{R}]} \\ &+\frac{K}{\sin(r\frac{\pi}{2})^G \Gamma(G)}(\ell-c)^{1-\sigma}\left(\int_{c^{+}}^\ell(\ell-s)^{G-1}(s-c)^{\sigma-1} d s\right)\left\|x_1-x_2\right\|_{\mathcal{C}_{1-\sigma}[L, \mathbb{R}]} \\ &\leq \frac{K|\Lambda|}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \mathcal{B}(\sigma, G) \sum\limits_{i = 1}^m c_i\left(\tau_i-c\right)^{G+\sigma-1}\left\|x_1-x_2\right\|_{\mathcal{C}_{1-\sigma}[L, \mathbb{R}]} \\ &+\frac{K}{\sin(r\frac{\pi}{2})^G \Gamma(G)}(d-c)^G \mathcal{B}(\sigma, G)\left\|x_1-x_2\right\|_{\mathcal{C}_{1-\sigma}[L, \mathbb{R}]}. \end{aligned} \end{equation} | (3.19) |
Therefore,
\begin{equation} \begin{aligned} &\left\|\left(T x_1\right)-\left(T x_2\right)\right\|_{\mathcal{C}_{1-\sigma}[L, \mathbb{R}]} \\ &\leq \frac{K}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \mathcal{B}(\sigma, G)\left(|\Lambda| \sum\limits_{i = 1}^m c_i\left(\tau_i-c\right)^{G+\sigma-1}+(d-c)^G\right)\left\|x_1-x_2\right\|_{\mathcal{C}_{1-\sigma}[L, \mathbb{R}]}\\ & \leq K \psi\left\|x_1-x_2\right\|_{\mathcal{C}_{1-\sigma}[L, \mathbb{R}]}. \end{aligned} \end{equation} | (3.20) |
Therefore, by considering (3.16), it can be deduced that T behaves as a contraction map. As a result of the Banach contraction principle, it can be firmly stated that Eq (1.1) possesses a unique solution.
We utilize the Kransnoselskii's fixed point theorem [44] to establish the existence of solutions for the given Eq (1.1).
\left(H_4\right) Suppose that K \Delta < 1, where
\begin{equation} \Delta = \frac{\mathcal{B}(\sigma, G)}{\sin(r\frac{\pi}{2})^G \Gamma(G)}|\Lambda| \sum\limits_{i = 1}^m c_i\left(\tau_i-c\right)^{G+\sigma-1} . \end{equation} | (3.21) |
Theorem 3.13. Assume that the conditions \left(H_1\right), \left(H_2\right) , and \left(H_4\right) are fulfilled, let 0 < G < 1, 0 \leq q \leq 1 , and \sigma = G+q-Gq . Then problem (1.1) possesses at least one solution within the space \mathcal{C}_{1-\sigma}^\sigma[L, \mathbb{R}] .
Proof. In Step 1, we have \|\eta\|_{\mathcal{C}_{1-\sigma}[L, \mathbb{R}]} = \sup_{\ell \in L}\left|(\ell-c)^{1-\sigma} \eta(\ell)\right| and choose \kappa \geq M\|\eta\|_{\mathcal{C}_{1-\sigma}[L, \mathbb{R}]} , where
\begin{equation} M = \frac{\mathcal{B}(\sigma, G)}{\sin(r\frac{\pi}{2})^G \Gamma(G)}\left(|\Lambda| \sum\limits_{i = 1}^m c_i\left(\tau_i-c\right)^{G+\sigma-1}+(d-c)^G\right). \end{equation} | (3.22) |
Let us \mathbf{B}_\kappa = \left\{x \in \mathbb{C}[L, \mathbb{R}]:\|x\|_{\mathcal{C}_{1-\sigma}[L, \mathbb{R}]} \leq \kappa\right\} and the operators \mathbb{T}_1 and \mathbb{T}_2 on \mathbf{B}_k by
\begin{aligned} &\mathbb{T}_1 x(\ell) = \frac{1}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \int_c^\ell e^{-\cot(r\frac{\pi}{2})(\ell-s)}(\ell-s)^{G-1} f(s, x(s)) d s, \\ &\mathbb{T}_2 x(\ell) = \frac{\Lambda}{\sin(r\frac{\pi}{2})^G \Gamma(G)} e^{-\cot(r\frac{\pi}{2})(\ell-c)}(\ell-c)^{\sigma-1} \sum\limits_{i = 1}^m c_i \int_c^{\tau_i} e^{-\cot(r\frac{\pi}{2})\left(\tau_i-s\right)}\left(\tau_i-s\right)^{G-1} f(s, x(s)) d s, \end{aligned} |
for each \ell\in[c, d] , the following inequality holds true. Now, considering any x and y belonging to the set \mathbf{B}_k , we have the following:
\begin{equation} \begin{aligned} &\left|\left(\mathbb{T}_1 x(\ell)+\mathbb{T}_2 y(\ell)\right)(\ell-c)^{1-\sigma}\right| \\ &\leq \frac{(\ell-c)^{1-\sigma}}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \int_c^\ell(\ell-s)^{G-1}(s-c)^{\sigma-1}\left|f(s, x(s))(s-c)^{1-\sigma}\right| d s \\ &+\frac{|\Lambda|}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \sum\limits_{i = 1}^m c_i \int_c^{\tau_i}\left(\tau_i-s\right)^{G-1}\left(\tau_i-c\right)^{\sigma-1}\left|f(s, y(s))\left(\tau_i-c\right)^{1-\sigma}\right| d s \\ &\leq\|\eta\|\left[\frac{\mathcal{B}(\sigma, G)}{\sin(r\frac{\pi}{2})^G \Gamma(G)}|\Lambda| \sum\limits_{i = 1}^m c_i\left(\tau_i-c\right)^{G+\sigma-1}+\frac{\mathcal{B}(\sigma, G)}{\sin(r\frac{\pi}{2})^G \Gamma(G)}(d-c)^G\right] \\ &\leq\|\eta\| M \\ &\leq \kappa < \infty. \end{aligned} \end{equation} | (3.23) |
This implies that \mathbb{T}_1 x+\mathbb{T}_2 y \in \mathbf{B}_\kappa .
In Step 2, we demonstrate that the operator \mathbb{T}_2 is a contraction.
Now, let x, y \in \mathcal{C}_{1-\sigma}[L, \mathbb{R}] and \ell\in L , then
\begin{equation} \begin{aligned} &\left|\left(\mathbb{T}_2 x(\ell)-\mathbb{T}_2 y(\ell)\right)(\ell-c)^{1-\sigma}\right| \\ & = \left|\Lambda e^{-\cot(r\frac{\pi}{2})(\ell-c)} \sum\limits_{i = 1}^m c_i \mathcal{I}_{c^{+}}^{G, r}(f(s, x(s))-f(s, y(s)))\left(\tau_i\right)\right| \\ &\leq \frac{K|\Lambda|}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \sum\limits_{i = 1}^m c_i \int_c^{\tau_i}\left(\tau_i-s\right)^{G-1}\left(\tau_i-s\right)^{\sigma-1}|x(s)-y(s)| d s \\ &\leq\left[\frac{K|\Lambda|}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \mathcal{B}(\sigma, G) \sum\limits_{i = 1}^m c_i\left(\tau_i-c\right)^{G+\sigma-1}\right]\|x-y\|_{\mathcal{C}_{1-\sigma}[L, \mathbb{R}]} \\ &\leq K \Delta\|x-y\|_{\mathcal{C}_{1-\sigma}[L, \mathbb{R}]}. \end{aligned} \end{equation} | (3.24) |
Consequently, it can be deduced from \left(H_4\right) that \mathbb{T}_2 is a contraction.
In Step 3, we establish the continuity and compactness of the operator \mathbb{T}_1 .
