The present study explores the effects of viscous dissipation, the thermal dependent conductivity and the thermal dependent viscosity on the steady motion of a Powell-Eyring fluid over a stratified stretching sheet which embedded in a porous medium. The fact that the nature of non-Newtonian flows problems are highly nonlinear equations has been taken into consideration here and this was the motive objective to determine numerical solutions. So, the emphasis is on the methodology adopted for obtaining numerical solutions that yielded after employing the Chebyshev spectral method. The temperature distributions and the velocity components are evaluated by solving numerically the boundary value problems that correspond to the proposed problem. Then, some figures have been plotted to elucidates the effect of different physical parameters appearing in the problem on both the temperature and the velocity profiles. The presence of the thermal radiation and the viscous dissipation in the fluid flow are shown to have quite a dramatic effect on the temperature profiles. In culmination, cooling process in nuclear reactors and geothermal engineering especially in the presence of thermal stratification phenomenon can be adopted as an application of this study. The theoretical and the observed results provide a fairly good qualitative agreement.
Citation: W. Abbas, Ahmed M. Megahed. Powell-Eyring fluid flow over a stratified sheet through porous medium with thermal radiation and viscous dissipation[J]. AIMS Mathematics, 2021, 6(12): 13464-13479. doi: 10.3934/math.2021780
The present study explores the effects of viscous dissipation, the thermal dependent conductivity and the thermal dependent viscosity on the steady motion of a Powell-Eyring fluid over a stratified stretching sheet which embedded in a porous medium. The fact that the nature of non-Newtonian flows problems are highly nonlinear equations has been taken into consideration here and this was the motive objective to determine numerical solutions. So, the emphasis is on the methodology adopted for obtaining numerical solutions that yielded after employing the Chebyshev spectral method. The temperature distributions and the velocity components are evaluated by solving numerically the boundary value problems that correspond to the proposed problem. Then, some figures have been plotted to elucidates the effect of different physical parameters appearing in the problem on both the temperature and the velocity profiles. The presence of the thermal radiation and the viscous dissipation in the fluid flow are shown to have quite a dramatic effect on the temperature profiles. In culmination, cooling process in nuclear reactors and geothermal engineering especially in the presence of thermal stratification phenomenon can be adopted as an application of this study. The theoretical and the observed results provide a fairly good qualitative agreement.
[1] | L. J. Crane, Flow past a stretching plate, Z. Angew. Math. Phys., 21 (1970), 645–647. |
[2] | C. H. Chen, Laminar mixed convection adjacent to vertical, continuously stretching sheets, Heat Mass Transfer, 33 (1998), 471–476. doi: 10.1007/s002310050217 |
[3] | A. J. Chamkha, A. M. Aly, M. A. Mansour, Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects, Chem. Eng. Commun., 197 (2010), 846–858. doi: 10.1080/00986440903359087 |
[4] | I. C. Liu, A. M. Megahed, Hung-Hsun Wang, Heat transfer in a liquid film due to an unsteady stretching surface with variable heat flux, J. Appl. Mech., 80 (2013), 041003. doi: 10.1115/1.4007966 |
[5] | T. Muhammad, K. Rafique, M. Asma, M. Alghamdi, Darcy-Forchheimer flow over an exponentially stretching curved surface with Cattaneo-Christov double diffusion, Physica A, 556 (2020), 123968. doi: 10.1016/j.physa.2019.123968 |
[6] | A. M. Megahed, M. R. Gnaneswara, W. Abbas, Modeling of MHD fluid flow over an unsteady stretching sheet with thermal radiation, variable fluid properties and heat flux, Math. Comput. Simul., 185 (2021), 583–593. doi: 10.1016/j.matcom.2021.01.011 |
[7] | P. M. Patil, M. Kulkarni, P. S. Hiremath, Effects of surface roughness on mixed convective nanofluid flow past an exponentially stretching permeable surface, Chinese J. Phys., 64 (2020), 203–218. doi: 10.1016/j.cjph.2019.12.006 |
[8] | N. S. Khashiie, N. M. Arifin, I. Pop, R. Nazar, E. H. Hafidzuddin, N. Wahi, Three-dimensional hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking sheet with velocity slip and convective condition, Chinese J. Phys., 66 (2020), 157–171. doi: 10.1016/j.cjph.2020.03.032 |
[9] | D. Pal, D. Chatterjee, K. Vajravelu, Influence of magneto-thermo radiation on heat transfer of a thin nanofluid film with non-uniform heat source/sink, Propuls. Power Res., 9 (2020), 169–180. doi: 10.1016/j.jppr.2020.03.003 |
[10] | W. Abbas, A. M. Megahed, Numerical solution for chemical reaction and viscous dissipation phenomena on non-Newtonian MHD fluid flow and heat mass transfer due to a nonuniform stretching sheet with thermal radiation, Int. J. Mod. Phys. C, 32 (2021), 2150124. doi: 10.1142/S0129183121501242 |
[11] | H. Rosali, A. Ishak, I. Pop, Micropolar fluid flow towards a stretching/shrinking sheet in a porous medium with suction, Int. Commun. Heat Mass Transfer, 39 (2012), 826–829. doi: 10.1016/j.icheatmasstransfer.2012.04.008 |
[12] | I. A. Muhammad, S. Sarwar, M. Imran, Effects of slip on free convection flow of Casson fluid over an oscillating vertical plate, Bound. Value Probl., 2016 (2016), 1–11. doi: 10.1186/s13661-015-0477-3 |
[13] | A. Usman, K. U. Rehman, M. Y. Malik, Thermal energy statistics for Jeffery fluid flow regime: A generalized Fourier's law outcomes, Physica A, 542 (2020), 123428. doi: 10.1016/j.physa.2019.123428 |
[14] | S. Shateyi, H. Muzara, On the numerical analysis of unsteady MHD boundary layer flow of Williamson fluid over a stretching sheet and heat and mass transfers, Comput., 8 (2020), 55. |
[15] | T. Hayat, Z. Iqbal, M. Qasim, S. Obaidat, Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions, Int. J. Heat Mass Tran., 55 (2012), 1817–1822. doi: 10.1016/j.ijheatmasstransfer.2011.10.046 |
[16] | N. A. Khan, S. Aziz, N. A. Khan, MHD flow of Powell-Eyring fluid over a rotating disk, J. Taiwan Inst. Chem. Eng., 45 (2014), 2859–2867. doi: 10.1016/j.jtice.2014.08.018 |
[17] | T. Hayat, M. I. Khan, M. Waqas, A. Alsaedi, On Cattaneo-Christov heat flux in the flow of variable thermal conductivity Eyring-Powell fluid, Results Phys., 7 (2017), 446–450. doi: 10.1016/j.rinp.2016.12.034 |
[18] | N. Ali, F. Nazeer, M. Nazeer, Flow and heat transfer of Eyring-powell fluid in a pipe, Z. Naturforsch. A, 73 (2018), 265–274. |
[19] | M. Nazeer, F. Ahmad, A. Saleem, M. Saeed, S. Naveed, M. Shaheen, et al., Effects of constant and space dependent viscosity on Eyring-Powell fluid in a pipe: Comparison of perturbation and explicit finite difference method, Z. Naturforsch. A, 74 (2019), 961–969. doi: 10.1515/zna-2019-0095 |
[20] | M. Nazeer, F. Ahmad, M. Saeed, A. Saleem, S. Naveed, Z. Akram, Numerical solution for flow of a Eyring-powell fluid in a pipe with prescribed surface temperature, J. Braz. Soc. Mech. Sci., 41 (2019), 518. doi: 10.1007/s40430-019-2005-3 |
[21] | A. Alsaedi, T. Hayat, S. Qayyum, R. Yaqoob, Eyring-Powell nanofluid flow with nonlinear mixed convection: Entropy generation minimization, Comput. Meth. Prog. Bio., 186 (2020), 105183. doi: 10.1016/j.cmpb.2019.105183 |
[22] | T. Muhammad, H. Waqas, S. A. Khan, R. Ellahi, S. M. Sait, Significance of nonlinear thermal radiation in 3D Eyring-Powell nanofluid flow with Arrhenius activation energy, J. Therm. Anal. Calorim., 143 (2021), 929–944. doi: 10.1007/s10973-020-09459-4 |
[23] | V. S. Patil, A. B. Patil, S. Ganesh, P. H. Pooja, N. S. Patil, Unsteady MHD flow of a nano powell-eyring fluid near stagnation point past a convectively heated stretching sheet in the existence of chemical reaction with thermal radiation, Mater. Today: Proc., 44 (2021), 3767–3776. doi: 10.1016/j.matpr.2020.11.860 |
[24] | M. Hamid, T. Zubair, M. Usman, R. U. Haq, Numerical investigation of fractional-order unsteady natural convective radiating flow of nanofluid in a vertical channel, AIMS Math., 4 (2019), 1416–1429. doi: 10.3934/math.2019.5.1416 |
[25] | W. Abbas, M. M. Magdy, Heat and mass transfer analysis of nanofluid flow based on, and over a moving rotating plate and impact of various nanoparticle shapes, Math. Probl. Eng., 2020 (2020), Article ID 9606382, 12 pages. |
[26] | W. Abbas, A. S. Emad, Hall current and joule heating effects on free convection flow of a nanofluid over a vertical cone in presence of thermal radiation, Therm. Sci., 21 (2017), 2609–2620. doi: 10.2298/TSCI160413083A |
[27] | S. S. Ghadikolaei, K. H. Hosseinzadeh, D. D. Ganji, B. Jafari, Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet, Case Stud. Therm. Eng., 12 (2018), 176–187. doi: 10.1016/j.csite.2018.04.009 |
[28] | E. O. Fatunmbi, A. Adeniyan, Nonlinear thermal radiation and entropy generation on steady flow of magneto-micropolar fluid passing a stretchable sheet with variable properties, Results Eng., 6 (2020), 100142. doi: 10.1016/j.rineng.2020.100142 |
[29] | W. Abbas, K. S. Mekheimer, M. M. Ghazy, A. M. A. Moawad, Thermal radiation effects on oscillatory squeeze flow with a particle-fluid suspension, Heat Transfer, 50 (2021), 2129–2149. doi: 10.1002/htj.21971 |
[30] | T. Muhammad, H. Waqas, U. Farooq, M. S. Alqarni, Numerical simulation for melting heat transport in nanofluids due to quadratic stretching plate with nonlinear thermal radiation, Case Stud. Therm. Eng., 27 (2021), 101300. doi: 10.1016/j.csite.2021.101300 |
[31] | M. Bilal, S. Ashbar, Flow and heat transfer analysis of Eyring-Powell fluid over stratified sheet with mixed convection, JOEMS, 28 (2020), 40. |
[32] | I. Jabeen, M. Farooq, M. Rizwan, R. Ullah, S. Ahmad, Analysis of nonlinear stratified convective flow of Powell-Eyring fluid: Application of modern diffusion, Adv. Mech. Eng., 12 (2020), 1–10. |
[33] | R. E. Powell, H. Eyring, Mechanism for relaxation theory of viscosity, Nature, 154 (1944), 427–428. doi: 10.1038/154594a0 |
[34] | N. A. Khan, S. Khan, A. Arab, Flow of micropolar fluid over an off centered rotating disk with modified Darcy's law, Propuls. Power Res., 6 (2017), 285–295. doi: 10.1016/j.jppr.2017.11.006 |
[35] | N. A. Khan, F. Naz, F. Sultan, Entropy generation analysis and effects of slip conditions on micropolar fluid flow due to a rotating disk, Open Eng., 7 (2017), 185–198. doi: 10.1515/eng-2017-0025 |
[36] | A. Raptis, C. Perdikis, H. S. Takhar, Effect of thermal radiation on MHD flow, Appl. Math. Comput., 153 (2004), 645–649. |
[37] | A. Raptis, Radiation and viscoelastic flow, Int. Commun. Heat Mass, 26 (1999), 889–895. doi: 10.1016/S0735-1933(99)00077-9 |
[38] | T. Hayat, S. Ali, M. A. Farooq, A. Alsaedi, On comparison of series and numerical solutions for flow of Eyring-Powell fluid with newtonian heating and internal heat generation/absorption, PLOS ONE, 10 (2015), 1–13. |
[39] | S. E. El-Gendi, Chebyshev solution of differential, integral and integro-differential equations, Comput. J., 12 (1969), 282–287. doi: 10.1093/comjnl/12.3.282 |