Review

Lactic acid bacteria as bioprotective agents: A mini-review on biotechnological-and human health-based facets

  • Received: 04 October 2022 Revised: 10 January 2023 Accepted: 06 February 2023 Published: 15 February 2023
  • Despite the blitz on chemical-based fertilizers, the transition towards the bio-based fertilizers may subvert fossilfuels-based fertilizers. Research efforts are perpetrated to contend the transition towards sustainable agriculture, thus, enhancing the bio-based economy. Bioprotective agents are key players for alternative farming as environmentally-friendly applications. This mini-review provides a consolidated briefing of lactic acid bacteria production with the main focus on their impact on human health.

    Citation: Simon Bergsma, Efthymios Poulios, Nikolaos Charalampogiannis, Spyridon Achinas. Lactic acid bacteria as bioprotective agents: A mini-review on biotechnological-and human health-based facets[J]. AIMS Environmental Science, 2023, 10(2): 206-225. doi: 10.3934/environsci.2023012

    Related Papers:

  • Despite the blitz on chemical-based fertilizers, the transition towards the bio-based fertilizers may subvert fossilfuels-based fertilizers. Research efforts are perpetrated to contend the transition towards sustainable agriculture, thus, enhancing the bio-based economy. Bioprotective agents are key players for alternative farming as environmentally-friendly applications. This mini-review provides a consolidated briefing of lactic acid bacteria production with the main focus on their impact on human health.



    加载中


    [1] Bakker MG, Brown DW, Kelly AC, et al. (2018) Fusarium mycotoxins: a trans-disciplinary overview. Can J Plant Sci 40: 161–171. https://doi.org/10.1080/07060661.2018.1433720 doi: 10.1080/07060661.2018.1433720
    [2] Crowley S, Mahony J, van Sinderen D (2013) Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci Technol 33: 93–109. https://doi.org/10.1016/j.tifs.2013.07.004 doi: 10.1016/j.tifs.2013.07.004
    [3] Campana R, van Hemert S, Baffone W (2017) Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog 9: 1–12. https://doi.org/10.1186/s13099-017-0162-4 doi: 10.1186/s13099-017-0162-4
    [4] Bergsma S, Euverink GJW, Charalampogiannis N, et al. (2022) Biotechnological and Medical Aspects of Lactic Acid Bacteria Used for Plant Protection: A Comprehensive Review. Bio Tech 11: 40. https://doi.org/10.3390/biotech11030040 doi: 10.3390/biotech11030040
    [5] Yao Z, Cai Z, Ma Q, et al. (2022) Compartmentalized PGRP expression along the dipteran Bactrocera dorsalis gut forms a zone of protection for symbiotic bacteria. Cell Rep 41: 111523. https://doi.org/10.1016/j.celrep.2022.111523 doi: 10.1016/j.celrep.2022.111523
    [6] Gensollen T, Iyer SS, Kasper DL, et al. (2016) How colonization by microbiota in early life shapes the immune system. Science 352: 539–544. https://doi.org/10.1126/science.aad9378 doi: 10.1126/science.aad9378
    [7] Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474: 1823–1836. https://doi.org/10.1042/BCJ20160510 doi: 10.1042/BCJ20160510
    [8] Den Besten G, van Eunen K, Groen AK, et al. (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J lipid Res 54: 2325–2340. https://doi.org/10.1194/jlr.R036012 doi: 10.1194/jlr.R036012
    [9] Fung TC (2020) The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiolo Dis 136: 104714. https://doi.org/10.1016/j.nbd.2019.104714 doi: 10.1016/j.nbd.2019.104714
    [10] Aroutcheva A, Gariti D, Simon M, et al. (2001) Defense factors of vaginal lactobacilli. Am J Obstet Gynecol 185: 375–379. https://doi.org/10.1067/mob.2001.115867 doi: 10.1067/mob.2001.115867
    [11] Escalante A, López Soto DR, Velázquez Gutiérrez JE, et al. (2016) Pulque, a traditional Mexican alcoholic fermented beverage: historical, microbiological, and technical aspects. Front Microbiol 7: 1026. https://doi.org/10.3389/fmicb.2016.01026 doi: 10.3389/fmicb.2016.01026
    [12] Liu A, Li X, Pu B, et al. (2017) Use of psychrotolerant lactic acid bacteria (Lactobacillus spp. and Leuconostoc spp.) Isolated from Chinese Traditional Paocai for the Quality Improvement of Paocai Products. J Agric Food Chem 65: 2580–2587. https://doi.org/10.1021/acs.jafc.7b00050
    [13] Stokstad E. (2019) Nitrogen crisis threatens Dutch environment—and economy. Science 366: 1180–1181. https://doi.org/10.1126/science.366.6470.1180 doi: 10.1126/science.366.6470.1180
    [14] Tandon A, Dhir A, Kaur P, et al. (2020) Why do people buy organic food? The moderating role of environmental concerns and trust. J Retail Consum Serv 57: 102247. https://doi.org/10.1016/j.jretconser.2020.102247 doi: 10.1016/j.jretconser.2020.102247
    [15] Sharma A, Kumar V, Shahzad B, et al. (2019) Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 1: 1446. https://doi.org/10.1007/s42452-019-1485-1 doi: 10.1007/s42452-019-1485-1
    [16] Griswold E (2012) How 'Silent Spring' ignited the environmental movement. The New York Times 21.