Evidently, the operator \mathbb{T}_1 is continuous since the function f is continuous. Therefore, for any x \in \mathcal{C}_{1-\sigma}[L, \mathbb{R}] , we obtain:
\left\|\mathbb{T}_1 x\right\| \leq\|\eta\| \frac{\mathcal{B}(\sigma, G)}{\sin(r\frac{\pi}{2})^G \Gamma(G)}(d-c)^G < \infty . |
This shows that the operator \mathbb{T}_1 is uniformly bounded on \mathbf{B}_k . Thus, it remains to show that \mathbb{T}_1 is compact. Let \sup_{(\ell, x) \in L \times \mathbf{B}_{\mathbb{R}}}|f(\ell, x(\ell))| = \delta < \infty and for any c < \tau_1 < \tau_2 < d ,
\begin{align} &\left|\left(\tau_2-c\right)^{1-\sigma}\left(\mathbb{T}_1 x\left(\tau_2\right)\right)+\left(\tau_1-c\right)^{1-\sigma}\left(\mathbb{T}_1 x\left(\tau_1\right)\right)\right| \\ & = \mid \frac{\left(\tau_2-c\right)^{1-\sigma}}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \int_c^{\tau_2} e^{-\cot(r\frac{\pi}{2})\left(\tau_2-s\right)}\left(\tau_2-s\right)^{G-1} f(s, x(s)) d s \\ &-\frac{\left(\tau_1-c\right)^{1-\sigma}}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \int_c^{\tau_1} e^{-\cot(r\frac{\pi}{2})\left(\tau_1-s\right)}\left(\tau_1-s\right)^{G-1} f(s, x(s)) d s \mid \\ &\leq \frac{1}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \int_c^{\tau_2}\left[\left(\tau_2-c\right)^{1-\sigma}\left(\tau_2-s\right)^{G-1}-\left(\tau_1-c\right)^{1-\sigma}\left(\tau_1-s\right)^{G-1}\right]|f(s, x(s))| d s \\ &+\frac{1}{\sin(r\frac{\pi}{2})^G \Gamma(G)} \int_{\tau_1}^{\tau_2}\left(\tau_2-c\right)^{1-\sigma}\left(\tau_2-s\right)^{G-1}|f(s, x(s))| d s \longrightarrow 0, \quad \text { as } \tau_2 \rightarrow \tau_1. \end{align} | (3.25) |
By applying the Arzelà-Ascoli theorem [45], we can conclude that the operator \mathbb{T}_1 is compact on \mathbf{B}\kappa . Consequently, Eq (1.1) possesses at least one solution.
Example 3.14. Let us consider a fractional differential equation that incorporates the Hilfer cotangent fractional derivative in the following manner:
\begin{equation} \left\{\begin{array}{l} \mathcal{D}_{0^{+}}^{\frac{2}{3}, \frac{1}{2}, 1} x(\ell) = \frac{1}{25 e^{2 \ell}}\left(\frac{ {\sin} 2 \ell}{1+|x(\ell)|}\right)+\frac{3}{2}, \quad \ell\in L = [0,2], \\ \mathcal{I}_{0^{+}}^{1-\sigma, 1} x(0) = 2 x\left(\frac{2}{5}\right). \end{array}\right. \end{equation} | (3.26) |
By comparing (1.1) with (3.26), we get G = \frac{2}{3}, q = \frac{1}{2}, r = 1, \sigma = \frac{5}{6}, c = 0, d = 2, c_1 = 2 since m = 1, \tau_1 = \frac{2}{5} \in L and
f(\ell, u) = \frac{1}{25 e^{2 \ell}}\left(\frac{ {\sin} 2 \ell}{1+|u|}\right)+\frac{3}{2}, \quad \ell\in L, u \in \mathbb{R}_{+} . |
Consequently, the function f is continuous, and for any u, v \in \mathbb{R}_{+} and \ell\in L , the inequality |f(\ell, u)-f(\ell, v)| \leq \frac{1}{25}|u-v| holds. Hence, we can affirm that both conditions \left(H_1\right) and \left(H_3\right) are satisfied with K = \frac{1}{25} . Through straightforward calculations, we obtain
|\Lambda| = 0.8325014764, |
and
\psi = 3.363129576. |
These values imply that K \psi = 0.1345251830 < 1 . As a result, all the requirements of Theorem 3.12 are fulfilled, leading to the conclusion that problem (1.1) possesses a unique solution on L .
Similarly, we determine that
\Delta = 1.341257222 > 0, |
and
K \Delta = 0.05365028888 < 1. |
Since all the conditions of Theorem 3.13 are met, we can infer that problem (1.1) has at least one solution on L .
Example 3.15. Let's examine the Hilfer cotangent fractional differential equation given by the following expression:
\begin{equation} \left\{\begin{array}{l} \mathcal{D}_{0^{+}}^{\frac{2}{3}, \frac{1}{2},\frac{1}{5}} x(\ell) = \frac{1}{25 e^{2 \ell}}\left(\frac{ {\sin} 2 \ell}{1+|x(\ell)|}\right)+\frac{3}{2}, \quad \ell\in L = [0,2], \\ \mathcal{I}_{0^{+}}^{1-\sigma,\frac{1}{5}} x(0) = 2 x\left(\frac{2}{5}\right) . \end{array}\right. \end{equation} | (3.27) |
By following the same procedure as demonstrated in Example 3.14, we obtain the values
|\Lambda| = 1.444007299, |
\psi = 9.513382270, |
and
\Delta = 5.089887776. |
Consequently, we have
K \psi = 0.3805352908 < 1. |
Based on Theorem 3.12, it can be concluded that problem (1.1) possesses a unique solution on L . Moreover, we have
K \Delta = 0.2035955110 < 1, |
which implies, according to Theorem 3.13, that problem (1.1) has at least one solution on L .
In the present study, we introduced the Hilfer cotangent fractional derivatives within the framework of fractional calculus. Leveraging well-established theorems from fixed point theory, we were able to establish the existence and uniqueness of solutions for a particular class of fractional initial value problems incorporating the Hilfer cotangent fractional derivative. To illustrate the efficacy of our findings, we provided illustrative examples. Notably, the Hilfer cotangent fractional derivative encompasses three parameters, offering greater flexibility. This expanded parameter space becomes particularly valuable when considering stability and other qualitative characteristics of differential equations involving fractional derivatives.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare that they have no conflicts of interest.
[1] | P. Zhu, R. Li, Generalized difference methods for second order elliptic partial differential equations. Ⅱ. Quadrilateral subdivision, Numer. Math. J. Chin. Univ., 4 (1982), 360–375. |
[2] |
R. E. Bank, D. J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal., 24 (1987), 777–787. https://doi.org/10.1137/0724050 doi: 10.1137/0724050
![]() |
[3] |
S. Chou, Q. Li, Error estimates in L^2, H^1 and L^{\infty} in covolume methods for elliptic and parabolic problems: A unified approach, Math. Comput., 69 (2000), 103–120. https://doi.org/10.1090/S0025-5718-99-01192-8 doi: 10.1090/S0025-5718-99-01192-8
![]() |
[4] |
Z. Cai, On the finite volume element method, Numer. Math., 58 (1990), 713–735. https://doi.org/10.1007/BF01385651 doi: 10.1007/BF01385651
![]() |
[5] |
I. Mishev, Finite volume element methods for non-definite problems, Numer. Math., 83 (1999), 161–175. https://doi.org/10.1007/s002110050443 doi: 10.1007/s002110050443
![]() |
[6] |
P. Chatzipantelidis, R. Lazarov, Error estimates for a finite volume element method for elliptic PDEs in nonconvex polygonal domains, SIAM J. Numer. Anal., 42 (2005), 1932–1958. https://doi.org/10.1137/S0036142903427639 doi: 10.1137/S0036142903427639
![]() |
[7] |
S. Chou, X. Ye, Unified analysis of finite volume methods for second order elliptic problems, SIAM J. Numer. Anal., 45 (2007), 1639–1653. https://doi.org/10.1137/050643994 doi: 10.1137/050643994
![]() |
[8] | R. Li, Z. Chen, W. Wu, Generalized difference methods for differential equations: Numerical analysis of finite volume methods, New York: Marcel Dekker, 2000. |
[9] | Y. Lin, J. Liu, M. Yang, Finite volume element methods: An overview on recent developments, Int. J. Numer. Anal. Mod. B, 4 (2013), 14–34. |
[10] |
Z. Zhang, Q. Zou, Some recent advances on vertex centered finite volume element methods for elliptic equations, Sci. China Math., 56 (2013), 2507–2522. https://doi.org/10.1007/s11425-013-4740-8 doi: 10.1007/s11425-013-4740-8
![]() |
[11] |
J. Xu, Q. Zou, Analysis of linear and quadratic simplicial finite volume methods for elliptic equations, Numer. Math., 111 (2009), 469–492. https://doi.org/10.1007/s00211-008-0189-z doi: 10.1007/s00211-008-0189-z
![]() |
[12] |
Z. Chen, R. Li, A. Zhou, A note on the optimal L^{2}-estimate of the finite volume element method, Adv. Comput. Math., 16 (2002), 291–303. https://doi.org/10.1023/A:1014577215948 doi: 10.1023/A:1014577215948
![]() |
[13] |
R. E. Ewing, T. Lin, Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal., 39 (2002), 1865–1888. https://doi.org/10.1137/S0036142900368873 doi: 10.1137/S0036142900368873
![]() |
[14] |
C. Erath, D. Praetorius, Adaptive vertex-centered finite volume methods for general second-order linear elliptic partial differential equations, IMA J. Numer. Anal., 39 (2019), 983–1008. https://doi.org/10.1093/imanum/dry006 doi: 10.1093/imanum/dry006
![]() |
[15] | Y. Li, R. Li, Generalized difference methods on arbitrary quadrilateral networks, J. Comput. Math., 17 (1999), 653–672. |
[16] |
Z. Zhang, Q. Zou, Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems, Numer. Math., 130 (2015), 363–393. https://doi.org/10.1007/s00211-014-0664-7 doi: 10.1007/s00211-014-0664-7
![]() |
[17] |
T. Schmidt, Box schemes on quadrilateral meshes, Computing, 51 (1993), 271–292. https://doi.org/10.1007/BF02238536 doi: 10.1007/BF02238536
![]() |
[18] |
Q. Hong, J. Wu, A Q_1-finite volume element scheme for anisotropic diffusion problems on general convex quadrilateral mesh, J. Comput. Appl. Math., 372 (2020), 112732. https://doi.org/10.1016/j.cam.2020.112732 doi: 10.1016/j.cam.2020.112732
![]() |
[19] |
J. Lv, Y. Li, L^2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes, Adv. Comput. Math., 37 (2012), 393–416. https://doi.org/10.1007/s10444-011-9215-2 doi: 10.1007/s10444-011-9215-2
![]() |
[20] |
Y. Lin, M. Yang, Q. Zou, L^2 error estimates for a class of any order finite volume schemes over quadrilateral meshes, SIAM J. Numer. Anal., 53 (2015), 2030–2050. https://doi.org/10.1137/140963121 doi: 10.1137/140963121
![]() |
[21] |
C. Nie, S. Shu, H. Yu, W. Xia, Superconvergence and asymptotic expansions for bilinear finite volume element approximation on non-uniform grids, J. Comput. Appl. Math., 321 (2017), 323–335. https://doi.org/10.1016/j.cam.2016.12.024 doi: 10.1016/j.cam.2016.12.024
![]() |
[22] |
