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1. Introduction

In 1986, Babcock and Westervelt [1] first introduced an inertial term into neural networks. Second-
order inertial neural networks are an extension of traditional neural networks that include a second-
order term in their update formula. In the practical application of neural networks, such addition
of inertial terms can lead to more complicated dynamical behaviors, such as bifurcation and chaos
[2]. In the past decade, researchers have applied second-order inertial neural networks to various
tasks, including recommendation systems, image recognition, and natural language processing. They
have shown that these networks can achieve faster convergence and better generalization compared to
traditional neural networks. Many efforts have been devoted for stability analysis of the inertial neural
networks, and many interesting results have been established, such as [3–5].

Fuzzy cellular neural networks are combined with fuzzy logic and neural networks, which were
initially introduced by Yang and Yang [6] in 1996. For neural networks, fuzzy logic can be used to
handle uncertain inputs or outputs by defining fuzzy membership functions, which enables the network
to make decisions based on partial or ambiguous information. Since fuzzy neural networks are more
suitable and potential to tackle practical general problems, during the past few decades, a lot of results
on the stability behaviors for fuzzy neural networks with delay have been obtained, see [7–14] and the
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references therein.
As we all know, compared with integer-order derivative, fractional-order derivatives provide a mag-

nificent approach to describe memory and hereditary properties of various processes. Thus, it becomes
more convenient and accurate to neural networks using fractional-order derivatives than integer-order
ones. Dynamical behavior analysis, as well as existence, uniqueness, and stability of the equilibrium
point of fractional order neural networks, has concerned growing interest in the past decades. Recently,
the various kinds of stability problems for fractional-order neural networks, including Mittag-Leffler
stability, asymptotic stability and uniform stability have been widely discussed, and some excellent
results were obtained in both theory and applications. See, for example, previous works [15–23], and
the references therein.

Fractional-order fuzzy cellular neural networks (FOFCNNs) are a type of neural network that com-
bines the concepts of fuzzy logic and fractional calculus. They have been applied in various fields,
including image processing, control systems, and pattern recognition. The analysis of stability for
fractional-order fuzzy cellular neural networks requires the use of specialized methods, such as the
fractional Lyapunov method and the Lyapunov function based on fuzzy sets to verify global, asymp-
totic and finite-time stability. For example, by using the fractional Barbalats lemma, Riemann-Liouville
operator and Lyapunov stability theorem, Chen et.al. in [24] studied the asymptotic stability of delayed
fractional-order fuzzy neural networks with fixed-time impulse. Zhao et.al. [25] investigated the finite-
time synchronization for a class of fractional-order memristive fuzzy neural networks with leakage and
transmission delays. In [26], Yang et.al. studied the finite-time stability for fractional-order fuzzy cel-
lular neural networks involving leakage and discrete delays. By applying Lyapunov stability theorem
and inequality scaling skills, Syed Ali et.al. [27] considered the impulsive effects on the stability equi-
librium solution for Riemann-Liouville fractional-order fuzzy BAM neural networks with time delay.
Recently, Hu et.al. [28] studied the finite-time stabilization of fractional-order quaternion-valued fuzzy
NNs.

To the best of our knowledge, there is no paper on the global Mittag-Leffler stability of the frac-
tional order fuzzy inertial neural networks with delays in the literature. There are several difficulties in
handling fractional-order fuzzy inertial neural networks (FOFINNs). First, designing the structure and
parameters of FOFINNs is challenging because of the high dimensionality of the network. Second,
training FOFINNs is computationally intensive and requires specialized optimization algorithms. Fi-
nally, the interpretability and explainability of FOFINNs can be difficult, as the fuzzy logic, fractional
calculus components and inertial terms can make it difficult to understand the underlying mechanisms
of the model.