    [17] Abhilash, PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165: 1–12. https://doi.org/10.1016/j.jhazmat.2008.10.061 doi: 10.1016/j.jhazmat.2008.10.061
    [18] FAO (2020) Pesticide use. Retrieved November 1, 2020. Available from: http://www.fao.org/faostat/en/#data/RP/visualize
    [19] Stevenson PC, Isman MB, Belmain SR (2017) Pesticidal plants in Africa: a global vision of new biological control products from local uses. Ind Crops Prod 110: 2–9. https://doi.org/10.1016/j.indcrop.2017.08.034 doi: 10.1016/j.indcrop.2017.08.034
    [20] van Vliet J, Eitelberg DA, Verburg PH (2017) A global analysis of land take in cropland areas and production displacement from urbanization. Glo Environ change 43: 107–115. https://doi.org/10.1016/j.gloenvcha.2017.02.001 doi: 10.1016/j.gloenvcha.2017.02.001
    [21] Hamadamin AY, Hassan KI (2020) Gas chromatography–mass spectrometry based sensitive analytical approach to detect and quantify non-polar pesticides accumulated in the fat tissues of domestic animals. Sau J Biol Sci 27: 887–893. https://doi.org/10.1016/j.sjbs.2019.12.029 doi: 10.1016/j.sjbs.2019.12.029
    [22] Xie Y, Li J, Guo X, et al. (2020) Health status among greenhouse workers exposed to different levels of pesticides: A genetic matching analysis. Sci Rep 10: 1–13. https://doi.org/10.1038/s41598-020-65662-1 doi: 10.1038/s41598-020-65662-1
    [23] Malalgoda M, Simsek S (2021) Pesticide residue in grain-based food: Effects on health, grain quality, and chemical properties of biomacromolecules. Cereal Chem 98: 8–16. https://doi.org/10.1002/cche.10355 doi: 10.1002/cche.10355
    [24] Dardiotis E, Aloizou AM, Sakalakis E, et al. (2020) Organochlorine pesticide levels in Greek patients with Parkinson's disease. Toxicol Rep 7: 596–601. https://doi.org/10.1016/j.toxrep.2020.03.011 doi: 10.1016/j.toxrep.2020.03.011
    [25] Samani R, Sharma N, Garg D (2018) Effects of endocrine-disrupting chemicals and epigenetic modifications in ovarian cancer: a review. Reprod Sci 25: 7–18. https://doi.org/10.1177/1933719117711261 doi: 10.1177/1933719117711261
    [26] Filipov NM (2022) Pesticides Exposures and Parkinsonism: Experimental and Epidemiological Evidence of Association. Parkinsonism Environ 2022: 131–154. https://doi.org/10.1007/978-3-030-87451-3_6 doi: 10.1007/978-3-030-87451-3_6
    [27] Kabir A, Zendehdel R, Tayefeh-Rahimian R (2018) Dioxin exposure in the manufacture of pesticide production as a risk factor for death from prostate cancer: A meta-analysis. Iran J Public Health 47: 148.
