Research article Special Issues

Types of systemic risk and macroeconomic forecast: Evidence from China

  • Received: 04 September 2022 Revised: 01 October 2022 Accepted: 08 October 2022 Published: 14 October 2022
  • The macroeconomic forecast is of great significance to the government macroeconomic policy formulation and micro-agent operational decisions. The individual systemic risk measurement has a certain scope of application and application conditions and, therefore, it is difficult for the individual indicator to reflect the systemic risk comprehensively. In this paper, the systemic risk is divided into four types: institution-specific risk, comovement and contagion, financial vulnerability, liquidity and credit. Next, the optimal combination is selected from multiple individual systemic risk indicators through dominance analysis to forecast the macroeconomic performance. The macroeconomic performance selects consumer price index (CPI), producer price index (PPI), industrial growth value (IVA), growth rate of broad money supply (M2) and gross domestic product (GDP) as proxies to compare the forecast effect of systemic risk, with the period considered spans from 2003M4 to 2022M7. The results of immediate forecasts of different macroeconomic performance proxies demonstrate the individual indicator cannot cover all the information of systemic risk, can only reflect the specific aspect of macroeconomic performance, or is only highly relevant in a given period. The contribution of systemic risk to the forecast of different macroeconomic performance proxies in different terms is diverse, and show various types of results. This paper uses the optimal combination of systemic risk to forecast the macroeconomic performance, which provides a valuable reference for improving the macro prudential supervision mechanism.

    Citation: Yunying Huang, Wenlin Gui, Yixin Jiang, Fengyi Zhu. Types of systemic risk and macroeconomic forecast: Evidence from China[J]. Electronic Research Archive, 2022, 30(12): 4469-4492. doi: 10.3934/era.2022227

    Related Papers:

  • The macroeconomic forecast is of great significance to the government macroeconomic policy formulation and micro-agent operational decisions. The individual systemic risk measurement has a certain scope of application and application conditions and, therefore, it is difficult for the individual indicator to reflect the systemic risk comprehensively. In this paper, the systemic risk is divided into four types: institution-specific risk, comovement and contagion, financial vulnerability, liquidity and credit. Next, the optimal combination is selected from multiple individual systemic risk indicators through dominance analysis to forecast the macroeconomic performance. The macroeconomic performance selects consumer price index (CPI), producer price index (PPI), industrial growth value (IVA), growth rate of broad money supply (M2) and gross domestic product (GDP) as proxies to compare the forecast effect of systemic risk, with the period considered spans from 2003M4 to 2022M7. The results of immediate forecasts of different macroeconomic performance proxies demonstrate the individual indicator cannot cover all the information of systemic risk, can only reflect the specific aspect of macroeconomic performance, or is only highly relevant in a given period. The contribution of systemic risk to the forecast of different macroeconomic performance proxies in different terms is diverse, and show various types of results. This paper uses the optimal combination of systemic risk to forecast the macroeconomic performance, which provides a valuable reference for improving the macro prudential supervision mechanism.



    加载中


    [1] R. Engle, E. Jondeau, M. Rockinger, Systemic risk in Europe*, Rev. Finance, 19 (2015), 145–190. https://doi.org/10.1093/rof/rfu012 doi: 10.1093/rof/rfu012
    [2] D. L. Kolia, S. Papadopoulos, The levels of bank capital, risk and efficiency in the Eurozone and the U.S. in the aftermath of the financial crisis, Quant. Finance Econ., 4 (2020), 66–90. https://doi.org/10.3934/QFE.2020004 doi: 10.3934/QFE.2020004
    [3] T. Li, J. Zhong, Z. Huang, Potential dependence of financial cycles between emerging and developed countries: Based on ARIMA-GARCH copula model, Emerging Mark. Finance Trade, 56 (2020), 1237–1250. https://doi.org/10.1080/1540496X.2019.1611559 doi: 10.1080/1540496X.2019.1611559
    [4] A. Leroy, A. Pop, Macro-financial linkages: The role of the institutional framework, J. Int. Money Finance, 92 (2019), 75–97. https://doi.org/10.1016/j.jimonfin.2018.12.002 doi: 10.1016/j.jimonfin.2018.12.002
    [5] M. Caporin, L. Garcia-Jorcano, J. A. Jimenez-Martin, Measuring systemic risk during the COVID-19 period: A TALIS3 approach, Finance Res. Lett., 46 (2022), 102304. https://doi.org/10.1016/j.frl.2021.102304 doi: 10.1016/j.frl.2021.102304
    [6] S. Giglio, B. Kelly, S. Pruitt, Systemic risk and the macroeconomy: An empirical evaluation, J. Financ. Econ., 119 (2016), 457–471. https://doi.org/10.1016/j.jfineco.2016.01.010 doi: 10.1016/j.jfineco.2016.01.010
    [7] Z. Huang, G. Liao, Z. Li, Loaning scale and government subsidy for promoting green innovation, Technol. Forecast. Soc. Change, 144 (2019), 148–156. https://doi.org/10.1016/j.techfore.2019.04.023 doi: 10.1016/j.techfore.2019.04.023
    [8] A. Zaremba, G. Kambouris, A. Karathanasopoulos, Two centuries of global financial market integration: Equities, government bonds, treasury bills, and currencies, Econ. Lett., 182 (2019), 26–29. https://doi.org/10.1016/j.econlet.2019.05.043 doi: 10.1016/j.econlet.2019.05.043
    [9] V. Acharya, R. Engle, M. Richardson, Capital shortfall: A new approach to ranking and regulating systemic risks, Am. Econ. Rev., 102 (2012), 59–64. https://doi.org/10.1257/aer.102.3.59 doi: 10.1257/aer.102.3.59
    [10] P. Augustin, V. Sokolovski, M. Subrahmanyam, D. Tomio, In sickness and in debt: The COVID-19 impact on sovereign credit risk, J. Financ. Econ., 143 (2021), 1251–1274. https://doi.org/10.1016/j.jfineco.2021.05.009 doi: 10.1016/j.jfineco.2021.05.009
    [11] X. Hao, Q. Sun, F. Xie, The COVID-19 pandemic, consumption and sovereign credit risk: Cross-country evidence, Econ. Modell., 109 (2022), 105794. https://doi.org/10.1016/j.econmod.2022.105794 doi: 10.1016/j.econmod.2022.105794
    [12] H. White, T. Kim, S. Manganelli, VAR for VaR: Measuring tail dependence using multivariate regression quantiles, J. Econom., 187 (2015), 169–188. https://doi.org/10.1016/j.jeconom.2015.02.004 doi: 10.1016/j.jeconom.2015.02.004
    [13] P. Hartmann, S. Straetmans, C. G. de Vries, Asset market linkages in crisis periods, Rev. Econ. Stat., 86 (2004), 313–326. https://doi.org/10.1162/003465304323023831 doi: 10.1162/003465304323023831
    [14] L. Ballester, B. Casu, A. González-Urteaga, Bank fragility and contagion: Evidence from the bank CDS market, J. Empirical Finance, 38 (2016), 394–416. https://doi.org/10.1016/j.jempfin.2016.01.011 doi: 10.1016/j.jempfin.2016.01.011
    [15] W. Zhang, X. Zhuang, Y. Lu, J. Wang, Spatial linkage of volatility spillovers and its explanation across G20 stock markets: A network framework, Int. Rev. Financ. Anal., 71 (2020), 101454. https://doi.org/10.1016/j.irfa.2020.101454 doi: 10.1016/j.irfa.2020.101454
    [16] Z. Li, F. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity, Econ. Res. Ekonomska Istraživanja, 35 (2022), 4902–4921. https://doi.org/10.1080/1331677X.2021.2019596 doi: 10.1080/1331677X.2021.2019596
    [17] S. Gilchrist, E. Zakrajsek, Credit spreads and business cycles, Am. Econ. Rev., 102 (2012), 1692–1720. https://doi.org/10.1257/aer.102.4.1692 doi: 10.1257/aer.102.4.1692
    [18] M. Chauvet, Z. Senyuz, A dynamic factor model of the yield curve components as a predictor of the economy, Int. J. Forecasting, 32 (2016), 324–343. https://doi.org/10.1016/j.ijforecast.2015.05.007 doi: 10.1016/j.ijforecast.2015.05.007
    [19] T. Okimoto, S. Takaoka, The credit spread curve distribution and economic fluctuations in Japan, J. Int. Money Finance, 122 (2022), 102582. https://doi.org/10.1016/j.jimonfin.2021.102582 doi: 10.1016/j.jimonfin.2021.102582
    [20] K. Thompson, R. van Eyden, R. Gupta, Testing the out-of-sample forecasting ability of a financial conditions index for South Africa, Emerging Mark. Finance Trade, 51 (2015), 486–501. https://doi.org/10.1080/1540496X.2015.1025664 doi: 10.1080/1540496X.2015.1025664
    [21] M. Balcilar, R. Gupta, R van Eyden, K. Thompson, A. Majumdar, Comparing the forecasting ability of financial conditions indices: The case of South Africa, Q. Rev. Econ. Finance, 69 (2018), 245–259. https://doi.org/10.1016/j.qref.2018.03.012 doi: 10.1016/j.qref.2018.03.012
    [22] J. H. Stock, M. W. Watson, Combination forecasts of output growth in a seven-country data set, J. Forecasting, 23 (2004), 405–430. https://doi.org/10.1002/for.928 doi: 10.1002/for.928
    [23] P. Bordalo, N. Gennaioli, Y. Ma, A. Shleifer, Overreaction in macroeconomic expectations, Am. Econ. Rev., 110 (2020), 2748–2782. https://doi.org/10.1257/aer.20181219 doi: 10.1257/aer.20181219
    [24] A. Carriero, T. E. Clark, M. Marcellino, Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors, J. Econom., 212 (2019), 137–154. https://doi.org/10.1016/j.jeconom.2019.04.024 doi: 10.1016/j.jeconom.2019.04.024
    [25] W. da Silva, H. Kimura, V. Sobreiro, An analysis of the literature on systemic financial risk: A survey, J. Financ. Stab., 28 (2017), 91–114. https://doi.org/10.1016/j.jfs.2016.12.004 doi: 10.1016/j.jfs.2016.12.004
    [26] M. Brunnermeier, L. Pedersen, Market liquidity and funding liquidity, Rev. Financ. Stud., 22 (2009), 2201–2238. https://doi.org/10.1093/rfs/hhn098 doi: 10.1093/rfs/hhn098
    [27] M. Adachi-Sato, C. Vithessonthi, Bank systemic risk and corporate investment: Evidence from the US, Int. Rev. Financ. Anal., 50 (2017), 151–163. https://doi.org/10.1016/j.irfa.2017.02.008 doi: 10.1016/j.irfa.2017.02.008
    [28] S. Giglio, B. Kelly, S. Pruitt, Systemic risk and the macroeconomy: An empirical evaluation, J. Financ. Econ., 119 (2016), 457–471. https://doi.org/10.1016/j.jfineco.2016.01.010 doi: 10.1016/j.jfineco.2016.01.010
    [29] E. Parker, The Relationship between the US economy's information processing and absorption ratios: Systematic vs systemic risk, Entropy, 20 (2018), 662. https://doi.org/10.3390/e20090662 doi: 10.3390/e20090662
    [30] I. Klopotan, J. Zoroja, M. Meško, Early warning system in business, finance, and economics: Bibliometric and topic analysis, Int. J. Eng. Bus. Manage., 10 (2018), 184797901879701. https://doi.org/10.1177/1847979018797013 doi: 10.1177/1847979018797013
    [31] T. Jang, S. Sacht, Forecast heuristics, consumer expectations, and New-Keynesian macroeconomics: A horse race, J. Econ. Behav. Organ., 182 (2021), 493–511. https://doi.org/10.1016/j.jebo.2019.01.017 doi: 10.1016/j.jebo.2019.01.017
    [32] M. Lemmon, E. Portniaguina, Consumer confidence and asset prices: Some empirical evidence, Rev. Financ. Stud., 4 (2006), 1499–1529. https://doi.org/10.1093/rfs/hhj038 doi: 10.1093/rfs/hhj038
    [33] C. Upper, Simulation methods to assess the danger of contagion in interbank markets, J. Financ. Stab., 7 (2011), 111–125. https://doi.org/10.1016/j.jfs.2010.12.001 doi: 10.1016/j.jfs.2010.12.001
    [34] P. Teplý, I. Kvapilíková, Measuring systemic risk of the US banking sector in time-frequency domain, North Am. J. Econ. Finance, 42 (2017), 461–472. https://doi.org/10.1016/j.najef.2017.08.007 doi: 10.1016/j.najef.2017.08.007
    [35] G. D. Banulescu, E. I. Dumitrescu, Which are the SIFIs? A component expected shortfall (CES) approach to systemic risk, J. Banking Finance, 50 (2012), 575–588. https://doi.org/10.1016/j.jbankfin.2014.01.037 doi: 10.1016/j.jbankfin.2014.01.037
    [36] Z. Huang, H. Dong, S. Jia, Equilibrium pricing for carbon emission in response to the target of carbon emission peaking, Energy. Econ., 112 (2022), 106160. https://doi.org/10.1016/j.eneco.2022.106160 doi: 10.1016/j.eneco.2022.106160
    [37] V. V. Acharya, L. H. Pedersen, T. Philippon, M. Richardson, Measuring systemic risk, Rev. Financ. Stud., 30 (2017), 2–47. https://doi.org/10.1093/rfs/hhw088 doi: 10.1093/rfs/hhw088
    [38] I. Hwang, S. Xu, F. In, T. S. Kim, Systemic risk and cross-sectional hedge fund returns, J. Empirical Finance, 42 (2017), 109–130. https://doi.org/10.1016/j.jempfin.2017.03.002 doi: 10.1016/j.jempfin.2017.03.002
    [39] T. Adrian, M. K. Brunnermeier, CoVaR, Am. Econ. Rev., 106 (2016), 1705–1741. https://doi.org/10.1257/aer.20120555 doi: 10.1257/aer.20120555
    [40] Y. Wu, S. Ma, Impact of COVID-19 on energy prices and main macroeconomic indicators—evidence from China's energy market, Green Finance, 3 (2021), 383–402. https://doi.org/10.3934/GF.2021019 doi: 10.3934/GF.2021019
    [41] M. Kritzman, Y. Li, Skulls, financial turbulence, and risk management, Financ. Anal. J., 66 (2010), 30–41. https://doi.org/10.2469/faj.v66.n5.3 doi: 10.2469/faj.v66.n5.3
    [42] M. Billio, M. Getmansky, A. W. Lo, L. Pelizzon, Econometric measures of connectedness and systemic risk in the finance and insurance sectors, J. Financ. Econ., 104 (2012), 535–559. https://doi.org/10.1016/j.jfineco.2011.12.010 doi: 10.1016/j.jfineco.2011.12.010
    [43] K. H. Liow, J. Song, X. Zhou, Volatility connectedness and market dependence across major financial markets in China economy, Quant. Finance. Econ., 5 (2021), 397–420. https://doi.org/10.3934/QFE.2021018 doi: 10.3934/QFE.2021018
    [44] M. N. Khatun, S. Mitra, M. N. I. Sarker, Mobile banking during COVID-19 pandemic in Bangladesh: A novel mechanism to change and accelerate people's financial access, Green Finance, 3 (2021), 253–267. https://doi.org/10.3934/GF.2021013 doi: 10.3934/GF.2021013
    [45] Y. Liu, Z. Li, M. Xu, The influential factors of financial cycle spillover: Evidence from China, Emerging Mark. Finance Trade, 56 (2020), 1336–1350. https://doi.org/10.1080/1540496X.2019.1658076 doi: 10.1080/1540496X.2019.1658076
    [46] D. Givoly, Y. Li, B. Lourie, A. Nekrasov, Key performance indicators as supplements to earnings: Incremental informativeness, demand factors, measurement issues, and properties of their forecasts, Rev. Account. Stud., 24 (2019), 1147–1183. https://doi.org/10.1007/s11142-019-09514-y doi: 10.1007/s11142-019-09514-y
    [47] O. Israeli, A Shapley-based decomposition of the R-Square of a linear regression, J. Econ. Inequality, 5 (2007), 199–212. https://doi.org/10.1007/s10888-006-9036-6 doi: 10.1007/s10888-006-9036-6
    [48] Z. Li, L. Chen, H. Dong, What are bitcoin market reactions to its-related events, Int. Rev. Econ. Finance, 73 (2021), 1–10. https://doi.org/10.1016/j.iref.2020.12.020 doi: 10.1016/j.iref.2020.12.020
    [49] Z. Li, J. Zhong, Impact of economic policy uncertainty shocks on China's financial conditions, Finance Res. Lett., 35 (2020), 101303. https://doi.org/10.1016/j.frl.2019.101303 doi: 10.1016/j.frl.2019.101303
    [50] L. Carlsen, Decent work and economic growth in the European Union. A partial order analysis of Eurostat SDG 8 data, Green Finance, 3 (2021), 483–494. https://doi.org/10.3934/GF.2021022 doi: 10.3934/GF.2021022
    [51] C. Özgür, V. Sarıkovanlık, An application of Regular Vine copula in portfolio risk forecasting: evidence from Istanbul stock exchange, Quant. Finance Econ., 5 (2021), 452–470. https://doi.org/10.3934/QFE.2021020 doi: 10.3934/QFE.2021020
    [52] Z. Li, H. Dong, C. Floros, A. Charemis, P. Failler, Re-examining bitcoin volatility: A CAViaR-based approach, Emerging Mark. Finance Trade, 58 (2022), 1320–1338. https://doi.org/10.1080/1540496X.2021.1873127 doi: 10.1080/1540496X.2021.1873127
    [53] Z. Li, C. Yang, Z. Huang, How does the fintech sector react to signals from central bank digital currencies, Finance Res. Lett., 50 (2022), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308
    [54] F. Diebold, R. Mariano, Comparing predictive accuracy, J. Bus. Econ. Stat., 13 (1995), 253–263. https://doi.org/10.1080/07350015.1995.10524599 doi: 10.1080/07350015.1995.10524599
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1371) PDF downloads(82) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog