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Abstract: In this paper, an analytical and numerical technique are examined in order to analyse
the Stokes flow determination problem due to a viscous sphere droplet moving at a concentric
instantaneous position inside a spherical interface separating finite and semi-infinite immiscible fluid
phases. Here, when only one of the three phases of the fluid (micropolar fluid) has a microstructure,
attention is focused on this case. The motion is considered when Reynolds- and capillary-numbers
are low, and the droplet surface and the fluid-fluid interface have insignificant deformation. A general
solution is obtained in a spherical coordinate system based on a concentric position to analyse the slow
axisymmetric movement of the micropolar fluid, considering microrotation and velocity components.
Boundary conditions are initially fulfilled at the fluid-fluid interface and subsequently at the droplet
surface. The normalised hydrodynamic drag force applying to a moving viscous droplet appears to
be a function of the droplet-to-interface radius ratio, which increases monotonically and becomes
unbounded when the droplet surface touches the fluid-fluid interface. The numerical outcomes of the
normalised drag force acting on the viscous droplet are derived for different values of the parameters,
and are presented in a tabular and graphical framework. A comparison was made between our
numerical outcomes for the drag force and the pertinent data for the special cases found in the literature.
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Nomenclature

~q the fluid velocity vector
p the fluid pressure at any point
m the couple stress tensor
I the unit dyadic
~w the fluid vorticity vector
E2 the axisymmetric Stokesian operator
In(·) the first kind for modified Bessel function of order n
Kn(·) the second kind for modified Bessel function of order n
a radius of the spherical droplet
b radius of the spherical interface
s1, s3 the spin parameters in Section 3
s2 the spin parameters in Section 4
t(1)
rθ , t

(2)
rθ , t

(3)
rθ the shear stresses for fluid flows in Section 3

t̂(1)
rθ , t̂

(2)
rθ , t̂

(3)
rθ the shear stresses for fluid flows in Section 4

q(1)
r , q(2)

r , q(3)
r and q(1)

θ , q
(2)
θ , q

(3)
θ the velocity components for fluid flows in Section 3

q̂(1)
r , q̂(2)

r , q̂(3)
r and q̂(1)

θ , q̂
(2)
θ , q̂

(3)
θ the velocity components for fluid flows in Section 4

A1, B1, A2, B2,C2,D2, E2, F2, A3, B3 unknowns in the system of the Eqs (54)–(63)
Â1, B̂1, Â2, B̂2, Ĉ2, D̂2, Â3, B̂3 unknowns in the system of the Eqs (94)–(102)
K the micropolar-viscous interface correction factor
K̂ the viscous-micropolar interface correction factor
Greek Letters
Π the stress tensor
~ν the fluid microrotation vector
~ε the unit triadic
(k, α, β, γ) the micropolar viscosity parameters
(r, θ, φ) the spherical coordinate systems
(~er, ~eθ, ~eφ) the unit vectors
ψ(1), ψ(2), ψ(3) the stream functions for the fluid flows in Section 3
ψ̂(1), ψ̂(2), ψ̂(3) the stream functions for the fluid flows in Section 4
ω(1)
φ , ω

(3)
φ the fluid vorticity components in Section 3

ω(2)
φ the fluid vorticity component in Section 4

ν(2)
φ the fluid microrotation component in Section 3
ν(3)
φ the fluid microrotation component in Section 4
µ1, µ2, µ3 the fluid’s viscosity coefficients in Section 3
µ̂1, µ̂2, µ̂3 the fluid’s viscosity coefficients in Section 4
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1. Introduction

For the past few years, there have been some noteworthy advancements in the field of fluid
mechanics that are focused on structures inside fluids. The classical theory has been demonstrated to be
insufficient for describing their behaviour. The earliest theory to take structured fluids into account is
the theory of micropolar fluids, given by Eringen [1]. The mathematical representation of micropolar
fluid allows us to discuss several physical phenomena resulting from the micro-motions and local
structure of the particles. It provides a more accurate description of the behaviour of various real fluids,
such as animal blood, liquid crystals, polymeric suspensions, and muddy fluids, than the classical
representation of Navier-Stokes, particularly whenever the typical flow dimensions, such as the pipe
diameter, shrink to a small size. It aligns closely with our assumptions that the greater the effect of
the fluid’s internal structure, the smaller the typical dimensions of the flow. There have been numerous
studies on micropolar fluid flow in applications related to engineering [2–4] and industry [5–7].

At low Reynolds numbers, in cell/cavity models, the movement of a viscous/micropolar
incompressible fluid on rigid particles or fluid droplets of different shapes is a topic of interest for
researchers in biomedical, chemical, and environmental engineering and science. In many real-
life situations, the area where fluids flow over groups of particles is important. This is true for
sedimentation, fluidisation, the rheology of suspensions, the movement of blood cells found in veins or
arteries, centrifugation, and micro-fluidics. As a result, it is crucial to ascertain whether the existence
of nearby boundaries or particles affects the movement of a specific droplet or particle. The unit
cavity/cell model is a notable and effective method that has been used to predict how the concentration
of particles will affect the rate at which particles sediment [8].

The representation of the cell/cavity model includes the idea that a randomly assembled collection
of droplets/particles may be separated into an identical number of cells/cavities, each containing a
single droplet/particle that is typically spherical or elliptical. The fluid cell’s volume is selected
to ensure that the assemblage’s solid volume fraction aligns with the cell’s solid volume fraction.
Therefore, each particle (droplet) causes the entire disruption by being restricted inside the fluid’s cell
it is linked to. The boundary value problem is simplified by considering only one droplet/particle
and its surrounding envelope. The representation of the unit cell is commonly employed to analyse
and address the boundary value problem in solid/fluid particles that are moving within concentrated
cells/cavities, disregarding the influence of the container cell (cavity), such as [9–11].

The Stokes flow issue, which involves an incompressible fluid with a different viscosity surrounding
a fluid sphere, has received a lot of attention in analytical and numerical discussions. This model is
widely used in modern engineering applications. Hadamard [12] and Rybczynski [13] independently
expanded the Stokes issue to study the translational movement of a fluid sphere droplet in another non-
miscible fluid. They calculated the drag force that the surrounding fluid would exert on the fluid sphere
by assuming that the shearing tension and tangential velocity at the interface between the two fluid
phases are continuous. In real Stokes flow scenarios, droplets or particles are typically not in isolation
and are surrounded by a fluid that is confined by solid cavities (walls). It is crucial to examine if the
existence of nearby boundaries has a substantial impact on the movement of the droplet/particle. Using
bipolar spherical coordinate systems, Bart [14] studied the movement of a spherical fluid droplet as it
settled perpendicular to a planar interface, seperating between two immiscible newtonian fluid phases.
Meanwhile, Salem et al. [15] studied the thermocapillary Stokes movement of a fluid sphere droplet
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in the presence of a planar interface. Hetsroni and Haber [16] investigated the issus of a solitary
fluid sphere droplet immerged in an unlimited Newtonian fluid of varying viscosity. Also, some have
studied examined the wall impacts on a spherical fluid droplet flowing along the centreline of a circular
tube utilising a reciprocal theorem [17] and an approximate technique [18]; on the other hand, some
studies the interface impacts on a spherical fluid droplet utilising the volume of fluid method [19–21].
Moreover, Lee et al. [22] showed the motion of a fluid droplet inside a non-concentric spherical cavity.

Every result mentioned above concerns viscous fluids. According to micropolar fluids,
Ramkissoon [23,24] has discussed the Stokesian flow of a non-Newtonian fluid past a Newtonian fluid
sphere and spheroid. Niefer and Kaloni [25] studied two interconnected issues involving the movement
of a Newtonian fluid past a spherical fluid containing a non-Newtonian fluid, and, additionally, the
movement of a non-Newtonian fluid past a Newtonian fluid droplet with a boundary condition for non-
zero slip/spin. Hayakawa [26] examined the issues associated with the slow, axisymmetric Newtonian
flow of a non-Newtonian fluid past a stationary sphere and cylinder; they explicitly analysed and
determined the normalised drag force for each scenario, other studies, see [27, 28].

The movement depends strongly on the interfacial area, which is a function of the size and shape
of the particle, as well as the overall fluid motion. At the interface between a particle and the ambient
fluid, for particle stability, a balance between the normal force, the shear force, and the surface tension
force must be maintained. This balance governs the shape of the particle. The size would also be
influenced, particularly if there is phase change. Accordingly, the encircling medium and the fluid
particle is separated by a well-defined interface. In certain instances, such as a soap bubble, the
separating interface can be a thin liquid film. There are many complex instances, consisting of pairs of
bubbles and drops in contact, or a fluid particle entirely inside a drop. These systems are referred to as
compound drops. The fluid medium surrounding drops and bubbles is one of the following phases [29]:
(i) drop inside liquid; (ii) gas bubble inside liquid; (iii) soap bubble (gas inside gas); (iv) compound
drop-two interfaces (liquid or gas inside liquid inside liquid or gas); and (v) compound drop-three
interfaces (at least two of the phases are liquid).

The aim of this study is to investigate the issue of a compound drop’s mobility when two interfaces
separating three immiscible liquid regions are present; the micropolar fluid is also one of the three fluid
phases. The movement of a spherical viscous droplet in a micropolar fluid with an interface has not
been investigated before. Thus, in this paper, we generalise the problem of Salem [30] to consider the
translational movement of a spherical viscous droplet inside a spherical micropolar/viscous interface
with concentric positions. The viscous sphere droplet is either immersed in viscous fluid or in
micropolar fluid.

2. Mathematical equations

The equations describing the incompressible micropolar fluid in steady motion with negligible
external forces and couplings, based on Stokes’ assumption, are provided by [1]:

div ~q = 0, (1)
grad p − k curl~ν + (µ + k) curl curl ~q = 0, (2)
k curl~q − 2k~ν + (α + β + γ) grad div~ν − γ curl curl~ν = 0, (3)
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where ~q refers to the velocity vector; ~ν refers to the microrotation vector; p refers to the fluid pressure
at any point; µ refers to the dynamic viscosity coefficient; and (k, α, β, γ) are the micropolar viscosity
parameters. These coefficients follow standard inequality rules:

2µ + k ≥ 0; γ ≥ 0; k ≥ 0; 3α + β + γ ≥ 0; γ ≥ |β|.

The constitutive equations, respectively, for the stress tensor,~I, and the couple stress tensor, ~m, are:

~Π = −p~I + (µ + 1
2
k)(∇~q + ∇T~q) + k~ε·(~ω − ~ν), (4)

~m = α~I · ∇~ν + β∇~ν + γ∇T~ν, (5)

where~I is the unit dyadic, ~ε is the unit triadic, ~ω = 1
2 (∇ ∧ ~q) is the vorticity vector, and (·)T denotes a

dyadic transposition. When k = 0, the Eqs (1)–(5) reduce to Navier-Stokes’ classical model [31].

3. Mathematical formulation

Assume a spherical interface separating two non-mixable fluids; one of them is bounded and the
other is semi-unbounded. The fluid outside is a Newtonian fluid, whereas the fluid inside is a non-
Newtonian fluid. A viscous sphere droplet of radius a is embedded in a micropolar fluid, at which its
centre coincides with the spherical interface centre, and the spherical interface of radius b(b > a). The
viscous droplet sphere is moving with a uniform velocity ~U = U~ez; the drop’s centre is instantaneously
located at the centre of the interface, which is to be at rest; see Figure 1. Geometrically, to describe the
viscous sphere droplet and the spherical interface, it is appropriate to define the unit vectors (~er, ~eθ, ~eφ)
that correspond to the spherical coordinates (r, θ, φ), and consider that the viscous droplet centre serves
as the origin of this coordinate system. The gyro-inertial and inertial factors in the field equations may
be ignored since it is assumed that the Reynolds numbers for the flow of the micropolar fluid are small
enough. Therefore, we take the Stokesian approximation into consideration. The motion is generated
by the movement of the viscous droplet in both fluid regions. All dynamical variables in this motion are
independent of φ, and it is axially symmetric. Thus, for the three fluid phases, our approach involves
utilising spherical coordinates to represent the velocity and microrotation components [3, 31]:

~q(1) = q(1)
r (r, θ)~er + q(1)

θ (r, θ)~eθ, r < a, (6)
~q(2) = q(2)

r (r, θ)~er + q(2)
θ (r, θ)~eθ and ~ν(2) = ν(2)

φ (r, θ)~eφ, a ≤ r ≤ b, (7)

~q(3) = q(3)
r (r, θ)~er + q(3)

θ (r, θ)~eθ, r > b. (8)
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Figure 1. Illustration of a viscous sphere droplet moving inside a concentric micropolar-
viscous interface.