    [28] Sadeghi A, Ebrahimi M, Mortazavi SA, et al. (2019) Application of the selected antifungal LAB isolate as a protective starter culture in pan whole-wheat sourdough bread. Food Control 95: 298–307. https://doi.org/10.1016/j.foodcont.2018.08.013 doi: 10.1016/j.foodcont.2018.08.013
    [29] Pardo LA, Beane Freeman LE, Lerro CC, et al. (2020) Pesticide exposure and risk of aggressive prostate cancer among private pesticide applicators. Environ Health 19: 1–12. https://doi.org/10.1186/s12940-020-00583-0 doi: 10.1186/s12940-020-00583-0
    [30] Silva JF, Mattos IE, Luz LL, et al. (2016) Exposure to pesticides and prostate cancer: systematic review of the literature. Rev on Environ Health 31: 311–327. https://doi.org/10.1515/reveh-2016-0001 doi: 10.1515/reveh-2016-0001
    [31] Lopes-Ferreira M, Maleski ALA, Balan-Lima L, et al. (2022) Impact of pesticides on human health in the last six years in Brazil. Inter J Environ Res Public Health 19: 3198. https://doi.org/10.3390/ijerph19063198 doi: 10.3390/ijerph19063198
    [32] Annamalai J, Namasivayam V (2015) Endocrine disrupting chemicals in the atmosphere: their effects on humans and wildlife. Environ Inter 76: 78–97. https://doi.org/10.1016/j.envint.2014.12.006 doi: 10.1016/j.envint.2014.12.006
    [33] Vargas AC, Castañeda JP, Liljedahl ER, et al. (2022) Exposure to common-use pesticides, manganese, lead, and thyroid function among pregnant women from the Infants' Environmental Health (ISA) study, Costa Rica. Sci Total Environ 810: 151288. https://doi.org/10.1016/j.scitotenv.2021.151288 doi: 10.1016/j.scitotenv.2021.151288
    [34] Requena M, López-Villén A, Hernández AF, et al. (2019) Environmental exposure to pesticides and risk of thyroid diseases. Toxicol Tetters 315: 55–63. https://doi.org/10.1016/j.toxlet.2019.08.017 doi: 10.1016/j.toxlet.2019.08.017
    [35] Goldner WS, Sandler DP, Yu F, et al. (2013) Hypothyroidism and pesticide use among male private pesticide applicators in the agricultural health study. J Occup Environ Med 55: 1171. https://doi.org/10.1097/JOM.0b013e31829b290b doi: 10.1097/JOM.0b013e31829b290b
    [36] Schoustra SE, Debets AJ, Rijs AJ, et al. (2019) Environmental hotspots for azole resistance selection of Aspergillus fumigatus, the Netherlands. Emerging Infec Dis 25: 1347. https://doi.org/10.3201/eid2507.181625 doi: 10.3201/eid2507.181625
    [37] Blum WE, Zechmeister-Boltenstern S, Keiblinger KM (2019) Does soil contribute to the human gut microbiome. Microorganisms 7: 287. https://doi.org/10.3390/microorganisms7090287 doi: 10.3390/microorganisms7090287
    [38] Hirt H (2020) Healthy soils for healthy plants for healthy humans: How beneficial microbes in the soil, food and gut are interconnected and how agriculture can contribute to human health. EMBO Rep 21: e51069. https://doi.org/10.15252/embr.202051069 doi: 10.15252/embr.202051069
    [39] LeBlanc JG, Milani C, De Giori GS, et al. (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24: 160–168. https://doi.org/10.1016/j.copbio.2012.08.005 doi: 10.1016/j.copbio.2012.08.005
    [40] Kau AL, Ahern PP, Griffin NW, et al. (2011) Human nutrition, the gut microbiome and the immune system. Nature 474: 327–336. https://doi.org/10.1038/nature10213 doi: 10.1038/nature10213
    [41] Kuklinsky-Sobral J, Araújo WL, Mendes R, et al. (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbio 6: 1244–1251. https://doi.org/10.1111/j.1462-2920.2004.00658.x doi: 10.1111/j.1462-2920.2004.00658.x
    [42] Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17: 478–486. https://doi.org/10.1016/j.tplants.2012.04.001 doi: 10.1016/j.tplants.2012.04.001
    [43] Bender SF, Wagg C, van der Heijden MG (2016) An u.nderground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecolo Evol 31: 440–452. https://doi.org/10.1016/j.tree.2016.02.016
    [44] Czaja K, Góralczyk K, Struciński P, et al. (2015) Biopesticides–towards increased consumer safety in the European Union. Pest Manage Sci 71: 3–6. https://doi.org/10.1002/ps.3829 doi: 10.1002/ps.3829
    [45] Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Fertil Pestic 6: 100–129. https://doi.org/10.4172/2471-2728.1000e129 doi: 10.4172/2471-2728.1000e129
    [46] Escribano-Viana R, López-Alfaro I, López R, et al. (2018) Impact of chemical and biological fungicides applied to grapevine on grape biofilm, must, and wine microbial diversity. Front Microbio 9: 59. https://doi.org/10.3389/fmicb.2018.00059 doi: 10.3389/fmicb.2018.00059
    [47] Dzedze N, Van Breda V, Hart RS, et al. (2019) Wine chemical, sensory, aroma compound and protein analysis of wines produced from chemical and biological fungicide treated Chenin blanc grapes. Food Control 105: 265–276. https://doi.org/10.1016/j.foodcont.2019.06.007 doi: 10.1016/j.foodcont.2019.06.007
    [48] Hibar K, Daami-Remadi M, Hamada W, et al. (2006) Bio-fungicides as an alternative for tomato Fusarium crown and root rot control. Tunisian J Plant Protec 1:1 9.
    [49] Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Inter J Food Microbiol 119: 47–50. https://doi.org/10.1016/j.ijfoodmicro.2007.07.024 doi: 10.1016/j.ijfoodmicro.2007.07.024
    [50] Berthiller F, Crews C, Dall'Asta C, et al. (2013) Masked mycotoxins: A review. Mol Nutr Food Res 57: 165–186. https://doi.org/10.1002/mnfr.201100764 doi: 10.1002/mnfr.201100764
    [51] Guimarães A, Santiago A, Teixeira JA, et al. (2018) Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. Inter J Food Microbiol 264: 31–38. https://doi.org/10.1016/j.ijfoodmicro.2017.10.025 doi: 10.1016/j.ijfoodmicro.2017.10.025
    [52] Eskola M, Kos G, Elliott CT, et al. (2020) Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited 'FAO estimate'of 25%. Crit Rev Food Sci Nutri 60: 2773–2789. https://doi.org/10.1080/10408398.2019.1658570 doi: 10.1080/10408398.2019.1658570
    [53] Hassan YI, Bullerman LB (2008) Antifungal activity of Lactobacillus paracasei subsp. tolerans against Fusarium proliferatum and Fusarium graminearum in a liquid culture setting. J Food Prot 71: 2213–2216. https://doi.org/10.4315/0362-028X-71.11.2213
    [54] Sadiq Faizan A, Bowen Y, Fengwei T, et al. (2019) Lactic Acid Bacteria as Antifungal and Anti-Mycotoxigenic Agents: A Comprehensive Review. Comp Rev Food Sci Food Saf 18: 1403–1436. https://doi.org/10.1111/1541-4337.12481 doi: 10.1111/1541-4337.12481
    [55] Summerell BA (2019) Resolving Fusarium: Current status of the genus. Annu Rev Phytopathol 57: 323–339. https://doi.org/10.1146/annurev-phyto-082718-100204 doi: 10.1146/annurev-phyto-082718-100204
    [56] Dean R, Van Kan JA, Pretorius ZA, et al. (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13: 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x doi: 10.1111/j.1364-3703.2011.00783.x
    [57] Antonissen G, Martel A, Pasmans F, et al. (2014) The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 6: 430–452. https://doi.org/10.3390/toxins6020430 doi: 10.3390/toxins6020430
    [58] Bouhet S, Oswald IP (2005) The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response. Vet Immunol Immunopathol 108: 199–209. https://doi.org/10.1016/j.vetimm.2005.08.010 doi: 10.1016/j.vetimm.2005.08.010
    [59] Corrier DE (1991) Myco toxicosis: mechanisms of immunosuppression. Vet Immunol Immunopathol 30: 73–87. https://doi.org/10.1016/0165-2427(91)90010-A doi: 10.1016/0165-2427(91)90010-A
    [60] Bondy GS, Pestka JJ (2000) Immunomodulation by fungal toxins. J Toxicol Environ Health Part B: Crit Revi 3: 109–143. https://doi.org/10.1080/109374000281113 doi: 10.1080/109374000281113
    [61] Fedorka-Cray PJ, Gray JT, Wray C (2000) Salmonella infections in pigs. Salmonella Domes Anim 2000: 191–207. https://doi.org/10.1079/9780851992617.0191 doi: 10.1079/9780851992617.0191
    [62] Birmingham CL, Smith AC, Bakowski MA, et al. (2006) Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 281: 11374–11383. https://doi.org/10.1074/jbc.M509157200 doi: 10.1074/jbc.M509157200
    [63] Meurens F, Summerfield A, Nauwynck H, et al. (2012) The pig: a model for human infectious diseases. Tren Microbio 20: 50–57. https://doi.org/10.1016/j.tim.2011.11.002 doi: 10.1016/j.tim.2011.11.002
    [64] Verbrugghe E, Vandenbroucke V, Dhaenens M, et al. (2012). T-2 toxin induced Salmonella Typhimurium intoxication results in decreased Salmonella numbers in the cecum contents of pigs, despite marked effects on Salmonella-host cell interactions. Vet Res 43: 22. https://doi.org/10.1186/1297-9716-43-22 doi: 10.1186/1297-9716-43-22
    [65] Tai JH, Pestka JJ (1990) T-2 toxin impairment of murine response to Salmonella typhimurium: a histopathologic assessment. Mycopathologia 109: 149–155. https://doi.org/10.1007/BF00436803 doi: 10.1007/BF00436803
    [66] Gajbhiye MH, Kapadnis BP (2016) Antifungal-activity-producing lactic acid bacteria as biocontrol agents in plants. Biocontrol Sci Technol 26: 1451–1470. https://doi.org/10.1080/09583157.2016.1213793 doi: 10.1080/09583157.2016.1213793
    [67] Adams, MR, Hall, CJ (1988) In vitro investigation on probiotic, anti-Candida, and antibiofilm properties of Lactobacillus pentosus strain LAP1Growth inhibition of food-borne pathogens by lactic and acetic acids and their mixtures. Int J Food Sci Technol 23: 287–292. https://doi.org/10.1111/j.1365-2621.1988.tb00581.x doi: 10.1111/j.1365-2621.1988.tb00581.x
    [68] Krebs HA, Wiggins D, Stubbs M, et al. (1983) Studies on the mechanism of the anti-fungal action of benzoate. Biochem J 214: 657–663. https://doi.org/10.1042/bj2140657 doi: 10.1042/bj2140657
    [69] Kashket ER (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Rev 3: 233–244. https://doi.org/10.1111/j.1574-6968.1987.tb02463.x doi: 10.1111/j.1574-6968.1987.tb02463.x
    [70] Baek E, Kim H, Choi H, et al. (2012) Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes. J Microbiol 50: 842–848. https://doi.org/10.1007/s12275-012-2153-y doi: 10.1007/s12275-012-2153-y
    [71] Valerio F, Di Biase M, Lattanzio VM, et al. (2016) Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid. Int J Food Microbiol 222: 1–7. https://doi.org/10.1016/j.ijfoodmicro.2016.01.011 doi: 10.1016/j.ijfoodmicro.2016.01.011
    [72] Broberg A, Jacobsson K, Ström K, et al. (2007) Metabolite profiles of lactic acid bacteria in grass silage. Appl Environ Microbiol 73: 5547–5552. https://doi.org/10.1128/AEM.02939-06 doi: 10.1128/AEM.02939-06
    [73] Coloretti F, Carri S, Armaforte E, et al. (2007) Antifungal activity of lactobacilli isolated from salami. FEMS Microbiol Lett 271: 245–250. https://doi.org/10.1111/j.1574-6968.2007.00723.x doi: 10.1111/j.1574-6968.2007.00723.x
    [74] Oliveira PM, Brosnan B, Furey A, et al. (2015) Lactic acid bacteria bioprotection applied to the malting process. Part I: Strain characterization and identification of antifungal compounds. Food Control 51: 433–443. https://doi.org/10.1016/j.foodcont.2014.07.004
    [75] Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Tec 16: 70–78. https://doi.org/10.1016/j.tifs.2004.02.014 doi: 10.1016/j.tifs.2004.02.014
    [76] Vimont A, Fernandez B, Ahmed G, et al. (2019) Quantitative antifungal activity of reuterin against food isolates of yeasts and moulds and its potential application in yogurt. Int J Food Microbiol 289: 182–188. https://doi.org/10.1016/j.ijfoodmicro.2018.09.005 doi: 10.1016/j.ijfoodmicro.2018.09.005
    [77] Schaefer L, Auchtung TA, Hermans KE, et al. (2010) The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology 156: 1589–1599. https://doi.org/10.1099/mic.0.035642-0 doi: 10.1099/mic.0.035642-0
    [78] EFSA Panel on Biological Hazards (BIOHAZ), Ricci A, Allende A, et al. (2017) Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J 15: e04664. https://doi.org/10.2903/j.efsa.2017.4884 doi: 10.2903/j.efsa.2017.4884
    [79] Schmidt M, Lynch KM, Zannini E, et al. (2018) Fundamental study on the improvement of the antifungal activity of Lactobacillus reuteri R29 through increased production of phenyllactic acid and reuterin. Food Control 88: 139–148. https://doi.org/10.1016/j.foodcont.2017.11.041 doi: 10.1016/j.foodcont.2017.11.041
    [80] Avis TJ, Bélanger RR (2001) Specificity and Mode of Action of the Antifungal Fatty Acid cis-9-Heptadecenoic Acid Produced by Pseudozyma flocculosa. Appl Environ Microbiol 67: 956–960. https://doi.org/10.1128/AEM.67.2.956-960.2001 doi: 10.1128/AEM.67.2.956-960.2001
    [81] Bergsson G, Arnfinnsson J, Steingrímsson Ó, et al. (2001) In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob Agents Chemother 45: 3209–3212. https://doi.org/10.1128/AAC.45.11.3209-3212.2001 doi: 10.1128/AAC.45.11.3209-3212.2001
    [82] Nasrollahzadeh A, Mokhtari S, Khomeiri M, et al. (2022) Antifungal preservation of food by lactic acid bacteria. Foods 11: 395. https://doi.org/10.3390/foods11030395 doi: 10.3390/foods11030395
    [83] Sjörgen S, Magnusson J, Broberg A, et al. (2003) Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl Environ Microbiol 69: 7554–7557. https://doi.org/10.1128/AEM.69.12.7554-7557.2003 doi: 10.1128/AEM.69.12.7554-7557.2003
    [84] Black BA, Zannini E, Curtis JM, et al. (2013) Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. Appl Environ Microbiol 79: 1866–1873. https://doi.org/10.1128/AEM.03784-12 doi: 10.1128/AEM.03784-12
    [85] De Man JC, Rogosa D, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23: 130–135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x doi: 10.1111/j.1365-2672.1960.tb00188.x
    [86] Hayek SA (2013) Use of sweet potato to develop a medium for cultivation of lactic acid bacteria. (Doctoral dissertation, North Carolina Agricultural and Technical State University).
    [87] Dopazo V, Luz C, Quiles JM, et al. (2022) Potential application of lactic acid bacteria in the biopreservation of red grape from mycotoxigenic fungi. J Sci Food Agric 102: 898–907. https://doi.org/10.1002/jsfa.11422 doi: 10.1002/jsfa.11422
    [88] Terzaghi BE, Sandine W (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29: 807–813. https://doi.org/10.1128/am.29.6.807-813.1975 doi: 10.1128/am.29.6.807-813.1975
    [89] Kaneko T, Suzuki H, Takahashi T (1987) Influences of cellular components and redox potential of liquid concentrated culture of Lactobacillus bulgaricus on acid-producing activity and viability. J Dairy Sci 70: 1128–1133. https://doi.org/10.3168/jds.S0022-0302(87)80122-4 doi: 10.3168/jds.S0022-0302(87)80122-4
    [90] Jasper P, Silver S (1977) Magnesium transport in microorganisms. Microorganisms and Minerals 3: 7–47.
    [91] Atlas RM (2006) The handbook of microbiological media for the examination of food. CRC press. https://doi.org/10.1201/9781420002980
    [92] Toplaghaltsyan A, Bazukyan I, Trchounian A (2017) The effects of different carbon sources on the antifungal activity by lactic acid bacteria. Curr Microbiol 74: 168–174. https://doi.org/10.1007/s00284-016-1168-8 doi: 10.1007/s00284-016-1168-8
    [93] Singh V, Haque S, Niwas R, et al. (2017) Strategies for fermentation medium optimization: an in-depth review. Front Microbiol 7: 2087. https://doi.org/10.3389/fmicb.2016.02087 doi: 10.3389/fmicb.2016.02087
    [94] Tyc O, Song C, Dickschat JS, et al. (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25: 280–292. https://doi.org/10.1016/j.tim.2016.12.002 doi: 10.1016/j.tim.2016.12.002
    [95] Ren NQ, Chua H, Chan SY, et al. (2007) Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresour Technol 98: 1774–1780. https://doi.org/10.1016/j.biortech.2006.07.026 doi: 10.1016/j.biortech.2006.07.026
    [96] Zohri ANA, Ragab SW, Mekawi MI, et al. (2017) Comparison between batch, fed-batch, semi-continuous and continuous techniques for bio-ethanol production from a mixture of egyptian cane and beet molasses. Egypt Sugar J 9: 89–111.
    [97] Birol G, Ündey C, Cinar A (2002) A modular simulation package for fed-batch fermentation: penicillin production. Comput Chem Eng 26: 1553–1565. https://doi.org/10.1016/S0098-1354(02)00127-8 doi: 10.1016/S0098-1354(02)00127-8
    [98] Guidoboni, GE (1984) Continuous fermentation systems for alcohol production. Enzyme Microb Technol 6: 194–200. https://doi.org/10.1016/0141-0229(84)90103-0 doi: 10.1016/0141-0229(84)90103-0
    [99] Paulova L, Chmelik J, Branska B, et al. (2020) Comparison of Lactic Acid Production by L. casei in Batch, Fed-batch and Continuous Cultivation, Testing the use of Feather Hydrolysate as a Complex Nitrogen Source. Braz Arch Biol Technol 63. https://doi.org/10.1590/1678-4324-2020190151
    [100] Lee JJ, Choi YJ, Lee MJ, et al. (2020) Effects of combining two lactic acid bacteria as a starter culture on model kimchi fermentation. Food Res Int 136: 109591. https://doi.org/10.1016/j.foodres.2020.109591 doi: 10.1016/j.foodres.2020.109591
    [101] Othman M, Ariff AB, Rios-Solis L, et al. (2017) Extractive fermentation of lactic acid in lactic acid bacteria cultivation: A review. Front Microbiol 8: 2285. https://doi.org/10.3389/fmicb.2017.02285 doi: 10.3389/fmicb.2017.02285
    [102] Patel M, Bassi AS, Zhu JJX, et al. (2008) Investigation of a dual‐particle liquid-solid circulating fluidized bed bioreactor for extractive fermentation of lactic acid. Biotechnol Prog 24: 821–831. https://doi.org/10.1002/btpr.6 doi: 10.1002/btpr.6
    [103] Cui S, Zhao J, Zhang H, et al. (2016) High-density culture of Lactobacillus plantarum coupled with a lactic acid removal system with anion-exchange resins. Biochem Eng J 115: 80–84. https://doi.org/10.1016/j.bej.2016.08.005 doi: 10.1016/j.bej.2016.08.005
    [104] Gao MT, Shimamura T, Ishida N, et al. (2009) Extractive lactic acid fermentation with tri-n-decylamine as the extractant. Enzyme Microb Technol 44: 350–354. https://doi.org/10.1016/j.enzmictec.2008.12.001 doi: 10.1016/j.enzmictec.2008.12.001
    [105] Habova V, Melzoch K, Rychtera M, et al. (2001) Application of electrodialysis for lactic acid recovery. Czech J Food Sci 19: 73-80. https://doi.org/10.17221/6579-CJFS doi: 10.17221/6579-CJFS
    [106] Datta R, Tsai SP, Bonsignore P, et al. (1995) Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbiol Rev 16: 221–231. https://doi.org/10.1111/j.1574-6976.1995.tb00168.x doi: 10.1111/j.1574-6976.1995.tb00168.x
    [107] Iqbal M, Tao Y, Xie S, et al. (2016) Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol Proced Online 18: 18. https://doi.org/10.1186/s12575-016-0048-8 doi: 10.1186/s12575-016-0048-8
    [108] Dissing U, Mattiasson B (1994) Cultivation of Lactococcus lactis in a polyelectrolyte-neutral polymer aqueous two-phase system. Biotechnol lett 16: 333–338. https://doi.org/10.1007/BF00245046 doi: 10.1007/BF00245046
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(923) PDF downloads(181) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog