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surfaces (S S ) in Euclidean 3-space E3. S S is created by moving a planar curve through space such that
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1. Introduction

Singularity theory (S T ) is commonly discussed in physics and mathematics for analyzing curves
and surfaces. Differential geometry locates curves and surfaces using functions with one and two
parameters, respectively. Recently, S T has been widely used in fields such as medical imaging and
computer vision (see, e.g., [1–4]).

A swept surface S S is constructed by moving a planar curve (generatrix) through space with the
movement of the plane orthogonal to it. Sweeping along a line is an accurate method in geometric
modeling, often involving sweeping over a spine curve (S C) (path). The significance of this evolution,
which depends on the movement through space and the intrinsic deformation of shape, lies in the
concept of a swept theme. The type of swept surface is determined by the choice of the generatrix and
the path. For example, rotating one curve over another creates a swept surface. Various types of swept
surfaces include tubular surfaces, pipe surfaces, strings, and canal surfaces [5,6]. The geometry of S S
can be described employing the Serret-Frenet frame (S FF) of space curves, an orthonormal frame that
is related in some studies to eigenvalue problems [7,8]. Xu et al. [9] identified the geometric attributes
required for canal surfaces as a type of S S . They also derived conditions to avoid local self-intersection
in canal surfaces and formulated expressions for their area and Gaussian curvature. Izumiya et al. [10]
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studied conformable circular surfaces along with traditional ruled surfaces . Ro and Yoon [11] studied
tubes in Euclidean 3-space, deriving expressions for Gaussian curvature, mean curvature, and second
Gaussian curvature. Cui et al. [12] explored the kinematic geometry of circular surfaces with fixed
radii based on Euclidean invariants.

However, the S FF is not applicable to every point on a curve. A novel frame is needed for certain
types of mathematical analyses, particularly those done via computer graphics. Bishop et al. [13]
developed a novel moving frame along a space curve, allowing for movement along the curve using
parallel vector fields. This is known as the Bishop frame (BF) or rotation minimizing frame (RMF).
The BF has been successfully applied in fields such as biology, where it can model the shape of DNA
sequences by employing curves defined by the BF. The BF can also be employed to track to the
positioning of cameras in computer animations [14,15]. Recently, numerous descriptions of S S and
developable surfaces have been acquired using the BF [16–19]. Various methods have been used to
generate new curves in different spaces, as described in [20–26].

However, to the best of our knowledge, no existing literature discusses the singularities of S S with
a conjugate mate curve using the Type-2 BF. Then, utilizing the BF, we classify generic models and
introduce a novel invariant associated with the singularities of the S S . The main generic singularities
of these S S are the well-known cuspidal edge and swallowtail, which are illustrated by this novel
invariant. We use traditional and established outcomes in S T to demonstrate our major outcomes
in this paper. In addition, this paper establishes the necessary and adequate situations for when the
S S with conjugate mate curve is a developable ruled surface (DRS ) and discusses further epilogues.
Regarding the DRS , we inspected the S T of the DRS . Finally, to highlight the major outcomes, two
examples are presented and analyzed in detail. It is worth noting that Mathematica was used to generate
figures in this study.

2. Preliminaries

The ambient space considered in this article is the Euclidean 3-space E3, with generic references
taken from [5,6]. Let γ(s) be a unit speed curve with the S F systems denoted as {κ(s), τ(s), t(s), p(s),
b(s)} in E3. Then, γ(s) is termed an S F curve if κ > 0, and τ , 0. So, we obtain

t′

p′

b′

 =


0 κ 0
−κ 0 τ

0 −τ 0




t
p
b

 ; ( ′ =
d
ds

), (2.1)

where t = γ
′

(s), p(s) = γ
′′

(s)/
∥∥∥∥γ′′ (s)∥∥∥∥, and b(s) = t×p are the unit tangent vector, the principal normal

vector, and the binormal vector, respectively.
Lemma 2.1. Given the above notation, there exists a unit speed conjugate mate curve β(s) =

∫
b(s)ds.

The pair {γ(s), β(s)} is referred to as a conjugate couple [27].
The Type-2 BF of γ(s) is defined as [18]:

b′

ξ
′

1
ξ
′

2

 =


0 ε1 ε2

−ε1 0 0
−ε2 0 0




b
ξ1

ξ2

 , (2.2)
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where
ε1(s) = τ cosψ(s), ε2(s) = −τ sinψ(s), ψ(s) = − tan−1

(
ε2
ε1

)
; ε1(s) , 0,

ψ(s) = ψ0 −

s∫
s0

κ(s)ds, and ψ0 = ψ(s0).

 (2.3)

We find that {b, ξ1, ξ2} is a Type-2 BF. The relation matrix can be expressed as:
b
ξ1

ξ2

 =


0 0 1
sinψ − cosψ 0
cosψ sinψ 0




t
p
b

 . (2.4)

The frame {b, ξ1, ξ2} has a Darboux vector ω(s)= −ε2(s)ξ1(s) + ε1(s)ξ2(s). The Bishop spherical
Darboux indicatrix is:

d(s) = −
ε1√
ε2

1 + ε2
2

(
ε2

ε1
ξ1 − ξ2

)
. (2.5)

Thus, we introduce a new geometric invariant σ(s) = ε1ε
′

2 − ε2ε
′

1.
A surfaceM can be expressed as follows:

M : y(s, u) = (x1 (s, u) , x2 (s, u) , x3 (s, u)) , (s, u) ∈ D ⊆ R2. (2.6)

The unit vector normal is defined by ζ(s, u)= ys × yu ‖ys × yu‖
−1, where yi =

yy
∂i . A RS in E3 is given

by:
D(s, u) = α(s) + uξ(s), u ∈ R, (2.7)

where α(s) is the base (directrix) curve, and ξ(s) is the director curve. The straight lines s→ α(s)+uξ(s)
are called rulings. It is well known that D(s, u) is a DRS iff det(α

′

, ξ, ξ
′

) = 0.

3. Swept surfaces due to Type-2 BF

This section presents the representation of S S using the Type-2 BF along the spine curve β(s) as
follows: The S S related with β(s) corresponds to a one-parameter set of unit spheres centered at β(s).
It is simple to find that the intersection between the spheres from the set and the S S forms a great circle
on the unit sphere within the subspace S p{ξ1, ξ2}, of β(s). Let y be the location connecting a point on
the curve β(s) with a point on the surface. Then,

M : y = β(s) + r,

where the unit vector r ∈ S p{ξ1, ξ2}. Let the angle u be the angle from r to ζ1. Thus, we write:

r(u)= cos uξ1 + sin uξ2,

which is the distinctive circles of S S . By combining the last two equations, we obtain the
parameterization of the S S ,

M : y(s, u) = β(s) + cos uξ1(s) + sin uξ2(s). (3.1)
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This representation of M excludes S S with a constant vector ζ, as its geometric assets are not
particularly remarkable and are relatively easy to examine.
Remark 3.1. Perspicuously, if β(s) is a line, then the S S is a circular cylinder with β(s) as the symmetry
axis. However, if β(s) is a circle, then S S forms a torus.

We now examine the relationship between the regularity of β(s) and the associated S S . Then,

ys(s, u) = (1 − ε1 cos u + ε2 sin u)t,
yu(s, u) = − sin uξ1 + cos uξ2.

}
(3.2)

Then,
ζ(s, u) :=

yu × ys

‖yu × ys‖
= cos uξ1 + sin uξ2. (3.3)

It can be seen from Eq (3.3) that ζ(s, u) lies in the osculating plane of the curve γ(s), where <
ζ,b >=0. Thus, the normal of the profile curve q(u) = (0, cos u sin u)T and the surface normal ζ(s, u)
are identical.
Proposition 3.1. Let q be a point in the osculating plane of the S C γ(s). The tangent vector of its
trajectory γ(s) + A(s)q(u), created by the Type-2 BF, is permanently parallel to t.

The main aim of this article is to establish the following theorem: Note that (LD) refers to locally
diffeomorphic.
Theorem 3.1. Under the above conditions, with ε2

1 + ε2
2 , 0. We have:

A- (1) d(s) is LD to a line {0}×R at s0 iff σ(s0) , 0;
(2) d(s) is LD to the cusp C × R at s0 iff σ(s0) = 0, and σ

′

(s0) , 0.
B- (1)M is LD to the cuspidal edge (CE) at (s0, u0) iff x = ±d(s0), and σ(s0) , 0;

(2)M is LD to the swallowtail (S W) at (s0, u0) iff x = ±d(s0), σ(s0) = 0, and σ
′

(s0) = 0.
Here, C × R =

{
(x1, x2)|x2

1 = x3
2

}
× R, CE =

{
(x1, x2, x3)|x1=u, x2=v2, x3=v3

}
, and

SW =
{
(x1, x2, x3)|x1 = u, x2 = 3v2 + uv2, x3 = 4v3 + 2uv

}
(See Figure 1).

(a) C × R. (b) CE. (c) SW.

Figure 1. (a) Cusp, (b) Cuspidal edge, and (c) Swallowtail.

3.1. Bishop height functions

Now, we will identify two families of Bishop height functions that will be useful in characterizing
the singularities ofM as follows [1–3]: χ : I × S2 → R, by χ(s, x) =< β(s), x >. We refer to this as the
Bishop height function. We denote χx(s) = χ(s, x) for any stationary unit vector x ∈ S2. Additionally,
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we define χ̃ : I × S2 × R → R, by χ̃(s, x,w) =< β, d > −w. This is called the extended Bishop height
function of β(s). We denote χ̃x(s) = χ̃(s, x,w).
Proposition 3.2. Let β(s) be a conjugate mate curve with ε2

1 + ε2
2 , 0. Then:

(A)
(1)- χ

′

x(s) = 0 iff x = a1ξ1 + a2ξ2, and a2
1 + a2

2 = 1;
(2)- χ

′

x(s) = χ
′′

x (s) = 0 iff x = ±d(s);
(3)- χ

′

x(s) = χ
′′

x (s) = χ
′′′

x (s) = 0 iff x = ±d(s), and σ(s) = 0;
(4)- χ

′

x(s) = χ
′′

x (s) = χ
′′′

x (s) = χ(4)
x (s) = 0 iff x = ±d(s), and σ(s) = σ

′

(s) = 0;
(5)- χ

′

x(s) = χ
′′

x (s) = χ
′′′

x (s) = χ(4)
x (s) = χ(5)

x (s) = 0 iff x = ±d(s), and σ(s) = σ
′

(s) = σ
′′

(s) = 0.
(B)

(1)- χ̃x(s) = 0 iff there exist < β, x >= w;
(2)- χ̃x(s) = χ̃

′

x(s) = 0 iff there exist a1, a2 ∈ R such that x = cos uξ1 + sin uβ2, and < β, x >= w;
(3)- χ̃x(s) = χ̃

′

x(s) = χ̃
′′

x (s) = χ̃
′′

x (s) = 0 iff x = ±d(s), < β, x >= w, and σ(s) = 0;
(4)- χ̃x(s) = χ̃

′

x(s) = χ̃
′′

x (s) = χ̃
′′

x (s) = χ̃
′′′

x (s) = 0 iff x = ±d(s), < β, x >= w, and σ(s) = σ
′

(s) = 0;

(5)- χ̃x(s) = χ̃
′

x(s) = χ̃
′′

x (s) = χ̃
′′

x (s) = χ̃
′′′

x (s) = χ̃
(4)

x (s) = 0 iff x = ±d(s), < β, x >= w and
σ(s) = σ

′

(s) = σ
′′

(s) = 0;

(6)- χ̃x(s) = χ̃
′

x(s) = χ̃
′′

x (s) = χ̃
′′

x (s) = χ̃
′′′

x (s) = χ̃
(4)

x (s) = χ̃
(5)

x (s) = 0 iff x = ±d(s), < β, x >= w, and
σ(s) = σ

′

(s) = σ
′′

(s) = σ
′′′

(s) = 0.
Proof. From Eq (2.2), we have

∥∥∥b′
∥∥∥2
, 0 iff ε2

1 + ε2
2 , 0.

(A). (1)- Since χ
′

x(s) =< b, x >= 0, and {b, ξ1, ξ2} is an orthonormal frame along β(s), there exist a1,
a2 ∈ R such that x = a1ξ1 + a2ξ2. Given that x ∈ S2, we get a2

1 + a2
2 = 1. The converse is also holds.

(2)- Since χ
′′

x(s) =< b′ , x >=< ε1ξ1 − ε2ξ2, x > = 0, we have a1ε1 − a2ε2 = 0. Given that a2
1 + a2

2 = 1

that a1 = ±ε2/
√
ε2

1 + ε2
2 , and a2 = ∓ε1/

√
ε2

1 + ε2
2 .

Therefore, we have:

x =

∓ ε1√
ε2

1 + ε2
2

(
ε2

ε1
ξ1 + ξ2

) (s) = ±d(s).

Therefore, χ
′

x(s) = χ
′′

x (s) = 0 iff x = ±d(s).
(3)- Since χ

′′′

x (s) =< b
′′

, x >=< −
(
ε2

1 + ε2
2

)
b + ε

′

1ξ1 − ε
′

2ξ2, x > = 0

∓
ε1√
ε2

1 + ε2
2

ε2ε
′

1 − ε1ε
′

2

ε1

 (s) = ±

 σ√
ε2

1 + ε2
2

 (s) = 0.

Thus, χ
′

x(s) = χ
′′

x (s) = χ
′′′

x (s) = 0 iff x = ±d(s), and σ(s) = 0.
(4)- Since

χ
(4)

x (s) =< b
′′′

, x >=< −3(ε1ε
′

1 + ε2ε
′

2)b +
(
ε
′′

1 − ε1

(
ε2

1 + ε2
2

))
ξ1

+
(
−ε

′′

2 + ε2

(
ε2

1 + ε2
2

))
ξ2, x > = 0
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by the conditions in (3), we have:

±
ε1√
ε2

1 + ε2
2


(
ε2ε

′

1 − ε1ε
′

2

)′
ε1

 (s) = ±

 σ
′√

ε2
1 + ε2

2

 (s) = 0.

Thus, χ
′

x(s) = χ
′′

x (s) = χ
′′′

x (s) = χ(4)
x (s) = 0 iff x = ±d(s), and σ(s) = σ

′

(s) = 0.

(5)- Since χ
(5)

x (s) =< b
(4)

, x > 0, we have:

<
((
ε2

1 + ε2
2

)2
− 4

(
ε2ε

′′

2 + ε1ε
′′

1

)
− 3

(
ε
′2
1 + ε

′2
2

))
b+(

ε
′′′

1 − ε1

(
ε
′

1ε1 + ε
′

2ε2

)
− ε

′

1

(
ε2

1 + ε2
2

))
ξ1+(

−ε
′′′

2 − ε2

(
ε
′

1ε1 + ε
′

2ε2

)
+ ε

′

2

(
ε2

1 + ε2
2

))
ξ2, x >= 0.


By using the conditions in (4), we have:

±
ε1√
ε2

1 + ε2
2

ε2ε
′′′

1 + ε1ε
′′′

2 −
(
ε2ε

′

1 + ε1ε
′

2

) (
ε2

1 + ε2
2

)
ε1

 (s) = 0.

Therefore, χ
′

x(s) = χ
′′

x (s) = χ
′′′

x (s) = χ(4)
x (s) = χ

(5)

x = 0 iff x = ±d(s), and σ(s) = σ
′

(s) = σ
′′

(s) = 0.
(B). Using a similar calculation as in the proof of (A), we can get (B) (1). �

From now on, we shall often omit the parameter s.
Proposition 3.3. Let β(s) be a conjugate mate curve with ε1(s) , 0. Then, we have σ(s) = 0 iff

d(s) = ±
ε1√
ε2

1 + ε2
2

(
ε2

ε1
ξ1 + ξ2

)

is a constant vector.
Proof. Suppose that ε1 , 0. Then, we have:

d
′

(s) =
(ε2/ε1)

′(
1 + ε2

2/ε
2
1

)
−ε1ξ1 + ε2ξ2√

ε2
1 + ε2

2

 =
1
ε2

1

σ(s)(√
ε2

1 + ε2
2

)3 (−ε1ξ1 + ε2ξ2) .

Thus, d′(s) = 0 iff σ(s) = 0. �
We can also state the following propositions.

Proposition 3.4. Let β(s) be a conjugate mate curve with ε1(s) , 0, and σ(s) = (ε2/ε1)
′

= 0. Then,
(a) ξ1 lies on a circle on S2 centered at the constant vector d0.
(b) ξ2 lies on a circle on S2 centered at the constant vector d0.

Proof. (a) Suppose that ε1 , 0, and σ(s) = (ε2/ε1)
′

= 0. Since

d(s) = ±
ε1√
ε2

1 + ε2
2

(
ε2

ε1
ξ1 + ξ2

)
,
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we find that

< d, ξ1 >= ±
ε1√
ε2

1 + ε2
2

<

(
ε2

ε1
ξ1 + ξ2

)
, ξ1 >= ±

1√
1 + ε2

2/ε
2
1

(
ε2

ε1

)
= const.

This shows that ξ2 lies on a circle on S2 centered at the constant vector d0.
(b) Suppose that ε1 > 0. By a similar computation, we find that

< d, ξ2 >=
ε1√
ε2

1 + ε2
2

<

(
ε2

ε1
ξ1 + ξ2

)
, ξ2 >=

1√
1 + ε2

2/ε
2
1

= const

is constant. This means that the second Bishop spherical indicatrix, lies on a circle on S2 centered at
the constant vector d0. �

3.2. Unfolding of functions by one-variable

We employed significant results from the singularity theory for families of function germs [1–3].
Let G: (R × Rr, (s0, x0))→ R be a differentiable function, and let g(s) = Gx0(s, x0). Then, G is called an
r-parameter unfolding of g(s). We say that g(s) hasAk-singularity at s0 if g(p)(s0) = 0 for all 1 ≤ p ≤ k,
and g(k+1)(s0) , 0. We also consider that g has A>k-singularity (k > 1) at s0. Let the (k − 1)-jet of the
partial derivative ∂F

∂xi
at s0 be j(k−1)

(
∂G
∂xi

(s, x0)
)

(s0) = Σk−1
j=0L ji (s − s0)j (excluding the constant term), for

i = 1, ..., r. Then G(s) is called an p-versal unfolding (VU) if the k × r matrix of coefficients
(
L ji

)
has rank k (k ≤ r). Next, we define useful sets related to the unfolding with the above notations. The
discriminant set of G is the set

DG =

{
x∈Rr| there exists s with G (s, x) =

∂G

∂s
(s, x) = 0 at (s, x)

}
. (3.4)

The bifurcation set of G is the set

BG =

{
x∈Rr | there exists s with

∂G

∂s
(s, x) =

∂2G

∂s2
(s, x) = 0 at (s, x)

}
. (3.5)

Then, similar to the results of [1–3], we state the following theorem.
Theorem 3.2. Let G: (R × Rr, (s0, x0)) → R be an r-parameter unfolding of G(s), which has the Ak
singularity at s0.

Suppose that G is a p-versal unfolding.
(a) If k = 1, then DG is LD to {0}×Rr−1, and BG = ∅;
(b) If k = 2, then DG is LD to C×Rr−2, and BG isD to {0}×Rr−1;
(c) If k = 3, then DG is LD to S W×Rr−3, and BG isD to C×Rr−2.
Hence, we have the following main proposition.

Proposition 3.5. Let β(s) be a conjugate mate curve with ε2
1 + ε2

2 , 0. (1). If χx(s) = χ(s, x) has an
Ak-singularity (k = 2, 3) at s0 ∈ R, then χ is a p − VU of χx0(s0). (2). If χ̃x(s) = χ̃(s, x,w) has an
Ak-singularity (k = 2, 3) at s0 ∈ R, then χ̃ is a p − VU of χ̃x0(s0)
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Proof. (1) Since x = (x0,x1, x2) ∈ S2, x2
0 + x2

1 + x2
2 = 1, x0, x1, and x2 cannot be all zero. Suppose that

x2 , 0. Then, by x2 = ±

√
1 − x2

0 − x2
1, we have that

χ(s, x) = x0β0(s) + x1β1(s) ±
√

1 − x2
0 − x2

1β2(s).

Thus, we have:
∂χ

∂x0
= β0(s) ∓ x0β2(s)√

1−x2
0−x2

1

, ∂χ

∂x1
= β1(s) ∓ x1β2(s)√

1−x2
0−x2

1

,

∂2χ

∂s∂x0
= β

′

0(s) ∓ x0β
′

2(s)
√

1−x2
0−x2

1

, ∂2χ

∂s∂x1
= β

′

1(s) ∓ x1β
′

2(s)
√

1−x2
0−x2

1

.


Therefore, the 2-jets of ∂χ

∂xi
at s0 (i=0, 1) are as follows: Let x0= (x00,x10, x20) ∈ S2, and assume that

x20 , 0, then

j1
(
∂χ

∂x0
(s, x0)

)
=

(
β
′

0(s) ∓ x0β
′

2(s)
√

1−x2
0−x2

1

)
(s − s0),

j1
(
∂χ

∂x1
(s, x0)

)
=

(
β
′

1(s) ∓ x1β
′

2(s)
√

1−x2
0−x2

1

)
(s − s0),


and

j2
(
∂χ

∂x0
(s, x0)

)
=

(
β
′

0(s) ∓ x0β
′

2(s)
√

1−x2
0−x2

1

)
(s − s0)

+1
2

(
β
′′

0(s) ∓ x0β
′′

2 (s)
√

1−x2
0−x2

1

)
(s − s0)2 ,

j2
(
∂χ

∂x1
(s, x0)

)
=

(
β
′

1(s) ∓ x1β
′

2(s)
√

1−x2
0−x2

1

)
(s − s0)

1
2

(
β
′′

1 (s) ∓ x1β
′′

2 (s)
√

1−x2
0−x2

1

)
(s − s0)2


(3.6)

(i) If χx0(s0) has theA2-singularity at s0, then χ
′

x0
(s0) = 0. So, the 1 × 2 matrix of coefficients

(
L ji

)
is:

A =

(
β
′

0(s) ∓ x0β
′

2(s)
√

1−x2
0−x2

1

β
′

1(s) ∓ x1β
′

2(s)
√

1−x2
0−x2

1

)
. (3.7)

Suppose that rank(A)=0, then we have:

β
′

0(s) = ±
x00β

′

2(s)√
1 − x2

0 − x2
1

, β
′

1(s) = ±
x10β

′

2(s)√
1 − x2

0 − x2
1

. (3.8)

Since
∥∥∥β′(s0)

∥∥∥ = ‖b(s0)‖ = 1, we have β
′

2(s0) , 0, leading to the following contradiction:

0 = <
(
β
′

0(s0), β
′

1(s0), β
′

2(s0)
)
, (x00,x10, x20) > (3.9)

= β
′

0(s0)x00 + β
′

1(s0)x10 + β
′

2(s0)x20

=
x2

00β
′

2(s0)
x20

+
x2

10β
′

2(s0)
x20

+ β
′

2(s0)x20 (3.10)

=
β
′

2(s0)
x20

(
x2

00 + x2
10 + x2

20

)
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=
β
′

2(s0)
x20

, 0.

Therefor, rank(A) = 1, and χ is the (p) VU of χx0 at s0.
(ii) If χx0(s0) has theA3-singularity at s0 ∈ R, then χ

′

x0
(s0) = χ

′′

x0
(s0) = 0, and by Proposition 3.2:

d(s0)= ±
ε1√
ε2

1 + ε2
2

(
ε2

ε1
ξ1 + ξ2

)
, (3.11)

where ε1 > 0, σ
′

(s0) = 0, and σ
′′

(s0) , 0. Note that x20 = ±

√
1 − x2

0 − x2
1 It is sufficient to have

rank(B)= 2, where

B =

(
L11 L12

L21 L22

)
=

 β
′

0(s) − x0β
′

2(s)
x20

β
′

1(s) − x1β
′

2(s)
x20

β
′′

0(s) − x0β
′′

2 (s)
x20

β
′′

1 (s) − x1β
′′

2 (s)
x20

 . (3.12)

Then, the determinant of this matrix at s0 is

det (B) =
1

x20

(
(β
′

1β
′′

2 − β
′′

1β
′

2),−(β
′

0β
′′

2 − β
′′

0β
′

2), (β
′

0β
′′

1 − β
′′

0β
′

1)
) 

x0

x0

x20


=

1
x20

{
(β
′

0, β
′

1, β
′

2) × (β
′′

0 , β
′′

1 , β
′′

2 )
} 

x0

x0

x20


=

1
x20

{
β
′

× β
′′
} 

x0

x0

x20


Since β

′

= b, we have β
′′

= ε1ξ1−ε2ξ2. Substituting these into the equations, we get

det (B) =
1

x20
{b × (ε1ξ1−ε2ξ2)}


x0

x0

x20


=

1
x20

< ε2ξ1 + ε1ξ2,d0 >

=
1

x20
< ε2ξ1 + ε1ξ2,±

ε1√
ε2

1 + ε2
2

(
ε2

ε1
ξ1 + ξ2

)
>

= = ±

√
ε2

1 + ε2
2

x20
, 0.

This means that rank(B) = 2.
(2) Under the same notations as in (1), we have

χ̃(s, x,x2) = x0β0(s) + x1β1(s) ±
√

1 − x2
0 − x2

1β2(s) − x2. (3.13)
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We require the 2 × 3 matrixD to have the maximal rank, where

D =

 β
′

0(s) +
x00β2(s)

x20
β
′

1(s) ∓ x10β
′

2(s)
x20

−1

β
′′

0 +
x00β

′′

2 (s)
x20

β
′′

1 (s) ∓ x10β
′′

2 (s)
x20

0

 ,
By case (1) in Eq. (3.10), the second row ofD does not vanish, so rank(D) = 2. �

Proof of Theorem 3.1. (1) By Proposition 3.2, the bifurcation set of χ(s, x) is

Bχ =

 ε1√
ε2

1 + ε2
2

(
ε2

ε1
ξ1 + ξ2

)
|s ∈ R|s ∈ R

 . (3.14)

The assertion (1) of Theorem 3.1 follows from Propositions 3.2 and 3.5, and Theorem 3.2.
The discriminant set of χ̃(s, x) is specified as follows:

Dχ̃ = {x0 = β + cos uξ1 + sin uξ2|s ∈ R} . (3.15)

The assertion (2) of Theorem 3.1 follows from Propositions 3.2 and 3.5, and Theorem 3.2. �
Example 3.1. Let γ(s) be

γ(s) = (cos
s
√

2
, sin

s
√

2
,
s
√

2
), −

√
2π ≤ s ≤

√
2π,

Then,
t(s) = 1

√
2
(− sin s

√
2
, cos s

√
2
, 1),

p(s) = (− cos s
√

2
,− sin s

√
2
, 0),

b(s) = 1
√

2
(sin s

√
2
,− cos s

√
2
, 1),

β(s) = (− cos s
√

2
,− sin s

√
2
, s√

2
),

κ(s) = τ(s) = 1
2 .


From κ(s) = 1

2 , we find ψ(s) = s

2 . The transformation matrix is:
b
ξ1

ξ2

 =


0 0 1
sin s2 − cos s2 0
cos s2 sin s2 0




t
p
b

 .
Hence, we have

ξ1 =


ξ11

ξ12

ξ13

 =


− 1
√

2
sin s

√
2

sin s2 + cos s2 cos s
√

2
1
√

2
cos s

√
2

sin s2 + cos s2 sin s
√

2
1
√

2
sin s2

 ,
ξ2 =


ξ21

ξ22

ξ23

 =


− 1
√

2
sin s

√
2

cos s2 − sin s2 cos s
√

2
1
√

2
cos s

√
2

cos s2 − sin s2 sin s
√

2
1
√

2
cos s2

 ,
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b =


b11

b12

b13

 =


1
√

2
sin s

√
2

− 1
√

2
cos s

√
2

1
√

2

 ,
ε1 =

1
2

cos
s

2
, ε2 =

1
2

sin
s

2
.

Hence, the geometric invariant σ(s) = 1
8 , 0. The swept surface is (Figure 2)

M : y(s, u) =

(
− cos

s
√

2
,− sin

s
√

2
,
s
√

2

)
+


ξ11

ξ12

ξ13

 cos u +


ξ21

ξ22

ξ23

 sin u.

The Bishop spherical Darboux indicatrix is (Figure 3)

d(s) = sin
s

2


ξ11

ξ12

ξ13

 + cos
s

2


ξ21

ξ22

ξ23

 .

Figure 2. SS (green line) with conjugate mate curve of helix.

Figure 3. d(s) has no cusp.
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3.3. Developable surfaces

In the following, we resolve the issue where q(u) disintegrates into a line. Then, we have the
following:

D : P(s, u) = β(s) + uξ2(s), u ∈ R, (3.16)

which defines a DRS . Similarly, another DRS can be defined as:

D⊥ : P⊥(s, u) = β(s) + uξ1(s), u ∈ R. (3.17)

It is clear that P(s, 0) = β(s) (resp. P⊥(s, 0) = β(s)), 0 ≤ s ≤ L, meaning that the surface D (resp.
D⊥) intersects the curve β(s). We can effortlessly have:

D : Ps × Pu = − (1 + uε2) ξ1(s),

and
D⊥ : P⊥s × P⊥u = (1 − uε1) ξ2(s).

Thus, D (resp. D⊥) is non-singular at (s0, u0) if and only if 1 + u0ε2(s0) , 0 (resp. (1 − u0ε1(s0) , 0).
Under these conditions, the singularities of the DRS D (resp. D⊥) can be identified by employing
ε2(resp. ε1).
Theorem 3.3. Let D be the DRS defined by Eq (3.14). Then:
(1) D is LD to CE at (s0, u0) iff ε2(s0) = 0, and ε

′

2(s0) , 0;

(2) D is LD to S W at (s0, u0) iff ε2(s0) , 0, and ε
′

2(s0)
ε2

2 (s0) , 0.

Proof. If there exists a parameter s0 such that ε2(s0) = 0, and u
′

0 =
ε
′

2(s0)
ε2

2 (s0) , 0 (ε
′

2(s0) , 0), then D is LD

to CE at (s0, u0)Thus, assertion (1) holds. Also, if there exists a parameter s0 such that u0 = − 1
ε2(s0) , 0,

u
′

0 =
ε
′

2(s0)
ε2

2 (s0) = 0, and
(

1
ε2(s0)

)′′
, 0, then D is LD to S W at (s0, u0). Assertion (2) holds.�

Example 3.2. Using the data from Example 3.1, we have the following:
(1). The equation of D and its singular locus C(s) are:

D : P(s, u) = (− cos
s
√

2
,− sin

s
√

2
,
s
√

2
) + u


− 1
√

2
sin s

√
2

cos s2 − sin s2 cos s
√

2
1
√

2
cos s

√
2

cos s2 − sin s2 sin s
√

2
1
√

2
cos s2

 , u ∈ R,

and

C(s) = (− cos
s
√

2
,− sin

s
√

2
,
s
√

2
) + 2


− 1
√

2
sin s

√
2

cot s2 − cos s
√

2
1
√

2
cos s

√
2

cot s2 − sin s
√

2
1
√

2
cot s2

 .
(2). The equation of D⊥ and its singular locus C⊥(s), respectively, are:

D⊥ : P⊥(s, u) = (− cos
s
√

2
,− sin

s
√

2
,
s
√

2
) + u


− 1
√

2
sin s

√
2

sin s2 + cos s2 cos s
√

2
1
√

2
cos s

√
2

sin s2 + cos s2 sin s
√

2
1
√

2
sin s2

 ,
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and

C
⊥(s) = (− cos

s
√

2
,− sin

s
√

2
,
s
√

2
) + 2


− 1
√

2
tan s2 sin s

√
2

+ cos s
√

2
1
√

2
cos s

√
2

tan s2 + sin s
√

2
1
√

2
tan s2

 .
We address a local part of β(s) as follows: We see that ε

′

1(s) = −1
2 sin s2 , 0 for s = ±π. This

shows that the DRS D is LD to a CE, and its singular locus C(s) is LD to a line (the red lines); see
Figure 4. Moreover, the equation ε

′

2(s) = 1
2 cos s

2 = 0 gives two roots s = ±π. We can also get that
ε
′′

2 (±π/2) = ∓1
4 , 0. This shows that the DRS D⊥ is LD to an S W and its singular locus C⊥(s) is LD

to a line (the red lines) at s = ±π; see Figure 5. Notice that D and D⊥ intersect along the curve β(s) at
π/2, as shown in Figure 6.

Figure 4. P(s, u) with its singular locus in (red) and C(s).

Figure 5. P⊥(s, u) with its singular locus in (red) and C⊥(s).
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Figure 6. P⊥(s, u) and P(s, u) Intersected along spinning curve (in red).

4. Conclusions

This study focused on researching a special type of tube surface, known as the swept surface, in
Euclidean 3-space. It was created by a plane curve moving through a conjugate curve of a spatial
curve such that the motion of any point on the surface remained orthogonal to the plane. We then
attained the adequate and essential situations for this swept surface to be a DRS . Afterwards, the
issue of singularity in a DRS was inspected. We also interpreted our main outcomes by giving some
representative examples.
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