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algorithm is implemented after converting the desired equation into an associated integral equation
and gives us a linear system of algebraic equations. Then, we can find the eigenvalues by calculating
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1. Introduction

The Sturm-Liouville problems with integer derivatives have been a significant field of research
for centuries, due to their importance in science, engineering, and mathematics [3]. This equation
has many applications in various fields of science and engineering, including sea-breeze flow [23],
unidirectional pressure-driven flow of a second-grade fluid in a plane channel with impermeable solid
walls [10], and flow of the antarctic circumpolar current in rotating spherical coordinates [24]. It is
crucial to determine both the eigenvalues and the corresponding eigenfunctions for this equation, as
they play a very significant role in theory and applications. It is often difficult, if not impossible,
to accurately determine the eigenvalue. Numerical methods can be extremely useful to achieve
this objective, including boundary value methods [18], Legendre-Galerkin-Chebyshev collocation
method [15], Numerov’s method [5], the Chebyshev collocation method [36], etc.
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When dealing with a fourth-order Sturm-Liouville equation, implementing four boundary
conditions makes the problem more complex. Dealing with two boundary conditions at each end of the
computational domain can be a challenging problem in certain applications. For instance, an eigenvalue
problem of a fourth-order differential equation is derived by analyzing the free lateral vibration of
a homogeneous beam using the Euler-Bernoulli beam theory [35]. A fourth-order Sturm-Liouville
equation is generally considered as

(p(t)w′′)′′ = G(t,w,w′,w′′, λ) = (q(t)y′)′ + (λr(t) − w(t))w, t ∈ [a, b],

appropriate boundary conditions on w, w′, pw′′ or/and (pw′′)′ − qy′. Here, p(t), q(t), r(t) and w(t) are
piecewise continuous functions, and p(t), r(t) ≥ 0 [8].

Several numerical solutions have been found for calculating eigenvalues of fourth-order Sturm-
Liouville problems, including the extend sampling method [12], the Adomian decomposition
method [8], the Boubaker polynomial expansion scheme [37], variational iteration methods [31], the
Haar wavelet method [34].

Fractional calculus, which generalizes the derivative of a function to non-integer order, has remained
a mystery to mathematicians for 300 years. The branch’s origin dates back to a 1695 letter from
Leibniz to L’Hospital. It was reported in the nineteenth century that some theoretical work was related
to fractional calculus. In recent decades, there has been an increasing interest in fractional calculus
due to its applications in various fields of physics and engineering. For comprehensive reviews,
refer to Podlubny [29], Oldham and Spanier [28], and Miller and Ross [27]. Fractional differential
equations arise in various physical phenomena, including mathematical biology, fluid mechanics,
electrochemistry, and viscoelasticity [6, 13, 25, 26]. Several analytical and numerical methods have
been implemented and developed in recent years to solve the fractional differential equation, such
as the multiwavelet Galerkin method [7, 33], Adomian decomposition [16], the Kuratowski MNC
technique [9], the B-spline collocation method [22], least-squares finite element [17], etc.

The objective of this paper is to present a simple and accurate method, based on the pseudospectral
method, to find the eigenvalues of

cD
µ4
0 (w)(t) +

3∑
i=1

qi(t)cD
µi
0 (w)(t) + q0(t)w(t) = λr(t)w(t), (1.1)

with the boundary conditions

3∑
j=0

sk, jD
j(w)(0) = 0, k = 0, 1, . . . , S − 1,

3∑
j=0

sk, jD
j(w)(1) = 0, k = S , . . . , 3, (1.2)

where sk, j for k, j = 0, 1, . . . , 3 are given real constants, qi(t), i = 1, . . . , 3, and r(t) are in L1[0, 1], and
µi for i = 1, . . . , 4 are real numbers such that µi ∈ (i − 1, i]. The constant S indicates the number of
conditions in point 0. D and cD

µ
0 indicate the derivative operator and the Caputo fractional derivative,

respectively. In this problem, λ is called an eigenvalue.
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It is important to note that fractional Sturm-Liouville problems (1.1)-(1.2) arise frequently when
dealing with separable linear fractional partial differential equations [4]. In [19], the authors utilized
the series solution to solve this equation. This is the first report on fourth-order fractional Sturm-
Liouville problems with varying coefficients. The presented work can be considered the second paper
in this field, which solves the problem with a simpler method and more accurately.