W. He, Z. Zhang, Q. Zou, Maximum-norms error estimates for high-order finite volume schemes over quadrilateral meshes, Numer. Math., 138 (2018), 473–500. https://doi.org/10.1007/s00211-017-0912-8 doi: 10.1007/s00211-017-0912-8
![]() |
[23] |
Z. Chen, J. Wu, Y. Xu, Higher-order finite volume methods for elliptic boundary value problems, Adv. Comput. Math., 37 (2012), 191–253. https://doi.org/10.1007/s10444-011-9201-8 doi: 10.1007/s10444-011-9201-8
![]() |
[24] |
X. Wang, Y. Li, L^2 error estimates for high order finite volume methods on triangular meshes, SIAM J. Numer. Anal., 54 (2016), 2729–2749. https://doi.org/10.1137/140988486 doi: 10.1137/140988486
![]() |
[25] |
Y. Zhou, J. Wu, A unified analysis of a class of quadratic finite volume element schemes on triangular meshes, Adv. Comput. Math., 46 (2020), 71. https://doi.org/10.1007/s10444-020-09809-8 doi: 10.1007/s10444-020-09809-8
![]() |
[26] |
X. Wen, Y. Zhou, A coercivity result of quadratic finite volume element schemes over triangular meshes, Adv. Appl. Math. Mech., 15 (2023), 901–931. https://doi.org/10.4208/aamm.OA-2021-0311 doi: 10.4208/aamm.OA-2021-0311
![]() |
[27] |
M. Yang, A second-order finite volume element method on quadrilateral meshes for elliptic equations, ESAIM: M2AN, 40 (2006), 1053–1067. https://doi.org/10.1051/m2an:2007002 doi: 10.1051/m2an:2007002
![]() |
[28] |
J. Lv, Y. Li, Optimal biquadratic finite volume element methods on quadrilateral meshes, SIAM J. Numer. Anal., 50 (2012), 2379–2399. https://doi.org/10.1137/100805881 doi: 10.1137/100805881
![]() |
[29] |
Y. Zhou, Y. Zhang, J. Wu, A polygonal finite volume element method for anisotropic diffusion problems, Comput. Math. Appl., 140 (2023), 225–236. https://doi.org/10.1016/j.camwa.2023.04.025 doi: 10.1016/j.camwa.2023.04.025
![]() |
[30] |
Y. Zhang, X. Wang, Unified construction and L^2 analysis for the finite volume element method over tensorial meshes, Adv. Comput. Math., 49 (2023), 2. https://doi.org/10.1007/s10444-022-10004-0 doi: 10.1007/s10444-022-10004-0
![]() |
[31] |
Y. Zhou, Y. Jiang, Q. Zou, Three dimensional high order finite volume element schemes for elliptic equations, Numer. Methods Partial Differ. Eq., 39 (2023), 1672–1705. https://doi.org/10.1002/num.22950 doi: 10.1002/num.22950
![]() |
[32] |
Y. Zhou, J. Wu, A new high order finite volume element solution on arbitrary triangular and quadrilateral meshes, Appl. Math. Lett., 134 (2022), 108354. https://doi.org/10.1016/j.aml.2022.108354 doi: 10.1016/j.aml.2022.108354
![]() |
[33] | S. Shu, H. Yu, Y. Huang, C. Nie, A symmetric finite volume element scheme on quadrilateral grids and superconvergence, Int. J. Numer. Anal. Mod., 3 (2006), 348–360. |
[34] |
Q. Hong, J. Wu, Coercivity results of a modified Q_{1}-finite volume element scheme for anisotropic diffusion problems, Adv. Comput. Math., 44 (2018), 897–922. https://doi.org/10.1007/s10444-017-9567-3 doi: 10.1007/s10444-017-9567-3
![]() |
[35] |
F. Fang, Q. Hong, J. Wu, Analysis of a special Q_{1}-finite volume element scheme for anisotropic diffusion problems, Numer. Math. Theor. Meth. Appl., 12 (2019), 1141–1167. https://doi.org/10.4208/nmtma.OA-2018-0080 doi: 10.4208/nmtma.OA-2018-0080
![]() |
[36] |
S. Chou, S. He, On the regularity and uniformness conditions on quadrilateral grids, Comput. Methods Appl. Mech. Eng., 191 (2002), 5149–5158. https://doi.org/10.1016/S0045-7825(02)00357-2 doi: 10.1016/S0045-7825(02)00357-2
![]() |
[37] | P. Ciarlet, The finite element method for elliptic problems, Amsterdam: North-Holland, 1978. |
[38] |
D. Kershaw, Differencing of the diffusion equation in Lagrangian hydrodynamic codes, J. Comput. Phys., 39 (1981), 375–395. https://doi.org/10.1016/0021-9991(81)90158-3 doi: 10.1016/0021-9991(81)90158-3
![]() |
[39] |
G. Yuan, Z. Sheng, Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phys., 227 (2008), 6288–6312. https://doi.org/10.1016/j.jcp.2008.03.007 doi: 10.1016/j.jcp.2008.03.007
![]() |
1. | Lakhlifa Sadek, Ali Akgül, Ahmad Sami Bataineh, Ishak Hashim, A cotangent fractional Gronwall inequality with applications, 2024, 9, 2473-6988, 7819, 10.3934/math.2024380 | |
2. | P. Karthiga, S. M. Sivalingam, V. Govindaraj, Controllability of time‐varying fractional dynamical systems with prescribed control, 2024, 0170-4214, 10.1002/mma.10552 | |
3. | Lakhlifa Sadek, Control theory for fractional differential Sylvester matrix equations with Caputo fractional derivative, 2024, 1077-5463, 10.1177/10775463241246430 | |
4. | Lakhlifa Sadek, Controllability, observability, and stability of φ‐conformable fractional linear dynamical systems, 2024, 26, 1561-8625, 2476, 10.1002/asjc.3348 | |
5. | Lakhlifa Sadek, Said Ounamane, Bouchra Abouzaid, El Mostafa Sadek, The Galerkin Bell method to solve the fractional optimal control problems with inequality constraints, 2024, 77, 18777503, 102244, 10.1016/j.jocs.2024.102244 | |
6. | Majeed A. Yousif, Juan L. G. Guirao, Pshtiwan Othman Mohammed, Nejmeddine Chorfi, Dumitru Baleanu, A computational study of time-fractional gas dynamics models by means of conformable finite difference method, 2024, 9, 2473-6988, 19843, 10.3934/math.2024969 | |
7. | Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, On generalized (k,\psi )-Hilfer proportional fractional operator and its applications to the higher-order Cauchy problem, 2024, 2024, 1687-2770, 10.1186/s13661-024-01891-x | |
8. | Lakhlifa Sadek, Dumitru Baleanu, Mohammed S. Abdo, Wasfi Shatanawi, Introducing novel Θ-fractional operators: Advances in fractional calculus, 2024, 36, 10183647, 103352, 10.1016/j.jksus.2024.103352 | |
9. | Lakhlifa Sadek, Ali Algefary, Extended Hermite–Hadamard inequalities, 2024, 9, 2473-6988, 36031, 10.3934/math.20241709 | |
10. | Said Ounamane, Lakhlifa Sadek, Bouchra Abouzaid, El Mostafa Sadek, Fractional truncated exponential method for linear fractional optimal control problems, 2025, 03784754, 10.1016/j.matcom.2025.01.009 | |
11. | Lakhlifa Sadek, Ali Algefary, On quantum trigonometric fractional calculus, 2025, 120, 11100168, 371, 10.1016/j.aej.2025.02.005 | |
12. | Hassen Arfaoui, Mohamed Kharrat, Hacene Mecheri, Dumitru Baleanu, 2025, Chapter 2, 978-981-97-8714-2, 39, 10.1007/978-981-97-8715-9_2 | |
13. | Lakhlifa Sadek, Sahar Ahmed ldris, Fahd Jarad, The general Caputo–Katugampola fractional derivative and numerical approach for solving the fractional differential equations, 2025, 121, 11100168, 539, 10.1016/j.aej.2025.02.065 |