We explored a local stability analysis at fixed points, bifurcations, and a control in a discrete Leslie's prey-predator model in the interior of $ \mathbb{R}_+^2 $. More specially, it is examined that for all parameters, Leslie's model has boundary and interior equilibria, and the local stability is studied by the linear stability theory at equilibrium. Additionally, the model does not undergo a flip bifurcation at the boundary fixed point, though a Neimark-Sacker bifurcation exists at the interior fixed point, and no other bifurcation exists at this point. Furthermore, the Neimark-Sacker bifurcation is controlled by a hybrid control strategy. Finally, numerical simulations that validate the obtained results are given.
Citation: A. Q. Khan, Ibraheem M. Alsulami. Discrete Leslie's model with bifurcations and control[J]. AIMS Mathematics, 2023, 8(10): 22483-22506. doi: 10.3934/math.20231146
We explored a local stability analysis at fixed points, bifurcations, and a control in a discrete Leslie's prey-predator model in the interior of $ \mathbb{R}_+^2 $. More specially, it is examined that for all parameters, Leslie's model has boundary and interior equilibria, and the local stability is studied by the linear stability theory at equilibrium. Additionally, the model does not undergo a flip bifurcation at the boundary fixed point, though a Neimark-Sacker bifurcation exists at the interior fixed point, and no other bifurcation exists at this point. Furthermore, the Neimark-Sacker bifurcation is controlled by a hybrid control strategy. Finally, numerical simulations that validate the obtained results are given.
[1] | S. Chowdhury, M. K. Singh, Prey-predator relationship in ecological balance, Vigyan Varta, 3 (2020), 116–120. |
[2] | H. Seno, Modeling for prey-predator relation, In: A primer on population dynamics modeling, Springer, 2022. https://doi.org/10.1007/978-981-19-6016-1_8 |
[3] | V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Gauthier-Villars et cie, 1931. |
[4] | M. Martelli, Discrete dynamical systems and chaos, Chapman and Hall/CRC, 1992. |
[5] | O. Lazaar, M. Serhani, A. Alla, N. Raissi, On the stability analysis of a reaction-diffusion predator-prey model incorporating prey refuge, Int. J. Appl. Comput. Math., 8 (2022), 207. https://doi.org/10.1007/s40819-022-01415-0 doi: 10.1007/s40819-022-01415-0 |
[6] | R. Saadeh, A. Abbes, A. Al-Husban, A. Ouannas, G. Grassi, The fractional discrete predator-prey model: chaos, control and synchronization, Fractal Fract., 7 (2023), 120. https://doi.org/10.3390/fractalfract7020120 doi: 10.3390/fractalfract7020120 |
[7] | M. F. Elettreby, A. Khawagi, T. Nabil, Dynamics of a discrete prey-predator model with mixed functional response, Int. J. Bifurcat. Chaos., 29 (2019), 1950199. https://doi.org/10.1142/S0218127419501992 doi: 10.1142/S0218127419501992 |
[8] | M. Chen, R. Wu, X. Wang, Non-constant steady states and Hopf bifurcation of a species interaction model, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106846. https://doi.org/10.1016/j.cnsns.2022.106846 doi: 10.1016/j.cnsns.2022.106846 |
[9] | M. Chen, R. Wu, Patterns in the predator-prey system with network connection and harvesting policy, Math. Methods Appl. Sci., 46 (2023), 2433–2454. https://doi.org/10.1002/mma.8653 doi: 10.1002/mma.8653 |
[10] | M. Chen, H. M. Srivastava, Stability of bifurcating solution of a predator-prey model, Chaos Solitons Fract., 168 (2023), 113153. https://doi.org/10.1016/j.chaos.2023.113153 doi: 10.1016/j.chaos.2023.113153 |
[11] | M. Chen, R. Wu, Steady-state bifurcation in Previte-Hoffman model, Int. J. Bifurcat. Chaos., 33 (2023), 2350020. https://doi.org/10.1142/S0218127423500207 doi: 10.1142/S0218127423500207 |
[12] | M. Chen, R. Wu, Steady states and spatiotemporal evolution of a diffusive predator-prey model, Chaos Solitons Fract., 170 (2023), 113397. https://doi.org/10.1016/j.chaos.2023.113397 doi: 10.1016/j.chaos.2023.113397 |
[13] | N. F. Britton, Essential mathematical biology, Springer, 2003. https://doi.org/10.1007/978-1-4471-0049-2 |
[14] | D. O. Logofet, R. Salguero-Gooooomez, Novel challenges and opportunities in the theory and practice of matrix population modelling: an editorial for the special feature: "theory and practice in matrix population modelling" of ecological modelling, Ecol. Model., 443 (2021), 109457. https://doi.org/10.1016/j.ecolmodel.2021.109457 doi: 10.1016/j.ecolmodel.2021.109457 |
[15] | P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213–245. https://doi.org/10.2307/2332342 doi: 10.2307/2332342 |
[16] | W. Liu, Y. Jiang, Flip bifurcation and Neimark-Sacker bifurcation in a discrete predator-prey model with harvesting, Int. J. Biomath., 13 (2020), 1950093. https://doi.org/10.1142/S1793524519500931 doi: 10.1142/S1793524519500931 |
[17] | D. Hu, H. Cao, Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 702–715. https://doi.org/10.1016/j.cnsns.2014.09.010 doi: 10.1016/j.cnsns.2014.09.010 |
[18] | S. M. Rana, U. Kulsum, Bifurcation analysis and chaos control in a discrete-time predator-prey system of Leslie type with simplified Holling type Ⅳ functional response, Discrete Dyn. Nat. Soc., 2017 (2017), 9705985. https://doi.org/10.1155/2017/9705985 doi: 10.1155/2017/9705985 |
[19] | N. Fang, X. X. Chen, Permanence of a discrete multispecies Lotka-Volterra competition predator-prey system with delays, Nonlinear Anal.: Real World Appl., 9 (2008), 2185–2195. https://doi.org/10.1016/j.nonrwa.2007.07.005 doi: 10.1016/j.nonrwa.2007.07.005 |
[20] | M. R. S. Kulenović, G. Ladas, Dynamics of second-order rational difference equations with open problems and conjectures, Chapman and Hall/CRC, 2001. https://doi.org/10.1201/9781420035384 |
[21] | E. Camouzis, G. Ladas, Dynamics of third-order rational difference equations with open problems and conjectures, Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781584887669 |
[22] | V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher-order with applications, Springer Dordrecht, 1993. https://doi.org/10.1007/978-94-017-1703-8 |
[23] | L. Li, Z. J. Wang, Global stability of periodic solutions for a discrete predator-prey system with functional response, Nonlinear Dyn., 72 (2013), 507–516. https://doi.org/10.1007/s11071-012-0730-6 doi: 10.1007/s11071-012-0730-6 |
[24] | M. Zhao, L. Zhang, J. Zhu, Dynamics of a host-parasitoid model with prolonged diapause for parasitoid, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 455–462. https://doi.org/10.1016/j.cnsns.2010.03.011 doi: 10.1016/j.cnsns.2010.03.011 |
[25] | L. Zhu, M. Zhao, Dynamic complexity of a host-parasitoid ecological model with the Hassell growth function for the host, Chaos Solitons Fract., 39 (2009), 1259–1269. https://doi.org/10.1016/j.chaos.2007.10.023 doi: 10.1016/j.chaos.2007.10.023 |
[26] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems and bifurcation of vector fields, Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2 |
[27] | Y. A. Kuznetsov, Elements of applied bifurcation theorey, Springer, 2004. https://doi.org/10.1007/978-1-4757-3978-7 |
[28] | Z. Hu, Z. Teng, L. Zhang, Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Anal.: Real World Appl., 12 (2011), 2356–2377. https://doi.org/10.1016/j.nonrwa.2011.02.009 doi: 10.1016/j.nonrwa.2011.02.009 |
[29] | A. Q. Khan, J. Ma, D. Xiao, Bifurcation of two-dimensional discrete time plant-herbivore system, Commun. Nonlinear Sci. Numer. Simul., 39 (2016), 185–198. https://doi.org/10.1016/j.cnsns.2016.02.037 doi: 10.1016/j.cnsns.2016.02.037 |
[30] | C. H. Zhang, X. P. Yan, G. H. Cui, Hopf bifurcations in a predator-prey system with a discrete delay and a distributed delay, Nonlinear Anal.: Real World Appl., 11 (2010), 4141–4153. https://doi.org/10.1016/j.nonrwa.2010.05.001 doi: 10.1016/j.nonrwa.2010.05.001 |
[31] | M. Sen, M. Banerjee, A. Morozov, Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect, Ecol. Complex., 11 (2012), 12–27. https://doi.org/10.1016/j.ecocom.2012.01.002 doi: 10.1016/j.ecocom.2012.01.002 |
[32] | Z. Chen, P. Yu, Controlling and anti-controlling Hopf bifurcations in discrete maps using polynomial functions, Chaos Solitons Fract., 26 (2005), 1231–1248. https://doi.org/10.1016/j.chaos.2005.03.009 doi: 10.1016/j.chaos.2005.03.009 |
[33] | E. M. Elabbasy, H. N. Agiza, H. El-Metwally, A. A. Elsadany, Bifurcation analysis, chaos and control in the Burgers mapping, Int. J. Nonlinear Sci., 4 (2007), 171–185. |
[34] | G. Chen, J. Q. Fang, Y. Hong, H. Qin, Controlling Hopf bifurcations: discrete-time systems, Discrete Dyn. Nat. Soc., 5 (2000), 201496. https://doi.org/10.1155/S1026022600000364 doi: 10.1155/S1026022600000364 |