This paper is concerned with the following Keller–Segel–Navier–Stokes system with indirect signal production and tensor-valued sensitivity:
$ \left\{\begin{array}{*5{lllll }} n_{t}+u \cdot \nabla n=\Delta n-\nabla \cdot(n S(x,n,v,w) \nabla v), \quad &x \in \Omega, t>0, \\ v_{t}+u \cdot \nabla v=\Delta v-v+w, \quad &x \in \Omega, t>0, \\ w_{t}+u \cdot \nabla w=\Delta w-w+n, \quad &x \in \Omega, t>0, \\ u_{t}+\kappa(u \cdot \nabla) u+\nabla P=\Delta u+n \nabla \phi, \quad &x \in \Omega, t>0, \\ \nabla \cdot u=0, \quad &x \in \Omega, t>0, \end{array}\right. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (♡)$
in a bounded domain $ \Omega\subset \mathbb{R}^2 $ with smooth boundary, where $ \kappa \in \mathbb{R} $, $ \phi \in W^{2, \infty}(\Omega) $, and $ S $ is a given function with values in $ \mathbb{R}^{2\times2} $ which satisfies $ |S(x, v, w, u)|\leq C_{S}(n+1)^{-\alpha} $ with $ C_{S} > 0 $. If $ \alpha > 0 $, then for any sufficiently smooth initial data, there exists a globally classical solution which is bounded for the corresponding initial-boundary value problem of system (♡).
Citation: Kai Gao. Global boundedness of classical solutions to a Keller-Segel-Navier-Stokes system involving saturated sensitivity and indirect signal production in two dimensions[J]. Electronic Research Archive, 2023, 31(3): 1710-1736. doi: 10.3934/era.2023089
This paper is concerned with the following Keller–Segel–Navier–Stokes system with indirect signal production and tensor-valued sensitivity:
$ \left\{\begin{array}{*5{lllll }} n_{t}+u \cdot \nabla n=\Delta n-\nabla \cdot(n S(x,n,v,w) \nabla v), \quad &x \in \Omega, t>0, \\ v_{t}+u \cdot \nabla v=\Delta v-v+w, \quad &x \in \Omega, t>0, \\ w_{t}+u \cdot \nabla w=\Delta w-w+n, \quad &x \in \Omega, t>0, \\ u_{t}+\kappa(u \cdot \nabla) u+\nabla P=\Delta u+n \nabla \phi, \quad &x \in \Omega, t>0, \\ \nabla \cdot u=0, \quad &x \in \Omega, t>0, \end{array}\right. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (♡)$
in a bounded domain $ \Omega\subset \mathbb{R}^2 $ with smooth boundary, where $ \kappa \in \mathbb{R} $, $ \phi \in W^{2, \infty}(\Omega) $, and $ S $ is a given function with values in $ \mathbb{R}^{2\times2} $ which satisfies $ |S(x, v, w, u)|\leq C_{S}(n+1)^{-\alpha} $ with $ C_{S} > 0 $. If $ \alpha > 0 $, then for any sufficiently smooth initial data, there exists a globally classical solution which is bounded for the corresponding initial-boundary value problem of system (♡).
[1] | N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. https://doi.org/10.1142/S021820251550044X doi: 10.1142/S021820251550044X |
[2] | T. Hillen, K. J Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. https://doi.org/10.1007/s00285-008-0201-3 doi: 10.1007/s00285-008-0201-3 |
[3] | E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5 |
[4] | D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equations, 215 (2005), 52–107. https://doi.org/10.1016/j.jde.2004.10.022 doi: 10.1016/j.jde.2004.10.022 |
[5] | S. Zhou, S. Zhang, C. Mu, Well-posedness and non-uniform dependence for the hyperbolic Keller-Segel equation in the Besov framework, J. Differ. Equations, 302 (2021), 662–679. https://doi.org/10.1016/j.jde.2021.09.006 doi: 10.1016/j.jde.2021.09.006 |
[6] | L. Zhang, C. Mu, S. Zhou, On the initial value problem for the hyperbolic Keller-Segel equations in Besov spaces, J. Differ. Equations, 334 (2022), 451–489. https://doi.org/10.1016/j.jde.2022.06.026 doi: 10.1016/j.jde.2022.06.026 |
[7] | K. Osaki, A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2001), 441–469. |
[8] | M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020 |
[9] | T. Cieślak, P. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system, Ann. Inst. Henri Poincaré C, 27 (2010), 437–446. https://doi.org/10.1016/j.anihpc.2009.11.016 doi: 10.1016/j.anihpc.2009.11.016 |
[10] | T. Cieślak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions, J. Differ. Equations, 252 (2012), 5832–5851. https://doi.org/10.1016/j.jde.2012.01.045 doi: 10.1016/j.jde.2012.01.045 |
[11] | T. Cieślak, M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057. https://doi.org/10.1088/0951-7715/21/5/009 doi: 10.1088/0951-7715/21/5/009 |
[12] | Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic–parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equations, 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019 |
[13] | M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equations, 35 (2010), 1516–1537. https://doi.org/10.1080/03605300903473426 doi: 10.1080/03605300903473426 |
[14] | S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains, J. Differ. Equations, 256 (2014), 2993–3010. https://doi.org/10.1016/j.jde.2014.01.028 doi: 10.1016/j.jde.2014.01.028 |
[15] | M. A. Herrero, J. J. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa-classe Sci., 24 (1997), 633–683. |
[16] | J. Zheng, Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source, J. Differ. Equations, 259 (2015), 120–140. https://doi.org/10.1016/j.jde.2015.02.003 doi: 10.1016/j.jde.2015.02.003 |
[17] | K. Fujie, T. Senba, Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differ. Equations, 263 (2017), 88–148. https://doi.org/10.1016/j.jde.2017.02.031 doi: 10.1016/j.jde.2017.02.031 |
[18] | R. L. Miller, Demonstration of sperm chemotaxis in echinodermata: Asteroidea, Holothuroidea, Ophiuroidea, J. Exp. Zool., 234 (1985), 383–414. https://doi.org/10.1002/jez.1402340308 doi: 10.1002/jez.1402340308 |
[19] | I. Tuval, L. Cisneros, C. Dombrowski, C. Wolgemuth, J. O. Kessler, R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci., 102 (2005), 2277–2282. https://doi.org/10.1073/pnas.0406724102 doi: 10.1073/pnas.0406724102 |
[20] | M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Am. Math. Soc., 369 (2017), 3067–3125. http://doi.org/10.1090/tran/6733 doi: 10.1090/tran/6733 |
[21] | J. Zheng, A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, J. Differ. Equations, 272 (2021), 164–202. https://doi.org/10.1016/j.jde.2020.09.029 doi: 10.1016/j.jde.2020.09.029 |
[22] | M. Winkler, Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components, J. Evol. Equations, 18 (2018), 1267–1289. https://doi.org/10.1007/s00028-018-0440-8 doi: 10.1007/s00028-018-0440-8 |
[23] | M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier–Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455–487. https://doi.org/10.1007/s00205-013-0678-9 doi: 10.1007/s00205-013-0678-9 |
[24] | M. Winkler, Global large-data solutions in a chemotaxis(-Navier)-Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equations, 37 (2012), 319–351. https://doi.org/10.1080/03605302.2011.591865 doi: 10.1080/03605302.2011.591865 |
[25] | M. Winkler, Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system, Ann. Inst. Henri Poincaré C, 33 (2016), 1329–1352. https://doi.org/10.1016/j.anihpc.2015.05.002 doi: 10.1016/j.anihpc.2015.05.002 |
[26] | R. Duan, A. Lorz, P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Commun. Partial Differ. Equations, 35 (2010), 1635–1673. https://doi.org/10.1080/03605302.2010.497199 doi: 10.1080/03605302.2010.497199 |
[27] | M. Chae, K. Kang, J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Commun. Partial Differ. Equations, 39 (2014), 1205–1235. https://doi.org/10.1080/03605302.2013.852224 doi: 10.1080/03605302.2013.852224 |
[28] | J. G. Liu, A. Lorz, A coupled chemotaxis-fluid model: global existence, Ann. Inst. Henri Poincaré C, 28 (2011), 643–652. https://doi.org/10.1016/j.anihpc.2011.04.005 doi: 10.1016/j.anihpc.2011.04.005 |
[29] | Y. Wang, M. Winkler, Z. Xiang, Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 421–466. https://doi.org/10.2422/2036-2145.201603_004 doi: 10.2422/2036-2145.201603_004 |
[30] | Y. Wang, Z. Xiang, Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: The 3D case, J. Differ. Equations, 261 (2016), 4944–4973. https://doi.org/10.1016/j.jde.2016.07.010 doi: 10.1016/j.jde.2016.07.010 |
[31] | J. Liu, Y. Wang, Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation, J. Differ. Equations, 262 (2017), 5271–5305. https://doi.org/10.1016/j.jde.2017.01.024 doi: 10.1016/j.jde.2017.01.024 |
[32] | Y. Ke, J. Zheng, An optimal result for global existence in a three-dimensional Keller–Segel–Navier–Stokes system involving tensor-valued sensitivity with saturation, Calculus Var. Partial Differ. Equations, 58 (2019), 1–27. https://doi.org/10.1007/s00526-019-1568-2 doi: 10.1007/s00526-019-1568-2 |
[33] | J. Zheng, Eventual smoothness and stabilization in a three-dimensional Keller–Segel–Navier–Stokes system with rotational flux, Calculus Var. Partial Differ. Equations, 61 (2022), 1–34. https://doi.org/10.1007/s00526-021-02164-6 doi: 10.1007/s00526-021-02164-6 |
[34] | Y. Wang, Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with subcritical sensitivity, Math. Models Methods Appl. Sci., 27 (2017), 2745–2780. https://doi.org/10.1142/S0218202517500579 doi: 10.1142/S0218202517500579 |
[35] | T. Black, Global solvability of chemotaxis–fluid systems with nonlinear diffusion and matrix-valued sensitivities in three dimensions, Nonlinear Anal., 180 (2019), 129–153. https://doi.org/10.1016/j.na.2018.10.003 doi: 10.1016/j.na.2018.10.003 |
[36] | J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Differ. Equations, 267 (2019), 2385–2415. https://doi.org/10.1016/j.jde.2019.03.013 doi: 10.1016/j.jde.2019.03.013 |
[37] | H. Sohr, The Navier-Stokes Equations, An Elementary Functional Analytic Approach, Birkhäuser Verlag, Basel, 2001. |
[38] | P. Yu, Blow-up prevention by saturated chemotactic sensitivity in a 2D Keller-Segel-Stokes system, Acta Appl. Math., 169 (2020), 475–497. https://doi.org/10.1007/s10440-019-00307-8 doi: 10.1007/s10440-019-00307-8 |
[39] | Y. Tao, M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685–704. https://doi.org/10.1137/100802943 doi: 10.1137/100802943 |
[40] | J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differ. Equations, 262 (2017), 4052–4084. https://doi.org/10.1016/j.jde.2016.12.007 doi: 10.1016/j.jde.2016.12.007 |
[41] | L. C. Evans, Partial differential equations, American Mathematical Soc, 2010. Available from: https://scholar.google.com/scholar?cluster=11294483348318394484&hl=en&as_sdt=0,33 |
[42] | J. Zheng, Y. Ke, Blow-up prevention by nonlinear diffusion in a 2D Keller-Segel-Navier-Stokes system with rotational flux, J. Differ. Equations, 268 (2020), 7092–7120. https://doi.org/10.1016/j.jde.2019.11.071 doi: 10.1016/j.jde.2019.11.071 |
[43] | M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calculus Var. Partial Differ. Equations, 54 (2015), 3789–3828. https://doi.org/10.1007/s00526-015-0922-2 doi: 10.1007/s00526-015-0922-2 |
[44] | M. M. Porzio, V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equations, 103 (1993), 146–178. https://doi.org/10.1006/jdeq.1993.1045 doi: 10.1006/jdeq.1993.1045 |
[45] | J. Simon, Compact sets in the space $L^p (0, T; B)$, Ann. Mat. Pura Appl., 146 (1986), 65–96. https://doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360 |
[46] | T. Li, A. Suen, M. Winkler, C. Xue, Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms, Math. Models Methods Appl. Sci., 25 (2015), 721–746. https://doi.org/10.1142/S0218202515500177 doi: 10.1142/S0218202515500177 |
[47] | G. M. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl., 148 (1987), 77–99. https://doi.org/10.1007/BF01774284 doi: 10.1007/BF01774284 |
[48] | O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uraíceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Providence, Rhode Island, 1968. |