Let ψ(1), ψ(2), and ψ(3) refer to, respectively, the three stream functions for the three flow areas inside
the viscous drop, between the surface of the drop and the micropolar-viscous interface, and outside
the micropolar-viscous interface. Therefore, using the conservation of mass equation (1), in terms of
stream functions, the velocity components in the three fluid areas may be expressed as

q(1)
r =

1
r2

∂ψ(1)

∂ζ
, q(1)

θ =
1

r
√

1 − ζ2

∂ψ(1)

∂r
, (9)

q(2)
r =

1
r2

∂ψ(2)

∂ζ
, q(2)

θ =
1

r
√

1 − ζ2

∂ψ(2)

∂r
, (10)

q(3)
r =

1
r2

∂ψ(3)

∂ζ
, q(3)

θ =
1

r
√

1 − ζ2

∂ψ(3)

∂r
, (11)

where ζ = cos θ. Using the field Eqs (1)–(3) and the formulaes (6)–(8) with the velocity
components (9)–(11), it is found that the following systems of equations exist in the three fluid regions:

For the viscous fluid in the domain (r < a):

∂ p(1)

∂ r
+

µ1

r2 sin θ
∂

∂θ
(E2ψ(1)) = 0, (12)

1
r
∂ p(1)

∂θ
−

µ1

r sin θ
∂

∂ r
(E2ψ(1)) = 0, (13)

and for the micropolar fluid in the domain (a ≤ r ≤ b):

∂ p(2)

∂ r
−

k2

r sin θ
∂

∂θ
(ν(2)
φ sin θ) +

µ2 + k2

r2 sin θ
∂

∂θ
(E2ψ(2)) = 0, (14)

1
r
∂ p(2)

∂θ
+

k2

r
∂

∂ r
(rν(2)

φ ) −
µ2 + k2

r sin θ
∂

∂ r
(E2ψ(2)) = 0, (15)

2k2(ν(2)
φ r sin θ) − γ2E2(ν(2)

φ r sin θ) − k2(E2ψ(2)) = 0, (16)

and for the viscous fluid in the domain (r > b):

∂ p(3)

∂ r
+

µ3

r2 sin θ
∂

∂θ
(E2ψ(3)) = 0, (17)
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1
r
∂ p(3)

∂θ
−

µ3

r sin θ
∂

∂ r
(E2ψ(3)) = 0, (18)

where µ1, µ2, and µ3 are the viscosity coefficients for the viscous fluid inside the drop, between the
surface of the drop and the micropolar-viscous interface, and outside the micropolar-viscous interface,
respectively, and the axisymmetric Stokesian operator is defined by

E2 =
∂2

∂ r2 +
1
r2

∂2

∂θ2 −
cot θ

r2

∂

∂θ
.

Now, after removing the formulaes p(1), p(2), p(3), and ν(2)
φ from Eqs (12)–(18), we find that three

differential equations are satisfied by the three stream functions, which are as follows:

E4ψ(1) = 0, r < a, (19)
E4(E2 − `2

2)ψ(2) = 0, `2
2 = k2(2µ2 + k2)/(γ2(µ2 + k2)), a ≤ r ≤ b, (20)

E4ψ(3) = 0, r > b. (21)

Also, we may obtain the component of the microrotation ν(2)
φ for the micropolar fluid from the

following relation:

ν(2)
φ =

1
2r sin θ

(
E2ψ1 + 2m2`

2
2ψ2

)
, (22)

where m2 = (µ2 + k2)/k2, ψ(2) = ψ1 + ψ2, E4ψ1 = 0, and E2ψ2 = `2
2ψ2.

Also, we may obtain the vorticity components ω(1)
φ (~ω(1) = ω(1)

φ (r, θ)~eφ) and ω(3)
φ (~ω(3) = ω(3)

φ (r, θ)~eφ),
for the viscous fluid phases from the relations

ω(1)
φ = 1

2

(
∇ ∧ ~q(1)) · ~eφ, (23)

ω(3)
φ = 1

2

(
∇ ∧ ~q(3)) · ~eφ. (24)

It is also essential to specify the boundary circumstances in order to solve the differential
equations (19)–(21).

As stated before, the droplet surface and the micropolar-viscous interface are presumed to be
stationary spherical interfaces. This assumption is physically valid since the interface stays spherical
due to the surface tension at the interface, which separates two non-miscible fluids, even when
subjected to shearing stresses that deform it. In the beginning, at least, the droplet will be
approximately spherical if the motion is sufficiently slow [31]. Therefore, in this study, we assume
that the deformation of the droplet surface and the micropolar-viscous interface are neglected and
that the interfaces keep their spherical shapes permanently. Therefore, because there is no mass
transfer across the two separating interfaces, the components of the normal velocity on the two sides at
the two separating surfaces ought to disappear, and both the tangential stresses and the tangential
velocity components are continuous. Since the micropolar fluid phase contains a microstructure,
there is also a condition on the microrotation component. Moreover, under these circumstances, the
convenient physical one is that the microrotation for the micropolar fluid on the drop’s surface and at
the micropolar-viscous interface is in proportion to the vorticity for the viscous fluid [25]. Here, the
proportionality coefficient, s, could be known as the spin parameter. The range of this parameter, which
is zero to one, is presumed to depend only on the nature of the fluids on both sides of the interface.
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First value: When the micro-elements near a stiff boundary are incapable of rotating, the situation is
represented by s = 0 (no spin). Second value: When the microrotation of the micro-elements equals
the vorticity of the viscous fluid at the boundary, the situation is represented by s = 1. Moreover, for
away from the external interface, the velocity and microrotation components must vanish, and at the
centre of the internal interface sphere, the velocity components must exist.

The physical boundary conditions mentioned above have the following mathematical formulation:

At r = a : q(2)
r = q(1)

r , (25)
q(2)

r = U cos θ, (26)
q(2)
θ = q(1)

θ , (27)
t(2)
rθ = t(1)

rθ , (28)
ν(2)
φ = s1ω

(1)
φ , (29)

lim
r→ 0

q(1)
r , lim

r→ 0
q(1)
θ exist, (30)

At r = b : q(2)
r = q(3)

r = 0, (31)
q(2)
θ = q(3)

θ , (32)
t(2)
rθ = t(3)

rθ , (33)
ν(2)
φ = s3ω

(3)
φ , (34)

lim
r→∞

q(3)
r , lim

r→∞
q(3)
θ vanish, (35)

where s1 and s3 are the spin parameters inside the viscous drop and outside the micropolar-viscous
interface, respectively. t(1)

rθ , t(2)
rθ , and t(3)

rθ are the shear stresses for the flow inside the droplet, between the
surface of the drop and the micropolar-viscous interface, and outside the micropolar-viscous interface,
respectively.

The solutions of Eqs (19)–(21) suitable for satisfying boundary conditions (25)–(35) for the stream
functions are respectively presented by:

ψ(1) = 1
2 (A1r2 + B1r4) sin2 θ, (36)

ψ(2) = 1
2

(
A2r2 + B2r4 + C2r−1 + D2r + E2

√
rI 3

2
(`2r) + F2

√
rK 3

2
(`2r)

)
sin2 θ, (37)

ψ(3) = 1
2 (A3r−1 + B3r) sin2 θ, (38)

where I 3
2
(·) and K 3

2
(·) are respectively the first and second kind for modified Bessel functions of order 3

2 ,
and A1, B1, A2, B2, C2, D2, E2, F2, A3, and B3 are unknown constants.

To satisfy the boundary conditions (28) and (33), the following formulaes, in spherical coordinates,
for the shear stresses t(1)

rθ , t(2)
rθ , and t(3)

rθ are given by:

t(1)
rθ = µ1

(1
r
∂ q(1)

r

∂θ
+ r

∂

∂ r
q(1)
θ

r
−

1
r

q(1)
θ

)
, (39)

t(2)
rθ =

1
2

(2µ2 + k2)
(1

r
∂ q(2)

r

∂θ
+ r

∂

∂ r
q(2)
θ

r
−

1
r

q(2)
θ

)
+ k2

( 1
2r

(
∂

∂ r
rq(2)

θ −
∂ q(2)

r

∂θ

)
− ν(2)

φ

)
,

(40)
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t(3)
rθ = µ3

(1
r
∂ q(3)

r

∂θ
+ r

∂

∂ r
q(3)
θ

r
−

1
r

q(3)
θ

)
. (41)

Therefore, the formulaes for the velocity components, the shear stresses, the vorticity components,
and the microrotation component in the three fluid regions are given by

q(1)
r = −(A1 + B1r2) cos θ, (42)

q(1)
θ = (A1 + 2B1r2) sin θ, (43)

t(1)
rθ = 3µ1B1r sin θ, (44)
ω(1)
φ = 5

2 B1r sin θ, (45)

q(2)
r = −

(
A2 + B2r2 + C2r−3 + D2r−1 + E2r−

3
2 I 3

2
(`2r) + F2r−

3
2 K 3

2
(`2r)

)
cos θ, (46)

q(2)
θ = 1

2

(
2A2 + 4B2r2 −C2r−3 + D2r−1 + E2r−

3
2
(
`2rI 1

2
(`2r) − I 3

2
(`2r)

)
−F2r−

3
2
(
`2rK 1

2
(`2r) + K 3

2
(`2r)

))
sin θ, (47)

t(2)
rθ = 1

2 (2µ2 + k2)
(
3B2r + 3C2r−4 + E2r−

5
2
(
3I 3

2
(`2r) − `2rI 1

2
(`2r)

)
+F2r−

5
2
(
3K 3

2
(`2r) + `2rK 1

2
(`2r)

))
sin θ, (48)

ν(2)
φ = 1

2

(
5B2r − D2r−2 + m2`

2
2E2r−

1
2 I 3

2
(`2r) + m2`

2
2F2r−

1
2 K 3

2
(`2r)

)
sin θ, (49)

q(3)
r = −(A3r−3 + B3r−1) cos θ, (50)

q(3)
θ = −1

2 (A3r−3 − B3r−1) sin θ, (51)

t(3)
rθ = 3µ3A3r−4 sin θ, (52)
ω(3)
φ = 1

2 (2A3r−4 + B3r−2) sin θ. (53)

Inserting formulations (42)–(53) into conditions (25)–(29) and (31)–(34), we can derive a finite set
of ten linear equations for figuring out the unknown constants A1, B1, A2, B2, C2, D2, E2, F2, A3, and
B3:

A1 + B1a2 − A2 − B2a2 −C2a−3 − D2a−1 − E2a−
3
2 I 3

2
(`2a) − F2a−

3
2 K 3

2
(`2a) = 0,

(54)
A2 + B2a2 + C2a−3 + D2a−1 + E2a−

3
2 I 3

2
(`2a) + F2a−

3
2 K 3

2
(`2a) = −U, (55)

2A1 + 4B1a2 − 2A2 − 4B2a2 + C2a−3 − D2a−1 − E2a−
3
2
(
`2aI 1

2
(`2a) − I 3

2
(`2a)

)
+F2a−

3
2
(
`2aK 1

2
(`2a) + K 3

2
(`2a)

)
= 0, (56)

−3λ12B1a2 + 3B2a2 + 3C2a−3 + E2a−
3
2
(
3I 3

2
(`2a) − `2aI 1

2
(`2a)

)
+F2a−

3
2
(
3K 3

2
(`2a) + `2aK 1

2
(`2a)

)
= 0, (57)

−5s1B1a2 + 5B2a2 − D2a−1 + m2`
2
2E2a

1
2 I 3

2
(`2a) + m2`

2
2F2a

1
2 K 3

2
(`2a) = 0, (58)

A2 + B2b2 + C2b−3 + D2b−1 + E2b−
3
2 I 3

2
(`2b) + F2b−

3
2 K 3

2
(`2b) = 0, (59)

A3 + B3b2 = 0, (60)
2A2 + 4B2b2 −C2b−3 + D2b−1 + E2b−

3
2
(
`2bI 1

2
(`2b) − I 3

2
(`2b)

)
−F2b−

3
2
(
`2bK 1

2
(`2b) + K 3

2
(`2b)

)
+ A3b−3 − B3b−1 = 0, (61)
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3B2b2 + 3C2b−3 + E2b−
3
2
(
3I 3

2
(`2b) − `2bI 1

2
(`2b)

)
+ F2b−

3
2
(
3K 3

2
(`2b) + `2bK 1

2
(`2b)

)
−3λ32A3b−3 = 0, (62)

5B2b2 − D2b−1 + m2`
2
2E2b

1
2 I 3

2
(`2b) + m2`

2
2F2b

1
2 K 3

2
(`2b) − 2s3A3b−3 − s3B3b−1 = 0,

(63)

where λ12 = 2µ12/(2 + k2/µ2) and λ32 = 2µ32/(2 + k2/µ2) with µ12 = µ1/µ2 and µ32 = µ3/µ2. Here, µ12

represents the ratio of dynamic viscosity coefficients between the outer and inner fluids to the droplet,
and µ32 represents the ratio of dynamic viscosity coefficients between the inner and outer fluids to the
micropolar-viscous interface. As µ12 → ∞, the droplet becomes a solid sphere, whereas as µ12 → 0,
the droplet becomes a gas bubble; on the other hand, as µ32 → ∞, the micropolar-viscous interface
becomes a cavity wall (solid wall), whereas as µ32 → 0, the fluid outside the micropolar-viscous
interface becomes a gas (air), see Figure 2.

Figure 2. Geometric sketch of a spherical viscous droplet inside a micropolar-viscous
interface.

The normalised hydrodynamic drag force Fz made by the micropolar fluid on the viscous droplet’s
surface in the presence of the micropolar-viscous interface is shown to be [23, 32]

Fz = 4π(2µ2 + k2)limr→∞
ψ(2)

r sin2 θ
= 2π(2µ2 + k2)D2, (64)

Here, the expression (64) demonstrates that the normalised hydrodynamic drag force applied to the
viscous sphere droplet relies solely on the coefficient D2, which can be obtained by solving the
system of ten Eqs (54)–(63) using the Gaussian elimination method. To provide some comparison, the
normalised hydrodynamic drag force Fz∞ made by an infinite micropolar fluid on the viscous droplet’s
surface is found to be [30]

Fz∞ = −
6πUa(2µ2 + k2)(µ2 + k2)(`2a + 1)(3λ12 + 2)

6(µ2 + k2)(λ12 + 1)(`2a + 1) − k2(3λ12 + 2 − 5s1)
. (65)

The micropolar-viscous interface correction factor K, with the aid of Eqs (64) and (65), is defined
as

K =
Fz

Fz∞
. (66)
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4. The case for the effect of a viscous-micropolar interface on a viscous sphere droplet

Here, in this segment, we suppose the opposite scenario (see Figure 3), that is, a viscous sphere
droplet is submerged in a viscous fluid of viscosity µ̂2. Let µ̂1 and µ̂3 represent the viscosity coefficients
of the viscous inside the drop and the micropolar outside the viscous-micropolar interface, respectively.
Therefore, the stream functions of the fluids in the three regions satisfy the differential equations, as
follows:

E4ψ̂(1) = 0, r < a, (67)
E4ψ̂(2) = 0, a ≤ r ≤ b, (68)
E4(E2 − `2

3)ψ̂(3) = 0, `2
3 = k3(2µ̂3 + k3)/(γ3(µ̂3 + k3)), r > b. (69)

The following are the general solutions to Eqs (67)–(69):

ψ̂(1) = 1
2 (Â1r2 + B̂1r4) sin2 θ, (70)

ψ̂(2) = 1
2 (Â2r2 + B̂2r4 + Ĉ2r−1 + D̂2r) sin2 θ, (71)

ψ̂(3) = 1
2

(
Â3r−1 + B̂3r + Ĉ3

√
rK 3

2
(`3r)

)
sin2 θ, (72)

where Â1, B̂1, Â2, B̂2, Ĉ2, D̂2, Â3, B̂3, and Ĉ3 are unknown constants.

Figure 3. Illustration of a viscous sphere droplet moving inside a concentric viscous-
micropolar interface.

In this case, the boundary conditions roughly take the same form as the boundary conditions (25)–
(35), as follows:

At r = a : q̂(2)
r = q̂(1)

r , (73)
q̂(2)

r = U cos θ, (74)
q̂(2)
θ = q̂(1)

θ , (75)
t̂(2)
rθ = t̂(1)

rθ , (76)
lim
r→ 0

q̂(1)
r , lim

r→ 0
q̂(1)
θ exist, (77)

At r = b : q̂(2)
r = q̂(3)

r = 0, (78)
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q̂(2)
θ = q̂(3)

θ , (79)
t̂(2)
rθ = t̂(3)

rθ , (80)
s2ω̂

(2)
φ = ν̂(3)

φ , (81)

lim
r→∞

q̂(3)
r , lim

r→∞
q̂(3)
θ , lim

r→∞
ν̂(3)
φ vanish, (82)

where s2 is the spin parameter for the viscous fluid outside the droplet’s surface and inside the viscous-
micropolar interface.

Therefore, the formulaes for the velocity components, the shear stresses, the vorticity component,
and the microrotation component in the three fluid regions are given by

q̂(1)
r = −(Â1 + B̂1r2) cos θ, (83)

q̂(1)
θ = (Â1 + 2B̂1r2) sin θ, (84)

t̂(1)
rθ = 3µ̂1B̂1r sin θ, (85)

q̂(2)
r = −(Â2 + B̂2r2 + Ĉ2r−3 + D̂2r−1) cos θ, (86)

q̂(2)
θ = 1

2 (2Â2 + 4B̂2r2 − Ĉ2r−3 + D̂2r−1) sin θ, (87)

t̂(2)
rθ = 3µ̂2(B̂2r + Ĉ2r−4) sin θ, (88)
ω̂(2)
φ = 1

2 (2Â2r−1 + 7B̂2r + 2Ĉ2r−4 + D̂2r−2) sin θ, (89)

q̂(3)
r = −

(
Â3r−3 + B̂3r−1 + Ĉ3r−

3
2 K 3

2
(`3r)

)
cos θ, (90)

q̂(3)
θ = −1

2

(
Â3r−3 − B̂3r−1 + Ĉ3r−

3
2
(
`3rK 1

2
(`3r) + K 3

2
(`3r)

))
sin θ, (91)

t̂(3)
rθ = 1

2 (2µ̂3 + k3)
(
3Â3r−4 + Ĉ3r−

5
2
(
3K 3

2
(`3r) + `3rK 1

2
(`3r)

))
sin θ, (92)

ν̂(3)
φ = −1

2

(
B̂3r−2 − m3`

2
3Ĉ3r−

1
2 K 3

2
(`3r)

)
sin θ, (93)

where m3 = (µ̂3 + k3)/k3.
Again, inserting formulaes (83)–(93) into conditions (73)–(76) and (78)–(81), we can derive a finite

set of nine linear equations for figuring out the unknown constants Â1, B̂1, Â2, B̂2, Ĉ2, D̂2, Â3, B̂3, and
Ĉ3:

Â1 + B̂1a2 − Â2 − B̂2a2 − Ĉ2a−3 − D̂2a−1 = 0, (94)
Â2 + B̂2a2 + Ĉ2a−3 + D̂2a−1 = −U, (95)
2Â1 + 4B̂1a2 − 2Â2 − 4B̂2a2 + Ĉ2a−3 − D̂2a−1 = 0, (96)
B̂1a2 − µ21B̂2a2 − µ21Ĉ2a−3 = 0, (97)
Â2 + B̂2b2 + Ĉ2b−3 + D̂2b−1 = 0, (98)
Â3b−3 + B̂3b−1 + Ĉ3b−

3
2 K 3

2
(`3b) = 0, (99)

2Â2 + 4B̂2b2 − Ĉ2b−3 + D̂2b−1 + Â3b−3 − B̂3b−1 + Ĉ3b−
3
2
(
`3bK 1

2
(`3b) + K 3

2
(`3b)

)
= 0,

(100)
3λ23B̂2b2 + 3λ23Ĉ2b−3 − 3Â3b−3 − Ĉ3b−

3
2
(
3K 3

2
(`3b) + `3bK 1

2
(`3b)

)
= 0, (101)

2s2Â2 + 7s2B̂2b2 + 2s2Ĉb−3 + s2D̂2b−1 + B̂3b−1 − m3`
2
3Ĉ3b

1
2 K 3

2
(`3b) = 0, (102)

where λ23 = 2µ23/(2 + k3/µ̂3) with µ23 = µ̂2/µ̂3 and µ21 = µ̂2/µ̂1. Here, µ23 represents the ratio of
dynamic viscosity coefficients between the inner and outer fluids to the viscous-micropolar interface,
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and µ21 represents the ratio of dynamic viscosity coefficients between the outer and inner fluids to the
droplet. As µ23 → ∞, the fluid outside the viscous-micropolar interface becomes a gas (air), while as
µ23 → 0, the viscous-micropolar interface becomes a cavity wall (solid wall); on the other hand, as
µ21 → ∞, the droplet becomes a gas bubble, while as µ21 → 0, the droplet becomes a solid sphere, see
Figure 4.

Figure 4. Geometric sketch of a spherical viscous droplet inside a viscous-micropolar
interface.

The normalised hydrodynamic drag force F̂z made by the viscous fluid on the viscous droplet’s
surface in the presence of the viscous-micropolar interface is shown to be [31]

F̂z = 8πµ̂2limr→∞
ψ̂(2)

r sin2 θ
= 4πµ̂2D̂2, (103)

Here, the expression (103) demonstrates that the normalised hydrodynamic drag force applied to the
viscous sphere droplet relies solely on the coefficient D̂2, which can be obtained by solving the system
of nine Eqs (94)–(102) using the Gaussian elimination method. To provide some comparison, the
normalised hydrodynamic drag force F̂z∞ made by an infinite viscous fluid on the viscous droplet’s
surface is found to be

F̂z∞ = −6πUaµ̂2 ×
2µ̂2 + 3µ̂1

3µ̂2 + 3µ̂1
. (104)

The viscous-micropolar interface correction factor K̂, with the aid of equations (103) and (104), is
defined as

K̂ =
F̂z

F̂z∞
. (105)

5. Numerical outcomes and discussion

In this segment, we indicate the numerical outcomes of the factors K and K̂ that operate on
a viscous sphere drop embedded in a micropolar or viscous fluid. These outcomes are exhibited
in Figures 5–8 and Tables 1–5 for a set of values: The spacing ratio a/b, the viscosity ratios
(µ12, µ32, µ21, µ23), the spin parameters (s1, s2, s3), the micropolarity parameters (k2/µ2, k3/µ̂3), and the
parameters (γ2/µ2a2, γ3/µ̂3a2). The method of Gaussian elimination is utilised to solve the set of linear
Eqs (54)–(63) and (94)–(102) to get the desired unkowns, after utilising the suitable non-dimensional
quantities. Thus, the drag force K and K̂ can be calculated.
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Figures 2 and 4 indicate the difference between the viscosity ratios in the two problems. Also,
we test the accuracy of our results in some special cases by comparing them with the solutions of
Salem [30] and Happel et al. [31]; see Tables 1 and 2, respectively. We can also use the CFD
(Computional Fluid Dynamics) method (VOF model) to solve this problem and compare it with our
analytical results.

Table 1. Outcomes for K at a set of values of a/b with µ32 → ∞, s1 = 0.2, k2/µ2 = 1,
γ2/µ2a2 = 0.4, and µ12 = 0, 1, 10,∞.

a/b
K

µ12 → 0 µ12 = 1 µ12 = 10 µ12 → ∞

Present Salem [30] Present Salem [30] Present Salem [30] Present Salem [30]
0.1 1.18447 1.18447 1.23468 1.23468 1.30300 1.30300 1.32411 1.32411
0.2 1.45221 1.45221 1.59325 1.59325 1.81151 1.81151 1.88604 1.88604
0.3 1.86250 1.86250 2.15432 2.15432 2.68359 2.68359 2.88975 2.88975
0.4 2.55574 2.55574 3.08591 3.08591 4.24651 4.24651 4.77912 4.77911
0.5 3.91032 3.91032 4.81430 4.81430 7.29601 7.29601 8.68932 8.68930
0.6 7.09773 7.09773 8.58877 8.58877 14.0760 14.0760 18.0404 18.0403
0.7 16.7280 16.7280 19.0457 19.0457 32.4621 32.4621 45.9502 45.9499
0.8 60.3240 60.3240 62.2303 62.2303 102.765 102.765 168.377 168.376
0.9 547.814 547.814 501.854 501.854 701.264 701.265 1475.33 1475.30

Table 2. Outcomes for K̂ at a set of values of a/b with µ23 → 0 and µ21 = 0, 1,∞.

a/b
K̂

µ21 → 0 µ21 = 1 µ21 → ∞

Present Happel et al. [31] Present Happel et al. [31] Present Happel et al. [31]
0.1 1.28620 1.286 1.22888 1.229 1.17647 1.176
0.2 1.75585 1.756 1.57510 1.575 1.42841 1.428
0.3 2.57264 2.573 2.12613 2.126 1.81519 1.815
0.4 4.10593 4.106 3.06598 3.066 2.46888 2.469
0.5 7.29412 7.294 4.83019 4.831 3.72222 3.722
0.6 14.9481 14.948 8.63260 8.636 6.56909 6.569
0.7 37.8296 37.830 18.7886 18.762 14.8255 14.826
0.8 138.224 138.224 58.4112 58.480 50.7734 50.773
0.9 1209.78 1209.78 431.732 431.779 439.156 439.156

Figures 5(a),(b) and 6(a),(b) show that the results for the interface correction factors exerted on
a solid sphere and a gas sphere bubble, respectively, moving inside a spherical interface between
micropolar/viscous fluids against the spacing ratio a/b at some values of µ32 and µ23. Figures 5(a)
and 6(a) indicate the motion of a solid sphere (µ12 → ∞) and a gas bubble (µ12 → 0), respectively,
moving inside a micropolar fluid in the presence of a cavity wall (µ32 → ∞), coalescence (µ32 = 1),
and gas/liquid interface (free surface) (µ32 → 0), while Figures 5(b) and 6(b) indicate the motion of
a solid sphere (µ21 → 0) and a gas bubble (µ21 → ∞), respectively, moving inside a viscous fluid
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with a cavity wall present (µ23 → 0), coalescence (µ23 = 1), and gas/liquid interface (free surface)
(µ23 → ∞). Figures 5(a),(b) and 6(a),(b) indicate that K and K̂ increase monotonically with an increase
in the spacing ratio a/b and will grow into infinity when a/b→ 1 for any certain value of the remaining
parameters. For a fixed value of a/b and keeping the other parameters fixed, Figures 5(a) and 6(a) show
that K increases with the increase of the viscosity ratio µ32, while Figures 5(b) and 6(b) show that K̂
increases with a decrease in the viscosity coefficient µ23, with the minimum and maximum impacts
when there is an atmospheric air interface and a solid wall, respectively; this is also shown in Table 3.
Clearly, in the case of a solid or gas sphere, the effect of the outer-on-inner interface in the case of a
cavity wall is larger than in the case of atmospheric air. Additionally, the values of the drag forces are
getting closer to agreement in the case of a solid sphere; while they are getting closer and closer to
agreement in the case of a gas sphere, when moving from cavity to air case. Moreover, the drag force
on a viscous droplet when it is immersed in micropolar fluid is greater than when it is immersed in
viscous fluid; with the minimum and maximum effects in the cases of free atmospheric air interface
and solid wall, respectively. Also, these forces depend on both the properties of the object and the
properties of the fluid. Its also shown that the values of the drag force on a viscous droplet immersed
in a viscous fluid are the largest when compared with those in a micropolar fluid.
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Figure 5. Illustrations for K and K̂ towards the spacing ratio a/b for (a) a set of values of
µ32 with µ12 → ∞, s1 = s3 = 0.2, γ2/µ2a2 = 0.3, k2/µ2 = 3; (b) a set of values of µ23 with
µ21 → 0, s2 = 0.2, γ3/µ̂3a2 = 0.3, k3/µ̂3 = 3.
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Figure 6. Illustrations for K and K̂ towards the spacing ratio a/b for (a) a set of values of
µ32 with µ12 → 0, s1 = s3 = 0.2, γ2/µ2a2 = 0.3, k2/µ2 = 3; (b) a set of values of µ23 with
µ21 → ∞, s2 = 0.2, γ3/µ̂3a2 = 0.3, k3/µ̂3 = 3.
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Table 3. Outcomes for K and K̂ at a set of values of a/b, µ32 = µ23, µ12, and µ21, (a) for K:
γ2/µ2a2 = 0.2, k2/µ2 = 2, s1 = s3 = 0.4, (b) for K̂: γ3/µ̂3a2 = 0.2, k3/µ̂3 = 2, s2 = 0.4.

µ32 a/b
K K̂

µ12 → 0 µ12 = 1 µ12 = 10 µ12 → ∞ µ21 → 0 µ21 = 1 µ21 = 10 µ21 → ∞

0.1 1.11201 1.13685 1.17884 1.19431 1.28577 1.22856 1.18540 1.17622
0.2 1.25455 1.31967 1.43850 1.48531 1.75306 1.57312 1.45148 1.42700
0.3 1.44206 1.57453 1.84119 1.95664 2.56170 2.11905 1.85914 1.81026
0.4 1.69939 1.94873 2.51629 2.79630 4.06904 3.04431 2.54096 2.45372

0 0.5 2.07072 2.53193 3.74891 4.46693 7.17170 4.76522 3.82266 3.67514
0.6 2.64006 3.51212 6.23121 8.26556 14.5085 8.42245 6.64776 6.40650
0.7 3.59642 5.38026 12.0209 18.7975 35.9148 17.9648 14.4942 14.1264
0.8 5.50334 9.95697 29.8887 61.0249 125.731 53.5540 46.4325 46.1493
0.9 11.1900 30.5670 136.469 471.932 983.446 350.677 344.785 351.074
0.1 1.13213 1.16164 1.21203 1.23074 1.24737 1.19877 1.16174 1.15382
0.2 1.30472 1.38189 1.52582 1.58362 1.63073 1.48507 1.38402 1.36343
0.3 1.53969 1.69360 2.01417 2.15714 2.25491 1.91471 1.70535 1.66508
0.4 1.87738 2.15721 2.82438 3.16645 3.34003 2.59591 2.20199 2.13123

1 0.5 2.39852 2.89346 4.27839 5.13190 5.40209 3.76021 3.04099 2.92189
0.6 3.28600 4.17634 7.16283 9.50012 9.85202 5.97492 4.64184 4.44183
0.7 5.04405 6.77201 13.8252 21.3471 21.5522 10.9372 8.29146 7.94171
0.8 9.60106 13.6793 34.2076 67.6437 65.3256 25.7096 19.4867 18.8006
0.9 31.6019 48.2851 154.155 502.384 443.724 109.340 85.4741 83.5743
0.1 1.17824 1.21913 1.29060 1.31767 1.17646 1.14285 1.11675 1.11111
0.2 1.43800 1.55160 1.77613 1.87119 1.42803 1.33319 1.26436 1.25000
0.3 1.84647 2.08233 2.62728 2.89527 1.81152 1.59845 1.45690 1.42857
0.4 2.55785 2.99013 4.19894 4.91965 2.44813 1.98981 1.71845 1.66667

∞ 0.5 3.98137 4.71449 7.30363 9.26347 3.62963 2.61224 2.09385 2.00000
0.6 7.41546 8.57373 14.1600 19.8348 6.18788 3.71140 2.67705 2.50000
0.7 18.0880 19.6395 32.5154 51.5787 13.1672 5.98740 3.70241 3.33333
0.8 67.5554 67.2145 102.278 191.107 41.4779 12.2070 5.95270 5.00000
0.9 628.579 570.798 706.453 1682.30 324.560 44.2038 14.2982 10.0000

Figure 7(a),(b) shows that the results for the interface correction factors K and K̂ exerted on a
viscous sphere droplet moving inside a spherical interface between micropolar/viscous fluids against
the spacing ratio a/b at some values of k2/µ2 and k3/µ̂3. Both indicate that K and K̂ increase
monotonously with the increase of the spacing coefficient a/b. Also, in the case of µ12 = µ32 =

µ21 = µ23 = 1, for a fixed value of a/b, K increases with a decrease in the micropolarity parameter
k2/µ2, while K̂ increases with an increase in the micropolarity parameter k3/µ̂3, holding constant the
other parameters.
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Figure 7. Illustrations for K and K̂ towards the spacing ratio a/b for (a) a set of values of
k2/µ2 with µ12 = µ32 = 1, s1 = s3 = 0.2, γ2/µ2a2 = 0.3; (b) a set of values of k3/µ̂3 with
µ21 = µ23 = 1, s2 = 0.2, γ3/µ̂3a2 = 0.3.

Figure 8(a),(b) shows the factors K and K̂ against the ratios µ32 and µ23, respectively, for various
coefficients. In regard to the complete range of spin parameters s1 and s2, Figure 8(a) shows that K
monotonously increases as µ32 increases; while Figure 8(b) shows that K̂ monotonously decreases as
µ23 increases, holding constant the other parameters. Also, plots demonstrate that, for a fixed value
of µ32 and µ23, K and K̂ increase with a decrease in the spin parameters s1 and s2, respectively. In
addition, for a given value of k2/µ2 and µ12, Table 4 shows that K increases as s3 increases keeping s1

unchanged, while K decreases as s1 increases keeping s3 unchanged; on the other hand, K increases
as k2/µ2 increases keeping s1 and s3 unchanged. Moreover, Table 5 shows that K̂ increases as k3/µ̂3

increases; on the other hand, for a given value of k3/µ̂3 and µ12, K̂ decreases as s1 increases to a
predetermined value of µ12(said µo), hence it increases with an increase in s2 for µ12 > µo. To illustrate,
in Table 5, if k3/µ̂3 = 3, K̂ decreases with an increase in s2 (from 0 to 3) up to µo = 4, hence it increases
with an increase in s2. As expected, Figure 8(a) and Table 4 show that when the micro-elements of the
micropolar fluid surrounding the viscous droplet are in perfect spin (s1 = s3 = 1), K has minimum,
while for no spin (s1 = s3 = 0), it has maximum, while Figure 8(b) and Table 5 show that when the
micro-elements of the viscous fluid surrounding the viscous droplet are in perfect spin (s2 = 1), K̂ has
minimum, while for no spin (s2 = 0), it has a maximum. Clearly, for large/small values of viscosity
ratios, the drag force is irrelevant with respect to the spin parameter.
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Figure 8. Illustrations for K and K̂ towards the viscosity ratio for (a) a set of values of s1 = s3

and µ12 = µ32 with k2/µ2 = 4, a/b = 0.3, γ2/µ2a2 = 0.4; (b) a set of values of s2 and µ21 = µ23

with k3/µ̂3 = 4, a/b = 0.3, γ3/µ̂3a2 = 0.4.
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Table 4. Outcomes for K at a set of values of k2/µ2, µ12 = µ32, s1, and s3, with a/b = 0.4 and
γ2/µ2a2 = 0.1.

k2/µ2 µ12

K
s1 = 0.2 s1 = 0.6 s1 = 1

s3 = 0.2 s3 = 0.6 s3 = 1 s3 = 0.2 s3 = 0.6 s3 = 1 s3 = 0.2 s3 = 0.6 s3 = 1
0 1.68130 1.68298 1.68465 1.67107 1.67276 1.67444 1.66111 1.66282 1.66450
2 2.79924 2.79949 2.79974 2.79146 2.79170 2.79195 2.78379 2.78404 2.78428

0.1 4 3.22628 3.22627 3.22625 3.21999 3.21998 3.21996 3.21377 3.21375 3.21374
20 3.91771 3.91762 3.91753 3.91543 3.91534 3.91525 3.91316 3.91307 3.91298
40 4.05135 4.05129 4.05124 4.05010 4.05004 4.04998 4.04884 4.04878 4.04873
0 1.70548 1.70907 1.71259 1.67075 1.67434 1.67785 1.63889 1.64247 1.64597
2 2.71871 2.71883 2.71894 2.68362 2.68373 2.68383 2.65037 2.65046 2.65055

0.7 4 3.19680 3.19605 3.19530 3.16556 3.16481 3.16406 3.13548 3.13473 3.13399
20 4.12314 4.12233 4.12152 4.10947 4.10867 4.10786 4.09596 4.09516 4.09436
40 4.32915 4.32864 4.32813 4.32130 4.32079 4.32028 4.31349 4.31299 4.31248
0 1.70684 1.66754 1.63199 1.71024 1.67089 1.63531 1.71356 1.67417 1.63854
2 2.37816 2.33346 2.29208 2.37864 2.33393 2.29253 2.37913 2.33439 2.29297

3 4 2.80033 2.75546 2.71325 2.79954 2.75468 2.71248 2.79875 2.75390 2.71171
20 3.94777 3.91953 3.89194 3.94598 3.91776 3.89019 3.94420 3.91600 3.88845
40 4.29268 4.27463 4.25683 4.29138 4.27334 4.25555 4.29008 4.27206 4.25427

Table 5. Some values of K̂ for different values of k3/µ̂3, µ21 = µ23, and s2, with a/b = 0.4
and γ3/µ̂3a2 = 0.1.

k3/µ̂3 µ21
K̂

s2 = 0.2 s2 = 0.6 s2 = 1
0 4.10015 4.08875 4.07756
2 2.12047 2.12058 2.12068

0.1 4 1.91882 1.91901 1.91920
20 1.72224 1.72231 1.72238
40 1.69483 1.69486 1.69490
0 4.09341 4.06912 4.04582
2 2.17043 2.17040 2.17038

0.7 4 1.95073 1.95112 1.95151
20 1.73029 1.73048 1.73066
40 1.69898 1.69908 1.69919
0 4.09287 4.06758 4.04336
2 2.30880 2.30750 2.30622

3 4 2.04996 2.05003 2.05009
20 1.75916 1.75946 1.75976
40 1.71423 1.71441 1.71460

6. Conclusions

A creeping axisymmetric translational movement of a spherical viscous drop moving at a concentric
instantaneous position inside a spherical micropolar-viscous interface separating finite and semi-
infinite immiscible fluid phases is studied. A connected issue is also studied when a viscous-micropolar
interface is present and the viscous sphere droplet is embedded in a viscous fluid. We dealt with three
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immiscible fluid phases in three different regions. Analytical solutions are obtained for the viscous and
micropolar equations pertaining to the fluid flow field associated with these movements, and the effect
of interaction between the viscous droplet and the fluid-fluid interface is stated by obtaining formulaes
for the interface correction factors. Many special cases are obtained from this study, for example,
the movement of a solid sphere and a gas bubble moving inside a micropolar or viscous fluid in the
presence of a cavity, coalescence, and gas/liquid interface. As found, the normalised hydrodynamic
drag force in general applying on the viscous droplet’s surface increases as a function of the droplet-to-
interface radius ratio; on the other hand, it is a decreasing and increasing function of the micropolarity
parameters, the relative viscosity of the fluid-fluid interface, and the spin parameters. As found, the
viscous sphere droplet encounters a maximum interface correction factor when the fluid-fluid interface
is to be a cavity wall and a minimum when the fluid-fluid interface is to be a gas/liquid interface. In the
two cases of a cavity wall and a gas/liquid interface, as found, the viscous sphere droplet encounters
a maximum interface correction factor when the viscous sphere droplet is to be a solid sphere and a
minimum when the viscous sphere droplet is to be a gas bubble. Also, at the fluid-fluid interface, as
found, the interface correction factors are significantly influenced by the spin parameters. Our results
for special cases are in good agreement with the solutions obtained by Salem [30] and Happel et
al. [31].
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