Motivated by the previous works mentioned above, we first propose a class of new Capoto
fractional-order fuzzy inertial neural networks (CFOFNINND) with delays. The primary contributions
of this paper can be summarized as follows:

(1) The global fractional Halanay inequalities and Lyapunov functional approach for studying the
global Mittag-Leffler stability (MLS) of Caputo fractional-order fuzzy neural-type inertial neural net-
works with delay (CFOFNINND) are introduced;

(2) A new sufficient condition of the existence and uniqueness of the equilibrium solution for an
CFOFNINND is established by means of Banach contraction mapping principle;

(3) The GMLS conditions are established, which are concise and easy to verify.
The remaining of this paper is structured as follows. In section 2, we will provide some lemmas that
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will help us to prove our main results. In section 3, the existence and uniqueness of equilibrium point of
CFOFNINND are proved by using contraction mapping principle. Moreover, by constructing suitable
Lyapunov functional, using the global fractional Halanay inequalities, the global Mittag-Leffler stabil-
ity of CFOFNINND is derived. Additionally, a numerical example is provided to show the feasibility
of the approaches in section 4. Finally, this article is concluded in Section 5.

2. Preliminaries

In this paper, we consider the following fractional-order fuzzy neural-type inertial neural networks
with delay (FOFNINND):

CDβ(CDβxi)(t) = −ai
CDβxi(t) − cixi(t) +

n∑
j=1

ai j f j(x j(t)) +
n∑

j=1

bi jµ j

+

n∑
j=1

ci jg j(x j(t − τ)) +
n∧

j=1

αi j f j(x j(t − τ)) +
n∨

j=1

βi jg j(x j(t − τ))

+

n∧
j=1

Ti jµ j +

n∨
j=1

Hi jµ j + Ii,

(2.1)

where CDβxi(t) = 1
Γ(1−β)

∫ t

0
(t − τ)−βx′i(τ)dτ denotes the Caputo fractional derivative of order β (0 < β ≤

1), n is the amount of units in the neural networks, xi(t) represents the state of ith neuron, ai > 0, ci > 0
are constants, τ > 0 is the time delay, f j(x j(t)) represents the output of neurons at time t, g j(x j(t − τ))
represents the output of neurons at time t− τ, ai j responds to the synaptic connection weight of the unit
j to the unit i at time t, ci j responds to the synaptic connection weight of the unit j to the unit i at time
t − τ j, and represent the fuzzy OR and fuzzy AND mapping, respectively; αi j, βi j, Ti j and Hi j denote
the elements of fuzzy feedback MIN template, fuzzy feedback MAX template, fuzzy feed-forward
MIN template and fuzzy feed-forward MAX template, respectively; µi j denotes the external input; Ii

represents the external bias of ith neuron.
The initial conditions for system (2.1) is

xi(s) = ϕi(s), CDβxi(s) = ψi(s), s ∈ [−τ, 0]. (2.2)

Remark 2.1. If β = 1, then system (2.1) is reduce to the following delayed fuzzy inertial neural
networks :

x′′i (t) = −aix′i(t) − cixi(t) +
n∑

j=1

ai j f j(x j(t)) +
n∑

j=1

bi jµ j

+

n∑
j=1

ci jg j(x j(t − τ)) +
n∧

j=1

αi j f j(x j(t − τ)) +
n∨

j=1

βi jg j(x j(t − τ))

+

n∧
j=1

Ti jµ j +

n∨
j=1

Hi jµ j + Ii.

In this section, we present some definitions and lemmas about Caputo fractional calculus, which
will be used in the subsequent theoretical analysis.
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Definition 2.1 [29]. The fractional integral of order α > 0 for a function x(t) is defined as

D−αx(t) =
1
Γ(α)

∫ t

0
(t − τ)α−1x(τ)dτ.

Definition 2.2 [30]. The Caputo derivative with fractional order α for a continuous function x(t) is
denotes as

CDαx(t) =
1

Γ(m − α)

∫ t

0
(t − τ)m−α−1x(m)(τ)dτ,

in which m − 1 < α < m, m ∈ Z+. Particularly, when 0 < α < 1

CDαx(t) =
1

Γ(1 − α)

∫ t

0
(t − τ)−αx′(τ)dτ.

According to Definition 2.2, we have

CDα(kx(t) + ly(t)) = kCDαx(t) + lCDαy(t), ∀k, l ∈ R.

Definition 2.3 [31]. The equilibrium point x∗ = (x∗1, x
∗
2, · · · , x

∗
n)T of CFOFNINND (2.1) is said to

be globally Mittag-Leffler stable, if there exists positive constant γ, such that for any solution x(t) =
(x1(t), x2(t), · · · , xn(t)) of (2.1) with initial value (2.2), we have

∥x(t) − x∗∥ ≤ M(∥ϕ∥, ∥ψ∥)Eα(−γtα), t ≥ 0,

where

∥x(t) − x∗∥ =
n∑

i=1

|xi(t) − x∗i |, ∥ϕ∥ = sup
−τ≤s≤0

n∑
i=1

|ϕi(s)|, ∥ψ∥ = sup
−τ≤s≤0

n∑
i=1

|ψi(s)|,

M(∥ϕ∥, ∥ψ∥) ≥ 0 and Eα(·) is a Mittag-Leffler function.

Remark 2.2. The global Mittag-Leffler stability implies global asymptotic stability.

Lemma 2.1 [31]. Let 0 < α < 1. If G(t) ∈ C1[t0,+∞), then

CDα|G(t)| ≤ sgn(G(t))CDαG(t), t ≥ t0.

Lemma 2.2 [32]. Assume x(t) and y(t) be two states of system (2.1), then we have∣∣∣∣∣∣∣
n∧

j=1

αi j f j(x j(t)) −
n∧

j=1

αi j f j(y j(t))

∣∣∣∣∣∣∣ ≤
n∑

j=1

|αi j|| f j(x j(t)) − f j(y j(t)))|,

∣∣∣∣∣∣∣
n∨

j=1

βi jg j(x j(t)) −
n∨

j=1

βi jg j(y j(t))

∣∣∣∣∣∣∣ ≤
n∑

j=1

|βi j||g j(x j(t)) − g j(y j(t)))|.

Lemma 2.3 [33]. Let a, b, c, ρ : [0,∞) → R be continuous functions and b, c, ρ be nonnegative.
Assume that

sup
t≥0

[a(t) + b(t)] = Λ < 0, sup
t≥0

−c(t)
a(t) + b(t)

< +∞, ρ(t) ≤ h f or all t ≥ 0.
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If a nonnegative continuous function u : [−h,T ]→ R satisfies the following fractional inequality

CDαu(t) ≤ a(t)u(t) + b(t)u(t − ρ(t)) + c(t), t ≥ 0,

u(θ) = φ(θ), −h ≤ θ ≤ 0,

then
u(t) ≤ Eα(λ∗tα) sup

−h≤θ≤0
|φ(θ)| + sup

0≤T

−c(t)
a(t) + b(t)

, t ≥ 0,

where λ∗ = inf
λ

{
λ − a(t) − b(t)

Eα(λhα) ≥ 0, ∀t ≥ 0
}
.

In particular, if b(t) and c(t) are bounded functions, namely 0 ≤ b(t) ≤ b̄ and 0 ≤ c(t) ≤ c̄ for all
t > 0, then

u(t) ≤ Eα(λ̄tα) sup
−h≤θ≤0

|φ(θ)| −
c̄
Λ
, f or all t ≥ 0,

where λ̄ = (1 + Γ(1 − α)b̄hα)−1Λ.

From Lemma 2.3, we obtain

Corollary 2.4. If a nonnegative continuous function u : [−h,T ] → R satisfies the following fractional
inequality

CDαu(t) ≤ −µu(t) + γu(t − ρ(t)), t ≥ 0,

u(θ) = φ(θ), −h ≤ θ ≤ 0,

where µ > γ > 0 and ρ(t) ≤ h, then

u(t) ≤ Eα(λ̄tα) sup
−h≤θ≤0

|φ(θ)|, f or all t ≥ 0,

where λ̄ = −(1 + Γ(1 − α)γhα)−1(µ − γ) < 0.

3. Main results

In this section, we will study the existence, uniqueness and globally Mittag-Leffler stability of the
equilibrium point for delayed Caputo fractional-order fuzzy inertial neural networks (2.1).

For β > 0, we know that CDβa = 0 for a constant a. Thus, we have the following definition.

Definition 3.1. A constant vector x∗ = (x∗1, x
∗
2, ..., x

∗
n)T is an equilibrium point of system (2.1) if and

only if x∗ is a solution of the following equations:

− cix∗i +
n∑

j=1

ai j f j(x∗j) +
n∑

j=1

bi jµ j +

n∑
j=1

ci jg j(x∗j) +
n∧

j=1

αi j f j(x∗j)

+

n∨
j=1

βi jg j(x∗j) +
n∧

j=1

Ti jµ j +

n∨
j=1

Hi jµ j + Ii = 0, i = 1, 2, · · · n.

(3.1)

Theorem 3.1. Assume that
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(H1) The functions f j, g j ( j = 1, 2, ..., n) are Lipschitz continuous. That is, there exist positive
constants F j,G j such that

| f j(x) − f j(y)| ≤ F j|x − y|, |g j(x) − g j(y)| ≤ G j|x − y|, ∀x, y ∈ R.

hold. If there exist constants mi (i = 1, 2, ..., n) such that the following inequality holds

mici −

n∑
j=1

[m jFi(|a ji| + |α ji|) + m jGi(|c ji| + |β ji|)] > 0, i = 1, 2, ..., n, (3.2)

then CFOFNINND (2.1) has a unique equilibrium point.

Proof. ∀u = (u1, u2, ..., un)T , we constructing a mapping P(u) = (P1(u), P2(u), ..., Pn(u))T as follows

Pi(u) = mi

n∑
j=1

ai j f j

(
u j

c jm j

)
+ mi

n∑
j=1

bi jµ j + mi

n∑
j=1

ci jg j

(
u j

c jm j

)
+ mi

n∧
j=1

αi j f j

(
u j

c jm j

)

+ mi

n∨
j=1

βi jg j

(
u j

c jm j

)
+ mi

n∧
j=1

Ti jµ j + mi

n∨
j=1

Hi jµ j + miIi.

(3.3)

Let u = (u1, u2, ..., un)T and v = (v1, v2, ..., vn)T . From (H1) and Lemma 2.2, we obtain that

|Pi(u) − Pi(v)| ≤

∣∣∣∣∣∣∣mi

n∑
j=1

ai j

[
f j

(
u j

c jm j

)
− f j

(
v j

c jm j

)]∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣mi

n∑
j=1

ci j

[
g j

(
u j

c jm j

)
− g j

(
v j

c jm j

)]∣∣∣∣∣∣∣
+mi

∣∣∣∣∣∣∣
n∧

j=1

αi j f j

(
u j

c jm j

)
−

n∧
j=1

αi j f j

(
v j

c jm j

)∣∣∣∣∣∣∣
+mi

∣∣∣∣∣∣∣
n∨

j=1

βi jg j

(
u j

c jm j

)
−

n∨
j=1

βi jg j

(
v j

c jm j

)∣∣∣∣∣∣∣
≤ mi

n∑
j=1

|ai j|F j

c jm j
|u j − v j| + mi

n∑
j=1

|ci j|G j

c jm j
|u j − v j|

+mi

n∑
j=1

|αi j|F j

c jm j
|u j − v j| + mi

n∑
j=1

|βi j|G j

c jm j
|u j − v j|

= mi

n∑
j=1

1
c jm j

[F j(|ai j| + |αi j|) +G j(|ci j| + |βi j|)]|u j − v j|.

Moreover, we obtain by (3.2) that
n∑

i=1

|Pi(u) − Pi(v)| ≤
n∑

i=1

mi

n∑
j=1

1
c jm j

[F j(|ai j| + |αi j|) +G j(|ci j| + |βi j|)]|u j − v j|
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=

n∑
i=1

n∑
j=1

1
c jm j

[miF j(|ai j| + |αi j|) + miG j(|ci j| + |βi j|)]|u j − v j|

=

n∑
i=1

 n∑
j=1

1
cimi

[m jFi(|a ji| + |α ji|) + m jGi(|c ji| + |β ji|)]

 |ui − vi|

<

n∑
i=1

|ui − vi|,

which implies that ∥P(u) − P(v)∥ < ∥u − v∥. That is, P is a contraction mapping on Rn. So, we can
conclude that there exists a unique fixed pint u∗ such that P(u∗) = u∗, i.e.,

u∗i = mi

n∑
j=1

ai j f j

( u∗j
c jm j

)
+ mi

n∑
j=1

bi jµ j + mi

n∑
j=1

ci jg j

( u∗j
c jm j

)
+ mi

n∧
j=1

αi j f j

( u∗j
c jm j

)

+mi

n∨
j=1

βi jg j

( u∗j
c jm j

)
+ mi

n∧
j=1

Ti jµ j + mi

n∨
j=1

Hi jµ j + miIi.

Assume x∗i =
u∗i

cimi
, we can get

− cix∗i +
n∑

j=1

ai j f j(x∗j) +
n∑

j=1

bi jµ j +

n∑
j=1

ci jg j(x∗j) +
n∧

j=1

αi j f j(x∗j)

+

n∨
j=1

βi jg j(x∗j) +
n∧

j=1

Ti jµ j +

n∨
j=1

Hi jµ j + Ii = 0,

which indicates that x∗i is a unique solution of (3.1). So, x∗ is the unique equilibrium point of system
(2.1). This proof is completed. □

By using the transformation xi(t) = yi(t) + x∗i , the equilibrium point of (2.1) can be shifted to the
origin, that is, system (2.1) can be transformed into

CDβ(CDβyi)(t) = −ai
CDβyi(t) − ciyi(t) +

n∑
j=1

ai j[ f j(y j(t) + x∗j) − f j(x∗j)]

+

n∑
j=1

ci j[g j(y j(t − τ j) + x∗j) − g j(x∗j)] +
n∧

j=1

αi j[ f j(y j(t − τ j) + x∗j) − f j(x∗j)]

+

n∨
j=1

βi j[g j(y j(t − τ j) + x∗j) − g j(x∗j)], i = 1, 2, · · · , n.

(3.4)

In (3.4), we adopt a variable transformation : zi(t) = Dβyi(t) + kiyi(t). Then system (3.4) can be
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rewritten as follows:



Dβzi(t) = −(ai − ki)zi(t) − (ci − (ai − ki)ki)yi(t) +
n∑

j=1

ai j[ f j(y j(t) + x∗j) − f j(x∗j)]

+

n∑
j=1

ci j[g j(y j(t − τ j) + x∗j) − g j(x∗j)] +
n∧

j=1

αi j[ f j(y j(t − τ j) + x∗j) − f j(x∗j)]

+

n∨
j=1

βi j[g j(y j(t − τ j) + x∗j) − g j(x∗j)], t ≥ 0,

Dβyi(t) = zi(t) − kiyi(t).

(3.5)

The initial conditions for system (3.5) is

yi(s) = ϕi(s) − x∗i , zi(s) = ψi(s) + ki(ϕi(s) − x∗i ), −τ ≤ s ≤ 0. (3.6)

Theorem 3.2. Let 0 < β ≤ 1. Assume that (H1) holds. If there exist proper positive parameters mi and
pi, satisfying (3.2) and the following inequality :

min
1≤i≤n

ki −
Fi

mi

n∑
j=1

p j|a ji| −
pi

mi
|ci − (ai − ki)ki|, (ai − ki) −

mi

pi


> max

1≤i≤n

Fi

mi

n∑
j=1

p j|α ji| +
Gi

mi

n∑
j=1

p j(|c ji| + |β ji|)

 ,
(3.7)

then CFOFNINND (2.1) has a unique equilibrium point which is globally Mittag-Leffler stable.

Proof. By Theorem 3.1 we know that (2.1) has a unique equilibrium point (x∗1, x
∗
2, ..., x

∗
n). Construct

the Lyapunov function candidate defined by

V(t) =
n∑

i=1

mi|yi(t)| +
n∑

i=1

pi|zi(t)|,

where mi, pi are unknown positive constants, which need to be determined. Based on Lemma 2.1 and
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(3.5), calculating the fractional-order derivative of V(t) :

CDαV(t) =
n∑

i=1

misgn(yi(t))CDαyi(t) +
n∑

i=1

pisgn(zi(t))CDαzi(t)

=

n∑
i=1

pisgn(zi(t))
{
− (ai − ki)zi(t) − (ci − (ai − ki)ki)yi(t) +

n∑
j=1

ai j( f j(y j(t) + x∗j) − f j(x∗j))

+

n∑
j=1

ci j[g j(y j(t − τ j) + x∗j) − g j(x∗j)] +
n∧

j=1

αi j[ f j(y j(t − τ j) + x∗j) − f j(x∗j)]

+

n∨
j=1

βi j[g j(y j(t − τ j) + x∗j) − g j(x∗j)]
}
+

n∑
i=1

misgn(yi(t))(zi(t) − kiyi(t)]

≤

n∑
i=1

pi
{
− (ai − ki)|zi(t)| + |ci − (ai − ki)ki||yi(t)| +

n∑
j=1

|ai j|F j|y j(t)|

+

n∑
j=1

|ci j|G j|y j(t − τ j)| +
n∑

j=1

|αi j|F j|y j(t − τ j)|

+

n∑
j=1

|βi j|G j|y j(t − τ j)|
}
+

n∑
i=1

mi(|zi(t)| − ki|yi(t)|)

= −

n∑
i=1

mi

ki −
Fi

mi

n∑
j=1

p j|a ji| −
pi

mi
|ci − (ai − ki)ki|

 |yi(t)|

−

n∑
i=1

pi

[
(ai − ki) −

mi

pi

]
|zi(t)|

+

n∑
i=1

mi

Fi

mi

n∑
j=1

p j|αi j| +
Gi

mi

n∑
j=1

p j(|c ji| + |βi j|)

 |yi(t − τi)|

≤ −µV(t) + γV(t − τ),
(3.8)

where

µ = min
1≤i≤n

ki −
Fi

mi

n∑
j=1

p j|a ji| −
pi

mi
|ci − (ai − ki)ki|, (ai − ki) −

mi

pi

 ,
and

γ = max
1≤i≤n

Fi

mi

n∑
j=1

p j|α ji| +
Gi

mi

n∑
j=1

p j(|c ji| + |β ji|)

 .
Based on Corollary 2.4, one can infer that

V(t) ≤ Eα(λ̄tα) sup
−τ≤θ≤0

|V(θ)|,

where λ̄ = −(1 + Γ(1 − α)γτα)−1(µ − γ), and

V(θ) =
n∑

i=1

mi|ϕi(s) − x∗i | +
n∑

i=1

pi|ψi(s) + ki(ϕi(s) − x∗i )|.
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Obviously, we have

sup
−τ≤θ≤0

|V(θ)| ≤ max
1≤i≤n
{mi + ki pi, pi} (∥ϕ∥ + ∥ψ∥) +max

1≤i≤n
(mi + ki pi)∥x∗∥

= L1(∥ϕ∥ + ∥ψ∥) + L2,

where L1 = max
1≤i≤n
{mi + ki pi, pi} > 0 and L2 = max

1≤i≤n
(mi + ki pi)∥x∗∥ > 0. Thus, one obtain

∥y(t)∥ + ∥z(t)∥ ≤
1

min1≤i≤n{mi, pi}

 n∑
i=1

mi|yi(t)| +
n∑

i=1

pi|zi(t)|


≤ Ω(L1(∥ϕ∥ + ∥ψ∥) + L2)Eα(λ̄tα),

where Ω = 1
min1≤i≤n{mi,pi}

> 0, which implies that the unique equilibrium point (x∗1, x
∗
2, ..., x

∗
n) of

CFOFNINND (2.1) is globally Mittag-Leffler stable. The theorem 3.2 is proved. □

4. An example

Example 4.1. Consider a two-dimensional Caputo fractional fuzzy inertial neural network with delay:

CDβ(CDβxi)(t) = −ai
CDβxi(t) − cixi(t) +

2∑
j=1

ai j tanh(x j(t)) +
2∑

j=1

bi jµ j

+

2∑
j=1

ci j sin(x j(t − τ j)) +
2∧

j=1

αi j tanh(x j(t − τ j)) +
2∨

j=1

βi j tanh(x j(t − τ j))

+

2∧
j=1

Ti jµ j +

2∨
j=1

Hi jµ j + Ii, t ≥ 0, i = 1, 2.

(4.1)

Two initial values of system (4.1) are given by

x1(s) = 0.8, x2(s) = −0.1, CDβx1(s) = −1.8, CDβx2(s) = 1.2, −1 ≤ s ≤ 0, (4.2)

and
x1(s) = 1.0, x2(s) = 0.5, CDβx1(s) = −2.0, CDβx2(s) = −1.3, −1 ≤ s ≤ 0. (4.3)

The parameters of system (4.1) are set as β = 0.85, τ1 = τ2 = 1, a1 = 7, a2 = 6, c1 = 11.3, c2 = 8.7,
a11 = 0.3, a12 = −0.2, c11 = −0.4, c12 = 0.1, α11 = 0.2, α12 = −0.6, β11 = 0.1, β12 = 0.3, a21 = −0.2,
a22 = 0.3, c21 = 0.1, c22 = −0.2, α21 = −0.35, α22 = 0.2, β21 = −0.2, β22 = 0.3, I1 = 3.4490,
I2 = 3.3377, µi = 0.3 (i = 1, 2), and

(bi j)2×2 = (Ti j)2×2 = (Hi j)2×2 =

[
0.2 0
0 0.3

]
.

The Lipchitz constants F j = 1 for f j(·) = tanh(·) and G j = 1 for g j(·) = sin(·) ( j = 1, 2). Let
parameters mi = pi = 1 (i = 1, 2). Then,

m1c1 −

2∑
j=1

[m jF1(|a j1| + |α j1|) + m jG1(|c j1| + |β j1|)] = 9.45 > 0,
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and

m2c2 −

2∑
j=1

[m jF2(|a j2| + |α j2|) + m jG2(|c j2| + |β j2|)] = 6.5 > 0,

which implies that (3.2) holds. Thus, by Theorem 3.1, the equilibrium point (x∗1, x
∗
2) of system (4.1) is

the unique solution of the following system:

− cix∗i +
2∑

j=1

ai j tanh(x∗j) +
2∑

j=1

bi jµ j +

2∑
j=1

ci j sin(x∗j) +
2∧

j=1

αi j tanh(x∗j)

+

2∨
j=1

βi j sin(x∗j) +
2∧

j=1

Ti jµ j +

2∨
j=1

Hi jµ j + Ii = 0, i = 1, 2.

By matlab, we easy to get that x∗1 = 0.3 and x∗2 = 0.4. Obviously, the conditions (H1) hold. Moreover,
letting parameters k1 = 4 and k2 = 3, one has

k1 −
F1

m1

2∑
j=1

p j|a j1| −
p1

m1
|c1 − (a1 − k1)k1| = 2.8,

k2 −
F2

m2

2∑
j=1

p j|a j2| −
p2

m2
|c2 − (a2 − k2)k2| = 2.2,

(a1 − k1) −
m1

p1
= 2, (a2 − k2) −

m2

p2
= 2,

F1

m1

2∑
j=1

p j|α j1| +
G1

m1

2∑
j=1

p j(|c j1| + |β j1|) = 1.35,

and

F2

m2

2∑
j=1

p j|α j2| +
G2

m2

2∑
j=1

p j(|c j2| + |β j2|) = 1.7.

Thus µ = 2 > γ = 1.7, that is the inequality (3.7) holds. Thus, by Theorem 3.2, the unique equilibrium
point (0.3, 0.4) of the system (4.1) is globally Mittag-Leffler stable (see Figures 1 and 2).
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Figure 1. Behavior of the solutions of system (4.1) with initial value (4.2).
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Figure 2. Behavior of the solutions of system (4.1) with initial value (4.3).
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5. Conclusions

The theoretical research on the fractional-order neural-type inertial neural networks is still relatively
few. In this paper, we first propose and investigate a class of delayed fractional-order fuzzy inertial
neural networks. With the help of contraction mapping principle, the sufficient condition is obtained to
ensure the existence and uniqueness of equilibrium point of system (2.1). Based on the global fractional
Halanay inequalities, and by constructing suitable Lyapunov functional, some sufficient conditions are
obtained to ensure the global Mittag-Leffler stability of system (2.1). These conditions are relatively
easy to verify. Finally, a numerical example is presented to show the effectiveness of our theoretical
results.
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