The rest of the paper is structured in the following manner: Chebyshev Cardinal polynomials
and their properties are reviewed and introduced in Section 2. In Section 3, the pseudospectral
method is applied to solve fourth-order fractional Sturm-Liouville problems using Chebyshev cardinal
polynomials. Section 4 is dedicated to illustrate the applicability and accuracy of the method. To sum
up our work, we have included a conclusion in Section 5.

2. Chebyshev cardinal polynomials

Given N ≥ 0. Let R := {r j : TN+1(r j) = 0, j ∈ N} be the set of the roots of the TChebyshev
polynomial TN+1 in whichN := {1, 2, . . . ,N + 1}. Recall that the TChebyshev polynomials are defined
on [−1, 1] by

TN+1(cos(θ)) = cos((N + 1)θ), N = 0, 1, . . . ,

and their roots are specified by

r j := cos
(
(2 j − 1)π
2N + 2

)
, ∀ j ∈ N . (2.1)

Shifted TChebyshev polynomials for generic intervals [a, b] are related to the TChebyshev
polynomials by

T ∗N+1(t) := TN+1

(
2(t − a)
b − a

− 1
)
, (2.2)

and the roots of T ∗N+1 in its turn are obtained by t j =
(r j+1)(b−a)

2 + a, j ∈ N .
The Chebyshev cardinal function (CCF) is one of the orthogonal polynomials’ most notable cardinal

functions [1, 11, 32]. Considering T ∗N+1,t(t j) as the derivative of function T ∗N+1(t) with respect to the
variable t, Chebyshev cardinal functions can be denoted by

ψ j(t) =
T ∗N+1(t)

T ∗N+1,t(t j)(t − t j)
, j ∈ N . (2.3)

The most striking feature of these polynomials is their cardinality, i.e.,

ψ j(ti) = δ ji, (2.4)

in which δ ji indicates the Kronecker delta. This property is mostly important as it enables us to
approximate any function w ∈ Hα([a, b]) (the Sobolev space Hα([a, b]) will be briefly introduced)
easily and without integration in finding the coefficients, viz,

w(t) ≈
N+1∑
j=1

w(t j)ψ j(t) := wN(t). (2.5)
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In what follows, since we will need the definition of Sobolev spaces and their norm, we will provide
a brief definition of it. For α ∈ N, we denote by Hα([a, b]) the sobolev space of functions w(t) which
have continuous derivatives up to order α such thatDβw ∈ L2([a, b]):

Hα([a, b]) =
{
w ∈ Cα([a, b]) : Dβw ∈ L2([a, b]),N ∋ β ≤ α

}
,

with the norm

∥w∥2
Hα([a,b]) =

α∑
j=0

∥w( j)(t)∥2L2([a,b]), (2.6)

and the semi-norm

| f |2
Hα,N ([a,b]) =

N∑
j=min{α,N}

∥w( j)(t)∥2L2([a,b]). (2.7)

Lemma 2.1. (cf [14]) Given N ≥ 0, the error of approximation (2.5), obtained using the shifted
Chebyshev nodes {t j} j∈N , can be bounded

∥w − wN∥L2([a,b]) ≤ CN−α|w|Hα,N ([a,b]), (2.8)

where the constant C is independent of N. Furthermore, it can be verified that

∥w − wN∥H l([a,b]) ≤ CN2l−1/2−α|w|Hα,N ([a,b]), α ≥ 1, 1 ≤ l ≤ α. (2.9)

2.1. Operational matrix of derivative

Let Ψ(t) be a vector function with entries {ψ j} j∈N . We specify the operational matrix of derivatives
for CCFs as

D(Ψ)(t) = DΨ(t). (2.10)

To evaluate the elements of D, they can be obtained via the following process using the
approximation (2.5). It follows from (2.5) that

D j,i = D(ψ j)(ti). (2.11)

It is worth noting that there is another presentation of CCFs [2]

ψ j(t) = ϱ
N+1∏

κ=1,κ, j

(t − tκ), (2.12)

where ϱ = 22N+1/((b − a)N+1T ∗N+1,t(t j)). When the operator D acts on both sides of (2.12) and taking
into account (2.3), we obtain

D(ψ j)(t) = ϱ
N+1∏
κ=1
κ, j

D(t − tκ) = ϱ
N+1∑
k=1
k, j

N+1∏
κ=1
κ, j,k

(t − tκ)

=

N+1∑
k=1
k, j

T ∗N+1(t)
(t − t j)(t − tk)T ∗N+1,t(t j)

=

N+1∑
k=1
k, j

1
(t − tk)

ψ j(t). (2.13)
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It can be shown by (2.11) and (2.13) that

D(ψ j)(ti) =



N+1∑
k=1
k, j

1
(ti−tk) , j = i,

ϱ
N+1∏
κ=1
κ, j,i

(ti − tκ), j , i.

2.2. Operational matrix of fractional integration

Considering the interval [0, 1], the fractional integral is defined as

I
µ
0(w)(t) :=

1
Γ(µ)

∫ t

0
(t − ζ)µ−1w(ζ)dζ, t ∈ [0, 1], µ ∈ R+, (2.14)

where Γ(µ) denotes the Gamma function.
Note that there is a square matrix Iµ such that the acting of the fractional integral operator on Ψ(x)

can be represented by it, viz,
I
µ
0(Ψ(t)) ≈ IµΨ(t), t ∈ (0, 1). (2.15)

It is straightforward to show that the elements of this matrix can be obtained by

(Iµ) j,i = I
µ
0(ψ j(ti)). (2.16)

After performing some simple calculations, it can be inferred from [30] that
N+1∏
κ=1
κ, j

(t − tκ) =
N∑
κ=0

ω j,κtN−κ, (2.17)

in which

ω j,0 = 1, ω j,κ =
1
κ

κ∑
k=0

χ j,kω j,κ−k, j = 1, . . . ,N + 1, κ = 1, . . . ,N,

and

χ j,k =

N+1∑
i=1
i, j

tk
i , j = 1, . . . ,N + 1, k = 1, . . . ,N.

Motivated by (2.12), the CCFs can be determined by

ψ j(t) = ϱ
N∑
κ=0

ω j,κtN−κ. (2.18)

Using this definition of CCFs, (2.16) leads to

I
µ
0(ψ j(t)) = ϱI

µ
0(

N∑
κ=0

ω j,κtN−κ) = ϱ
N∑
κ=0

ω j,κI
µ
0(tN−κ) = ϱ

N∑
κ=0

ω j,κ
Γ(N − κ + 1)
Γ(N − κ + µ + 1)

tN−κ+µ.

So it can be concluded from (2.16) that

(Iµ) j,i = I
µ
0(ψ j(ti)) = ϱ

N∑
κ=0

ω j,κ
Γ(N − κ + 1)
Γ(N − κ + µ + 1)

tN−κ+µ
i . (2.19)
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2.3. Operational matrix of fractional derivative

Definition 2.1. [21] Let µ ∈ R+ and m := ⌈µ⌉ ∈ N ( ⌈.⌉ denotes the ceiling function). The Caputo
fractional derivative is denoted by

cD
µ
0(w)(t) :=

1
Γ(m − µ)

∫ t

0

f (m)(ζ)dζ
(t − ζ)µ−m+1 =: Im−µ

0 Dm(w)(t), (2.20)

whereDm := dm

dtm .

Lemma 2.2. [21, cf Corollary 2.3(a)] Let µ ∈ R+, m := ⌈µ⌉ ∈ N and µ < N0. Then we have

∥cD
µ
0(w)∥C ≤

1
Γ(m − µ)(m − µ + 1)

∥w∥Cm . (2.21)

Taking into account Definition 2.1 and the operational matrices of derivative D and fractional
integral Iµ, when the Caputo derivative operator acts on Ψ(x), it follows that

cD
µ
0(Ψ)(t) = Im−µ

0 Dm(Ψ(t)) ≈ Dm(Im−µ)Ψ(t). (2.22)

So, the operational matrix for the Caputo operator is specified by

Dµ = Dm(Im−µ). (2.23)

3. Materials and methods

The present chapter will be focused on solving fourth-order fractional Sturm-Liouville
equations (SLEs) with the Caputo operator using an efficient and accurate scheme based on the
pseudospectral method. As mentioned above, we consider the fourth-order fractional Sturm-Liouville
equation (SLE)

cD
µ4
0 (w)(t) +

3∑
i=1

qi(t)cD
µi
0 (w)(t) + q0(t)w(t) = λr(t)w(t), (3.1)

equipped with the boundary conditions
3∑

j=0

sk, jD
j(w)(0) = 0, k = 0, 1, . . . , S − 1,

3∑
j=0

sk, jD
j(w)(1) = 0, k = S , . . . , 3, (3.2)

where sk, j for k, j = 0, 1, . . . , 3 are given real constants, qi(t), i = 1, . . . , 3, and r(t) are in L1[0, 1],
and µi for i = 1, . . . , 4 are real numbers such that µi ∈ (i − 1, i]. The constant S indicates the number
of conditions in point 0. In this problem, λ is called an eigenvalue and is not given in advance. Our
objective while solving the Sturm-Liouville equation is to determine the eigenvalues.

One of the common schemes that is used to solve a differential equation is based on converting it to
an integral equation. To give rise to such a conversion for Eq (3.1)-(3.2), we reformulate it as

w(t) −
3∑

i=0

w(i)(0)
i!

(t)i + I
µ4
0

 3∑
i=1

qi
cD

µi
0 (w) + q0w − λrw

 (t) = 0. (3.3)
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Equation (3.3) is written due to the following formula [21]:

I
µ
0

cD
µ
0(w)(t) = w(t) −

⌈µ⌉−1∑
i=0

w(i)(0)
i!

(t)i.

In this equation, we either have the values of the w(t) function and its derivatives at zero or assume
them as unknowns and add them to our unknowns.
Pseudospectral scheme

To obtain the pseudospectral discretization of Eq (3.3), the unknown solution w is approximated
using Chebyshev cardinal polynomials as

w(t) ≈
N+1∑
j=1

w jψ j(t) = WTΨ(t) := wN(t), (3.4)

where the (N + 1)-dimensional vector W consists of the unknowns (w j)N+1
j=1 . Substituting wN instead of

w in (3.3), we have

wN(t) − w̄(t) + Iµ4
0

 3∑
i=1

qi
cD

µi
0 (wN) + q0wN − λrwN

 (t) = 0, (3.5)

in which w̄(t) =
∑3

i=0
w(i)(0)

i! (t)i. Now, we approximate all terms in (3.5) as follows:

• Using the Chebyshev cardinal polynomials, w̄ can be approximated as

w̄(t) ≈
N+1∑
j=1

w̄(t j)ψ j(t) = W̄TΨ(t), (3.6)

where W̄ is a (N + 1)-dimensional vector whose elements may be known or unknown according
to the boundary conditions.
• Let us put gi(t) := cD

µi
0 (wN)(t), i = 1 : 3. Taking into account the operational matrices of

derivative or the operational matrix for the Caputo operator, we obtain

gi(t) ≈ WT DµiΨ(t) := g̃i(t), i = 1, . . . , 3. (3.7)

By approximating qi(t)g̃i(t) using CCFs, one can write

qi(t)g̃i(t) ≈ QT
i Ψ(t), i = 1, . . . , 3, (3.8)

where Qi is a (N + 1)-dimensional vector whose elements consist of unknowns w j, j = 1, . . . ,N +
1. Finally, taking the fractional integral from both sides of (3.8) and taking into account the
operational matrix of the fractional integral, we obtain

I
µ4
0

(
qi

cD
µi
0 (wN)

)
(t) ≈ QT

i Iµ4Ψ(t) = WTGiIµ4Ψ(t), i = 1, . . . , 3, (3.9)

in which Gi is an (N + 1)-dimensional matrix with constant entries.
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• Putting g0 := q0wN and then approximating it using CCFs leads to

g0(t) ≈ QT
0Ψ(t) = WTG0Ψ(t), (3.10)

in which Q0 is a (N + 1)-dimensional vector whose elements consist of unknowns w j, j =
1, . . . ,N + 1, and G0 is an (N + 1)-dimensional matrix with constant entries. Taking the fractional
integral from both sides of (3.11) and motivated by the operational matrix of the fractional
integral, it is easy to achieve

I
µ4
0 (q0wN)(t) ≈ WTG0Iµ4Ψ(t). (3.11)

• Similar to the previous one, the term Iµ4
0 (rwN)(t) can be approximated by

I
µ4
0 (rwN)(t) ≈ WTG̃Iµ4Ψ(t), (3.12)

where G̃ is an (N + 1)-dimensional matrix with constant entries.

Let us consider G :=
∑3

i=0 Gi. By this assumption, the residual function can be determined by

r(t) :=
(
WT

(
I +G + λG̃

)
Iµ4 − W̄T

)
Ψ(t). (3.13)

Our goal is to make r(t) as close to zero as possible. By utilizing the shifted Chebyshev nodes {t j} j∈N

and taking into account Eq (2.4), the pseudospectral method results in

WT
(
I +G + λG̃

)
Iµ4 = W̄T . (3.14)

Setting ΥT :=
(
I +G + λG̃

)
Iµ4 , we have

WTΥT − W̄T = 0, (3.15)

or equivalently, we have
ΥW − W̄ = 0. (3.16)

To determine the w̄ function, 4−s unknowns are undetermined. So, (3.16) consists of N+1 equations
with N+5− s unknowns. We add 4− s equations to this system of equations according to the boundary
conditions (3.2), and then we obtain a new system

A(λ)Ŵ = 0, (3.17)

in which Ŵ consists of all unknowns, including w j, j = 1, . . . ,N + 1, and 4 − s unknowns of function
w̄. Also, A(λ) is a matrix whose elements are functions of λ. In order for Eq (3.17) to have a non-zero
eigenvector, it is necessary that the matrix A(λ) is singular when λ is an eigenvalue. Equivalently,
we have

det(A(λ)) = 0. (3.18)

Note that det(A(λ)) refers to the characteristic polynomial, and λ represents its root. To calculate the
roots, the Maple software can be used.

It is worth realizing that the eigenvector Ŵ associated with λ belongs to

ker(A(λ)) = {Ŵ ∈ (CN+5−s or RN+5−s) : A(λ)Ŵ = 0}. (3.19)
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Since Ŵ must be nonzero, the matrix A(λ) has a nonzero kernel. On the other hand, since we obtain
the eigenvalues approximately, the characteristic polynomial det(A(λ)) does not become exactly zero
in these eigenvalues. Still, it will have a value very close to zero. To find the eigenvector we
are looking for, we need to identify the eigenvalue of A(λ) that is the smallest and then select the
eigenvector corresponding to that eigenvalue. Finally, we obtain the eigenvector corresponding to the
eigenvalue λ, via

wN(t) =
N+1∑
j=1

(Ŵ) jψ j(t)/∥
N+1∑
j=1

(Ŵ) jψ j(t)∥. (3.20)

4. Numerical results

Example 4.1. As the first illustrative example, the fourth-order fractional SLE is considered

cD
µ
0(w)(t) = λw(t), t ∈ [0, 1], µ ∈ (3, 4],

with conditions

w(0) = w′′(0) = w(1) = w′′(1) = 0.

The exact eigenvalues can be calculated by λl = (lπ)4 [19, 20] for µ = 4.

Table 1 is tabulated to demonstrate the approximation of the first three eigenvalues for different
values of µ when the value of N is fixed. As we vary µ from 3.7 to 4, we aim to verify that the
eigenvalues approach the eigenvalues for µ = 4 when µ values approach the exact ones for 4. What is
important is that eigenvalues approach the exact ones, when µ tends to 4.

Table 2 illustrates the convergence of the method. To this end, we simulate the method for different
values of N when the µ value is fixed. Motivated by this, we can deduce that the presented scheme is
accurate.

For more illustration, the approximate eigenfunctions corresponding to the first 3 eigenvalues are
plotted in Figure 1. This figure shows that for each eigenvalue λl, the corresponding eigenfunction wl

has l − 1 zeros.

Table 1. Approximation of the first three eigenvalues for different values of µ, taking N = 14,
for Example 4.1.

Proposed method Exact λl = (lπ)4 |λexact − λapp|

λl µ = 3.7 µ = 3.9 µ = 3.9999 µ = 4 µ = 4 µ = 4

1 91.412589 93.533296 97.404401 97.409091 97.409091 6.788699 × 10−14

2 944.783464 1324.152539 1558.289749 1558.545458 1558.545457 1.110047 × 10−6

3 4543.822643 6455.773848 7888.357324 7890.136319 7890.136374 5.477432 × 10−5
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Table 2. The approximate values of the first 3 eigenvalues of Example 4.1.

N 8 10 12 14

µ = 3.7
λ1 91.377000 91.416368 91.413186 91.412589
λ2 953.287633 944.426910 944.756238 944.783464
λ3 15055.665758 4386.905998 4558.717081 4543.822643

µ = 4
λ1 97.409088 97.409091 97.409091 97.409091
λ2 1558.316284 1558.550994 1558.545364 1558.545458
λ3 7894.315144 7890.054147 7890.138950 7890.136319
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(d) µ = 4

Figure 1. The approximate eigenfunctions corresponding to the first 3 eigenvalues for
Example 4.1.

Example 4.2. For the second example, the fourth-order fractional Sturm-Liouville equation

cD
µ
0w(t) − 0.02x2w′′(t) − 0.04xw′(t) + (0.0001x4 − 0.02)w(t) = λw(t), t ∈ [0, 5],

with conditions
w(0) = w′′(0) = w(5) = w′′(5) = 0,

is considered [20, 37].
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Table 3 presents the numerical results for the first three eigenvalues. In this table, we can find
the results of the differential quadrature method [37] and the polynomial expansion and integral
technique [20] with the presented technique results and compare them.

Table 4 illustrates the convergence of the method. To this end, we simulate the method for different
values of N when the µ value is fixed.

Finally, for more illustration, the approximate eigenfunctions corresponding to the first 3
eigenvalues are plotted in Figure 2. This figure shows that for each eigenvalue λl, the corresponding
eigenfunction wl has l − 1 zeros.
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(c) µ = 3.9
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(d) µ = 4

Figure 2. The approximate eigenfunctions corresponding to the first 3 eigenvalues for
Example 4.2.

Table 3. Approximation of the first three eigenvalues for different values of µ, taking N = 14,
for Example 4.2.

Proposed method [20] [37]

λl µ = 3.7 µ = 3.9 µ = 3.99 µ = 4 µ = 4(N = 18) µ = 4(N = 18)

1 0.333934329 0.245006699 0.217754219 0.215050864 0.215050864 0.215050864
2 2.737183568 2.763022355 2.755635985 2.754809934 2.754809934 2.754809934
3 12.50376002 12.75075971 13.16177525 13.21535154 13.21535154 13.21535154
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Table 4. The approximate values of the first 3 eigenvalues of Example 4.2.

N 10 12 14 16 18

µ = 4
λ1 0.215050831 0.215050864 0.21505086436957 0.21505086436978 0.21505086436971
λ2 2.754825011 2.754809613 2.75480993456002 2.75480993461635 2.75480993468371
λ3 13.21563660 13.21533073 13.2153515442156 13.2153515095064 13.2153515413336

5. Conclusions

The Sturm-Liouville problem is a significant ordinary differential equation with numerous
applications in various fields of science. Thus, solving it and obtaining its eigenvalues and
eigenfunctions can be an intriguing task. In this study, we propose a method for solving the fourth-order
fractional Sturm-Liouville equation using Chebyshev cardinal polynomials and the pseudospectral
method, which is highly efficient. This field has only seen a few numerical methods to solve this
type of equation. This paper is the second of its kind. The numerical examples that have been solved
confirm the accuracy and efficiency of the method used.

According to the experimental observations, the following can be concluded:

(1) The proposed schemes are effective for solving these types of equations.
(2) The eigenvalues approach the exact ones when µ tends to 4.
(3) The presented method is convergent.
(4) The abilities of the presented method are simplicity, high accuracy, and reduction of

computational cost by avoiding integration in finding coefficients.

In the future, we plan to extend our numerical approaches for solving higher-order fractional Sturm-
Liouville equations and fractional Dirac equations.
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