The dynamics of Casson nanofluid with chemically reactive and thermally conducting medium past an elongated sheet was investigated in this work. Partial differential equations were used in the flow model (PDEs). The governing equations can be converted into system of ordinary differential equations. Using the R-K method and shooting techniques, the altered equations were numerically resolved. The impact of relevant flow factors was depicted using graphs while computations on engineering quantities of interest are tabulated. The velocity profiles were observed to degrade when the visco-inelastic parameter (Casson) and magnetic parameter (M) were set to a higher value. An increase in magnetic specification's value has been observed to decrease the distribution of velocity. A huge M value originates the Lorentz force which can degenerate the motion of an electrically conducting fluids. Physically, the multiplication of electrical conductivity $ \left(\sigma \right) $ and magnetic force's magnitude possess electromagnetic force which drag back the fluid motion. As a result, as Gm rises, the mass buoyancy force rises, causing the velocity distribution to widen. The contributions of variable thermal conductivity and variable diffusion coefficient on temperature and concentration contours respectively have been illustrated. The boundary layer distributions degenerate as the unsteadiness parameter (A) is increased. The outcomes of this agrees with previous outcomes.
Citation: K. Veera Rddy, G. Venkata Ramana Reddy, Ali Akgül, Rabab Jarrar, Hussein Shanak, Jihad Asad. Numerical solution of MHD Casson fluid flow with variable properties across an inclined porous stretching sheet[J]. AIMS Mathematics, 2022, 7(12): 20524-20542. doi: 10.3934/math.20221124
The dynamics of Casson nanofluid with chemically reactive and thermally conducting medium past an elongated sheet was investigated in this work. Partial differential equations were used in the flow model (PDEs). The governing equations can be converted into system of ordinary differential equations. Using the R-K method and shooting techniques, the altered equations were numerically resolved. The impact of relevant flow factors was depicted using graphs while computations on engineering quantities of interest are tabulated. The velocity profiles were observed to degrade when the visco-inelastic parameter (Casson) and magnetic parameter (M) were set to a higher value. An increase in magnetic specification's value has been observed to decrease the distribution of velocity. A huge M value originates the Lorentz force which can degenerate the motion of an electrically conducting fluids. Physically, the multiplication of electrical conductivity $ \left(\sigma \right) $ and magnetic force's magnitude possess electromagnetic force which drag back the fluid motion. As a result, as Gm rises, the mass buoyancy force rises, causing the velocity distribution to widen. The contributions of variable thermal conductivity and variable diffusion coefficient on temperature and concentration contours respectively have been illustrated. The boundary layer distributions degenerate as the unsteadiness parameter (A) is increased. The outcomes of this agrees with previous outcomes.
[1] | G. Mahanta, S. Shaw, 3D Casson fluid flow past a porous linearly stretching sheet with convective boundary condition, Alex. Eng. J., 54 (2015), 653-659. https://doi.org/10.1016/j.aej.2015.04.014 doi: 10.1016/j.aej.2015.04.014 |
[2] | H. R. Kataria, H. R. Patel, Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium, Alex. Eng. J., 55 (2016), 583-595. https://doi.org/10.1016/j.aej.2016.01.019 doi: 10.1016/j.aej.2016.01.019 |
[3] | J. V. Ramana Reddy, K. Anantha Kumar, V. Sugunamma, N. Sandeep, Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study, Alex. Eng. J., 57 (2018), 1829-1838. https://doi.org/10.1016/j.aej.2017.03.008 doi: 10.1016/j.aej.2017.03.008 |
[4] | M. Awais, M. A. Z. Raja, S. E. Awan, M. Shoaib, H. M. Ali, Heat and mass transfer phenomenon for the dynamics of Casson fluid through porous medium over shrinking wall subject to Lorentz force and heat source/sink, Alex. Eng. J., 60 (2021), 1355-1363. https://doi.org/10.1016/j.aej.2020.10.056 doi: 10.1016/j.aej.2020.10.056 |
[5] | A. S. Idowu, B. O. Falodun, Variable thermal conductivity, and viscosity effects on non-Newtonian fluids flow through a vertical porous plate under Soret-Dufour influence, Math. Comput. Simul., 177 (2020), 358-384. https://doi.org/10.1016/j.matcom.2020.05.001 doi: 10.1016/j.matcom.2020.05.001 |
[6] | M. Shanmugapriya, R. Sundareswaran, P. Senthil Kumar, Heat and mass transfer enhancement of MHD hybrid nanofluid flow in the presence of activation energy, Int. J. Chem. Eng., 2021 (2021), 1-12. https://doi.org/10.1155/2021/9473226 doi: 10.1155/2021/9473226 |
[7] | L. Panigrahi, J. Panda, K. Swain, G. C. Dash, Heat and mass transfer of MHD Casson nanofluid flow through a porous medium past a stretching sheet with Newtonian heating and chemical reaction, Karbala Int. J. Mod. Sci., 6 (2020), 1-12. https://doi.org/10.33640/2405-609X.1740 doi: 10.33640/2405-609X.1740 |
[8] | K. Bhattacharyya, MHD stagnation-point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation, J. Thermodyn., 2013 (2013), 1-9. http://doi.org/10.1155/2013/169674 doi: 10.1155/2013/169674 |
[9] | T. Walelign, E. Gorfie, T. Kebede, A. Walelgn, Analytical study of heat and mass transfer in MHD flow of chemically reactive and thermally radiative Casson nanofluid over an inclined stretching cylinder, J. Phys. Commun., 4 (2020), 125003. https://doi.org/10.1088/2399-6528/abcdba doi: 10.1088/2399-6528/abcdba |
[10] | N. A. M. Noor, S. Shafie, M. A.Admon, Heat and mass transfer on MHD squeezing flow of Jeffrey nanofluid in horizontal channel through permeable medium, PLoS One, 16 (2021), e0250402. https://doi.org/10.1371/journal.pone.0250402 doi: 10.1371/journal.pone.0250402 |
[11] | U. S. Mahabaleshwar, T. Anusha, M. Hatami, The MHD Newtonian hybrid nanofluid flow and mass transfer analysis due to super‑linear stretching sheet embedded in porous medium, Sci. Rep., 11 (2021), 22518. https://doi.org/10.1038/s41598-021-01902-2 doi: 10.1038/s41598-021-01902-2 |
[12] | F. Wang, Asjad, M. I. Ur Rehman, S. Ali, B. Hussain, S. Gia, et al., MHD Williamson nanofluid flow over a slender elastic sheet of irregular thickness in the presence of bioconvection, Nanomaterials, 11 (2021), 2297. https://doi.org/10.3390/nano 11092297 doi: 10.3390/nano11092297 |
[13] | B. Falodun, F. D. Ayegbusi, Soret-Dufour mechanism on an electrically conducting nanofluid flow past a semi-infinite porous plate with buoyancy force and chemical reaction influence, Numer. Methods Partial Differ. Eq., 37 (2020), 1419-1438. https://doi.org/10.1002/num.22588 doi: 10.1002/num.22588 |
[14] | M. Kalteh, Investigating the effect of various nanoparticle and base liquid types on the nanofluids heat and fluid flow in a microchannel, Appl. Math. Model., 37 (2013), 8600-8609. https://doi.org/10.1016/j.apm.2013.03.067 doi: 10.1016/j.apm.2013.03.067 |
[15] | J. K. Kim, J. Y. Jung, Y. T. Kang, The effect of nano-particles on the bubble absorption performance in a binary nanofluid, Int. J. Refrig., 29 (2006), 22-29. https://doi.org/10.1016/j.ijrefrig.2005.08.006 doi: 10.1016/j.ijrefrig.2005.08.006 |
[16] | M. Bahiraei, Impact of thermophoresis on nanoparticle distribution in nanofluids, Results Phys., 7 (2017), 136-138. https://doi.org/10.1016/j.rinp.2016.12.012 doi: 10.1016/j.rinp.2016.12.012 |
[17] | I. E. Seferis, J. Zeler, C. Michail, S. David, I. Valais, G. Fountos, et al., Grains size and shape dependence of luminescence efficiency of Lu2O3: Eu thin screens, Results Phys, 7 (2017), 980-981. https://doi.org/10.1016/j.rinp.2017.02.015. doi: 10.1016/j.rinp.2017.02.015 |
[18] | J. Bowers, H. Cao, G. Qiao, Q. Li, G. Zhang, E. Mura, et al., Flow and heat transfer behaviour of nanofluids in microchannels, Prog. Nat. Sci.: Mater. Int., 28 (2018), 225-234. https://doi.org/10.1016/j.pnsc.2018.03.005. doi: 10.1016/j.pnsc.2018.03.005 |
[19] | P. M. Krishna, N. Sandeep, J. V. R. Reddy, V. Sugunamma, Dual solutions for unsteady flow of Powell-Eyring fluid past an inclined stretching sheet, J. Nav. Archit. Mar. Eng., 13 (2016), 89-99. https://doi.org/10.3329/jname.v13i1.25338 doi: 10.3329/jname.v13i1.25338 |
[20] | R. Mahato, M. Das, P. Sibanda, Hall effect on MHD transient free convection flow of chemically reactive Casson fluid with heat source/sink past an infinite vertical cylinder, Phys. Scripta, 96 (2021), 015207. |
[21] | K. A. Kumar, J. V. Ramana Reddy, V. Sugunamma, N. Sandeep, MHD flow of chemically reacting Williamson fluid over a curved/flat surface with variable heat source/sink, Int. J. Fluid Mech. Res., 46 (2019), 407-425. https://doi.org/10.1615/InterJFluidMechRes.2018025940 doi: 10.1615/InterJFluidMechRes.2018025940 |
[22] | M. A. Mjankwi, V. G. Masanja, E. W. Mureithi, M. N. James, Unsteady MHD flow of Nanofluid with variable properties over a stretching sheet in the presence of thermal radiation and chemical reaction, Int. J. Math. Math. Sci., 2019 (2019), 1-15. https://doi.org/10.1155/2019/7392459 doi: 10.1155/2019/7392459 |
[23] | A. M. Alghamdi, S. Gala, M. A. Ragusa, Beale-Kato-Majda's criterion for magnetohydrodynamic equations with zero viscosity, Novi Sad J. Math., 50 (2020), 89-97. https://doi.org/10.30755/NSJOM.09142 doi: 10.30755/NSJOM.09142 |
[24] | P. Sunthrayuth, A. A. Alderremy, F. Ghani, A. M. J. Tchalla, S. Aly, Y. Elmasry, Unsteady MHD flow for fractional Casson channel fluid in a porous medium: an application of the Caputo-Fabrizio time-fractional derivative, J. Funct. Spaces, 2022 (2022), 1-11. https://doi.org/10.1155/2022/2765924 doi: 10.1155/2022/2765924 |
[25] | X. Zhang, D. Yang, M. I. U. Rehman, A. Hamid, Heat transport phenomena for the Darcy-Forchheimer flow of Casson fluid over stretching sheets with electro-osmosis forces and Newtonian heating, Mathematics, 9 (2021), 2525. https://doi.org/10.3390/math9192525 doi: 10.3390/math9192525 |
[26] | S. Reza-E-Rabbi, S. F. Ahmmedb, S. M. Arifuzzaman, T. Sarkar, M. Shakhaoath Khan, Computational modelling of multiphase fluid flow behaviour over a stretching sheet in the presence of nanoparticles, Eng. Sci. Technol., Int. J., 23 (2020), 605-617. https://doi.org/10.1016/j.jestch.2019.07.006 doi: 10.1016/j.jestch.2019.07.006 |
[27] | S. Reza-E-Rabbi, M. S. Khan, S. M. Arifuzzaman, S. Islam, P. Biswas, B. M. J. Rana, et al., Numerical simulation of a non-linear nanofluidic model to characterise the MHD chemically reactive flow past an inclined stretching surface, Partial Differ. Equ. Appl. Math., 5 (2022) 100332. https://doi.org/10.1016/j.padiff.2022.100332. doi: 10.1016/j.padiff.2022.100332 |
[28] | G. V. Ramana Reddy, K. V. Chandra Sekha, B. O. Falodun, Multiple slip effects on unsteady MHD Casson nanofluid flow over a porous stretching sheet, J. Appl. Nonlinear Dyn., 11 (2022), 651-666. https://doi.org/10.5890/jand.2022.09.009. doi: 10.5890/jand.2022.09.009 |
[29] | S. Reza-E-Rabbi, S. M. Arifuzzaman, T. Sarkar, M. Shakhaoath Khan, S. F. Ahmmed, Explicit finite difference analysis of an unsteady MHD flow of a chemically reacting Casson fluid past a stretching sheet with Brownian motion and thermophoresis effects, J. King Saud Univ.-Sci., 32 (2020), 690-701. https://doi.org/10.1016/j.jksus.2018.10.017 doi: 10.1016/j.jksus.2018.10.017 |
[30] | A. J. Chamkha, A. M. Aly, M. A. Mansour, Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects, Chem. Eng. Commun., 197 (2010), 846-858. https://doi.org/10.1080/00986440903359087 doi: 10.1080/00986440903359087 |
[31] | F. Mabood, S. Shateyi, Multiple slip effects on MHD unsteady flow heat and mass transfer impinging on permeable stretching sheet with radiation, Mod. Simul. Eng., 2019 (2019), 3052790, 1-12. https://doi.org/10.1155/2019/3052790. doi: 10.1155/2019/3052790 |
[32] | F. Mabood, K. Das, Melting heat transfer on hydromagnetic flow of a nanofluid over a stretching sheet with radiation and second-order slip, Eur. Phys. J. Plus, 131 (2016), 3. https://doi.org/10.1140/epjp/i2016-16003-1 doi: 10.1140/epjp/i2016-16003-1 |