Research article Special Issues

Multiple positive solutions for a bi-nonlocal Kirchhoff-Schr$ \ddot{\mathrm{o}} $dinger-Poisson system with critical growth


  • Received: 17 August 2022 Revised: 01 October 2022 Accepted: 09 October 2022 Published: 17 October 2022
  • In this article, we study the following bi-nonlocal Kirchhoff-Schr$ \ddot{\mathrm{o}} $dinger-Poisson system with critical growth:

    $ \begin{equation*} \begin{cases} -\left( \int_{\Omega}|\nabla u|^2dx\right)^r\Delta u+\phi u = u^5+\lambda\left( \int_{\Omega}F(x, u)dx\right)^sf(x, u), & \mathrm{in}\ \ \Omega, \\ -\Delta\phi = u^2, u>0, & \mathrm{in}\ \ \Omega, \\ u = \phi = 0, & \mathrm{on}\ \ \partial\Omega, \end{cases} \end{equation*} $

    where $ \Omega\subset \mathbb{R}^3 $ is a smooth bounded domain, $ \lambda > 0 $, $ 0\leq r < 1 $, $ 0 < s < \frac{1-r}{3(r+1)} $ and $ f(x, u) $ satisfies some suitable assumptions. By using the concentration compactness principle, the multiplicity of positive solutions for the above system is established.

    Citation: Guaiqi Tian, Hongmin Suo, Yucheng An. Multiple positive solutions for a bi-nonlocal Kirchhoff-Schr$ \ddot{\mathrm{o}} $dinger-Poisson system with critical growth[J]. Electronic Research Archive, 2022, 30(12): 4493-4506. doi: 10.3934/era.2022228

    Related Papers:

  • In this article, we study the following bi-nonlocal Kirchhoff-Schr$ \ddot{\mathrm{o}} $dinger-Poisson system with critical growth:

    $ \begin{equation*} \begin{cases} -\left( \int_{\Omega}|\nabla u|^2dx\right)^r\Delta u+\phi u = u^5+\lambda\left( \int_{\Omega}F(x, u)dx\right)^sf(x, u), & \mathrm{in}\ \ \Omega, \\ -\Delta\phi = u^2, u>0, & \mathrm{in}\ \ \Omega, \\ u = \phi = 0, & \mathrm{on}\ \ \partial\Omega, \end{cases} \end{equation*} $

    where $ \Omega\subset \mathbb{R}^3 $ is a smooth bounded domain, $ \lambda > 0 $, $ 0\leq r < 1 $, $ 0 < s < \frac{1-r}{3(r+1)} $ and $ f(x, u) $ satisfies some suitable assumptions. By using the concentration compactness principle, the multiplicity of positive solutions for the above system is established.



    加载中


    [1] A. Ambrosetti, D. Ruiz, Multiple bound states for the Schr$\ddot{\mathrm{o}}$dinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391–404. https://doi.org/10.1142/S021919970800282X doi: 10.1142/S021919970800282X
    [2] A. Azzollini, P. d'Avenia, A. Pomponio, On the Schr$\ddot{\mathrm{o}}$dinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779–791. https://doi.org/10.1016/j.anihpc.2009.11.012 doi: 10.1016/j.anihpc.2009.11.012
    [3] A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schr$\ddot{\mathrm{o}}$dinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90–108. https://doi.org/10.1016/j.jmaa.2008.03.057 doi: 10.1016/j.jmaa.2008.03.057
    [4] G. Cerami, G. Vaira, Positive solutions for some non-autonomous Schr$\ddot{\mathrm{o}}$dinger-Poisson systems, J. Differ. Equation, 248 (2010), 521–543. https://doi.org/10.1016/j.jde.2009.06.017 doi: 10.1016/j.jde.2009.06.017
    [5] P. d'Avenia, Non-radially symmetric solutions of nonlinear Schr$\ddot{\mathrm{o}}$dinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2 (2002), 177–192. https://doi.org/10.1515/ans-2002-0205 doi: 10.1515/ans-2002-0205
    [6] C. Y. Lei, G. S. Liu, C. M. Chu, H. M. Suo, New multiple solutions for a Schr$\ddot{\mathrm{o}}$dinger-Poisson system involving concave-convex nonlinearities, Turkish J. Math., 44 (2020), 986–997. https://doi.org/10.3906/mat-1807-100 doi: 10.3906/mat-1807-100
    [7] D. Ruiz, G. Siciliano, A note on the Schr$\ddot{\mathrm{o}}$dinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud., 8 (2008), 179–190. https://doi.org/10.1515/ans-2008-0106 doi: 10.1515/ans-2008-0106
    [8] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
    [9] C. O. Alves, F. J. S. A. Corrêa, T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85–93. https://doi.org/10.1016/j.camwa.2005.01.008 doi: 10.1016/j.camwa.2005.01.008
    [10] C. O. Alves, F. J. Corrêa, G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equation Appl., 2 (2010), 409–417. http://www.ele-math.com
    [11] W. Chen, Y. Wu, Nontrivial solutions for 4-superlinear Schr$\ddot{\mathrm{o}}$dinger-Kirchhoff equations with indefinite potentials, J. Funct. Spaces, 2021 (2021). https://doi.org/10.1155/2021/5551561
    [12] N. C. Eddine, M. A. Ragusa, Generalized critical Kirchhoff-type potential systems with Neumann boundary conditions, Appl. Anal., 101 (2022), 3958–3988. https://doi.org/10.48550/arXiv.2203.11942 doi: 10.48550/arXiv.2203.11942
    [13] G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013), 706–713. https://doi.org/10.1016/j.jmaa.2012.12.053 doi: 10.1016/j.jmaa.2012.12.053
    [14] C. Y. Lei, H. M. Suo, C. M. Chu, L. T. Guo, On ground state solutions for a Kirchhoff type equation with critical growth, Comput. Math. Appl., 72 (2016), 729–740. https://doi.org/10.1016/j.camwa.2016.05.027 doi: 10.1016/j.camwa.2016.05.027
    [15] J. F. Liao, P. Zhang, X. P. Wu, Existence of positive solutions for Kirchhoff problems, Electron. J. Differ. Equations, 280 (2015), 1–12. http://www.researchgate.net/publication/285186304
    [16] A. Razani, Two weak solutions for fully nonlinear Kirchhoff-type problem, Filomat, 35 (2021), 3267–3278. https://doi.org/10.2298/FIL2110267R doi: 10.2298/FIL2110267R
    [17] J. Wang, L. X. Tian, J. X. Xu, F. B. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equation, 253 (2012), 2314–2351. https://doi.org/10.1016/j.jde.2012.05.023 doi: 10.1016/j.jde.2012.05.023
    [18] Q. L. Xie, X. P. Wu, C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773–2786. http://www.researchgate.net/publication/265705177.
    [19] G. F. Che, H. B. Chen, Existence and multiplicity of positive solutions for Kirchhoff-Schr$\ddot{\mathrm{o}}$dinger-Poisson system with critical growth, RACSAM, 78 (2020). https://doi.org/10.4134/JKMS.J190833
    [20] J. Chabrowski, On bi-nonlocal problem for elliptic equations with Neumann boundary conditions, J. Anal. Math., 134 (2018), 303–334. https://doi.org/10.1007/s11854-018-0011-5 doi: 10.1007/s11854-018-0011-5
    [21] F. J. S. A. Corrêa, G. M. Figueiredo, Existence and multiplicity of nontrivial solutions for a bi-nonlocal equation, Adv. Differ. Equations, 18 (2013), 587–608.
    [22] V. Benci, D. Fortunato, An eigenvalue problem for the Schr$\ddot{\mathrm{o}}$dinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283–293. http://www.researchgate.net/publication/254300288
    [23] D. Ruiz, The Schr$\ddot{\mathrm{o}}$dinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655–674. https://doi.org/10.1016/j.jfa.2006.04.005 doi: 10.1016/j.jfa.2006.04.005
    [24] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 2, Rev. Mat. Iberoam., 1 (1985), 45–121. https://doi.org/10.4171/RMI/12 doi: 10.4171/RMI/12
    [25] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical sobolev exponents, Comm. Pure. Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405
    [26] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1191) PDF downloads(77) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog