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Abstract: This paper is concerned with the following Keller–Segel–Navier–Stokes system with
indirect signal production and tensor-valued sensitivity:

nt + u · ∇n = ∆n − ∇ · (nS (x, n, v,w)∇v), x ∈ Ω, t > 0,
vt + u · ∇v = ∆v − v + w, x ∈ Ω, t > 0,
wt + u · ∇w = ∆w − w + n, x ∈ Ω, t > 0,
ut + κ(u · ∇)u + ∇P = ∆u + n∇ϕ, x ∈ Ω, t > 0,
∇ · u = 0, x ∈ Ω, t > 0,

(♡)

in a bounded domain Ω ⊂ R2 with smooth boundary, where κ ∈ R, ϕ ∈ W2,∞(Ω), and S is a given
function with values in R2×2 which satisfies |S (x, v,w, u)| ≤ CS (n+ 1)−α with CS > 0. If α > 0, then for
any sufficiently smooth initial data, there exists a globally classical solution which is bounded for the
corresponding initial-boundary value problem of system (♡).

Keywords: Keller-Segel-Navier-Stokes system; tensor-valued sensitivity; indirect signal production;
classical solution; global boundedness

1. Introduction and main results

Chemotaxis is a biological phenomenon which describes the oriented movement of cells (or
organisms) in response to chemical gradients [1, 2]. As early as 1970, Keller and Segel [3] originally
introduced a chemotaxis model through a system of parabolic equations. This model reads{

nt = ∆n − ∇ · (nS (x, n, c)∇c), x ∈ Ω, t > 0,
ct = ∆c − c + n, x ∈ Ω, t > 0,

(1.1)
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whereΩ ⊂ RN is a bounded domain with smooth boundary, the unknown functions n and c respectively
represent the cell density and the signal concentration, and S denotes the chemotactic sensitivity. This
model is primarily used to describe the aggregation phenomenon of Dictyostelium discoideum, where
the effects of the chemical signal secreted by themselves are taken into consideration. During the past
half a century, the Keller-Segel model has been attracting many scholars’ attention. The known results
are concentrated on whether the solutions for Neumann boundary problem of (1.1) globally exist or
blow up in finite time. Concretely, if S := S (n) is a scalar function fulfilling S (n) ≤ CS (n + 1)−α with
some CS > 0 and α > 0, then for all α > 1− 2

N , the corresponding problem has a global solution which
is uniformly bounded [4]. However, if S satisfies S (n) > cS n−α with some cS > 0 and α < 1 − 2

N for
N ≥ 2, and Ω is a ball, then the solution of (1.1) will blow up in finite time. So,

α =
N − 2

N

is called the critical exponent of the blow-up phenomenon. Recently, some results relating to the
well-posedness of the hyperbolic Keller-Segel equation in the Besov framework were obtained in [5].
Afterwards, Zhang et al. [6] improved these results and established two kinds of blow-up criteria of
strong solutions in Besov spaces by means of Littlewood-Paley theory. For more results about (1.1)
and its variations, we refer interested readers to [7–16]

If we consider the framework where the chemical is produced by the cells indirectly, the
corresponding chemotaxis model turns to the following Keller-Segel system with indirect
signal production: 

nt = ∆n − ∇ · (nS (x, n, v,w)∇v), x ∈ Ω, t > 0,
vt = ∆v − v + w, x ∈ Ω, t > 0,
wt = ∆w − w + n, x ∈ Ω, t > 0,

(1.2)

in a bounded domainΩ ⊂ RN with smooth boundary, where the functions n, v and w represent the cells,
density, the signal and the chemical concentration, respectively. If S (x, n, v,w) = χ with χ > 0 and
N ≤ 3, Fujie and Senba [17] showed that the homogeneous Neumann (or mixed) boundary problem of
system (1.2) possesses a unique and globally bounded classical solution.

However, in many cases, the migration of cells (or bacteria) is largely affected by their surrounding
environment [18, 19]. If the cells consume the chemical signal, Tuval et al. [19] introduced the
following chemotaxis-fluid system:

nt + u · ∇n = ∆n − ∇ · (nS (x, n, c)∇c), x ∈ Ω, t > 0,
ct + u · ∇c = ∆c − n f (c), x ∈ Ω, t > 0,
ut + κ(u · ∇)u + ∇P = ∆u + n∇ϕ, x ∈ Ω, t > 0,
∇ · u = 0, x ∈ Ω, t > 0,

(1.3)

in a bounded domain Ω ⊂ R3 with smooth boundary, where f (c) measures the rate that cells consume
the oxygen, and S (x, n, c) is a tensor-valued (or scalar) chemotactic sensitivity. Most remarkably, by
means of the chemical consumption setting and the maximum principle of the parabolic equations, we
may directly deduce that c is uniformly bounded from the second equation of (1.3). This significant
feature leads to the chemotaxis-fluid model with the framework of signal consumption being more
intensively studied than the signal production mechanism. For instance, Winkler [20] proved that the
global weak solution of system (1.3) which has enough regularity properties and thereby fulfills the
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condition of so-called eventual energy solution (this concept is newly proposed in his paper) becomes
eventually smooth after some waiting time. For more studies about this system, one can refer to
Zheng [21], Winkler [22–25] and other results on the global solvability and asymptotic behavior, such
as [26–28], for details.

Considering the framework where the chemical signal is produced by the cells instead of
consuming it, the corresponding chemotaxis-fluid model becomes the following
Keller-Segel(-Navier)-Stokes system:

nt + u · ∇n = ∆n − ∇ · (nS (x, n, c)∇c), x ∈ Ω, t > 0,
ct + u · ∇c = ∆c − c + n, x ∈ Ω, t > 0,
ut + κ(u · ∇)u + ∇P = ∆u + n∇ϕ, x ∈ Ω, t > 0,
∇ · u = 0, x ∈ Ω, t > 0,

(1.4)

where S is a tensor-valued (or scalar) function, and Ω ⊂ RN with smooth boundary. Let us just list a
few representative results. For the Navier-Stokes fluid (i.e. κ , 0), if |S (x, n, c)| ≤ CS (n + 1)−α with
CS > 0 and α > 0, in 2D case Wang et al. [29] showed that the initial-boundary value problem of (1.4)
admits at least one classical solution. In the 3D Stokes case (i.e. κ = 0) of (1.4), Wang and Xiang [30]
got the same results for α > 1

2 . For the 3D Navier-Stokes version of system (1.4), Liu and Wang [31]
verified that there exists at least one global weak solution for the corresponding initial-boundary value
problem of (1.4) if |S (x, n, c)| ≤ CS (n+1)−α with some CS > 0 and α > 3

7 . Recently, Ke and Zheng [32]
improved the restriction admitting a global weak solution from α > 3

7 to α > 1
3 , which compared with

the known result of the fluid-free system is an optimal restriction on α. As for the further results,
under assumption α ≥ 1 and an explicit condition on the size of CS , Zheng [33] confirmed that the
weak solution of system (1.4) would be eventually smooth, and that it is close to a unique spatially
homogeneous steady state. Additionally, one can see [34–36] and the references therein to find more
conclusions about this system.

Motivated by the above works, in this paper we consider the following initial-boundary value
problem of the Keller-Segel-Navier-Stokes system with indirect signal production:

nt + u · ∇n = ∆n − ∇ · (nS (x, n, v,w)∇v), x ∈ Ω, t > 0,
vt + u · ∇v = ∆v − v + w, x ∈ Ω, t > 0,
wt + u · ∇w = ∆w − w + n, x ∈ Ω, t > 0,
ut + κ(u · ∇)u + ∇P = ∆u + n∇ϕ, x ∈ Ω, t > 0,
∇ · u = 0, x ∈ Ω, t > 0,
(∇n − nS (x, n, v,w)∇v) · ν = ∇v · ν = ∇w · ν = 0, u = 0, x ∈ ∂Ω, t > 0,
n(x, 0) = n0(x), v(x, 0) = v0(x),w(x, 0) = w0(x), u(x, 0) = u0(x), x ∈ Ω,

(1.5)

where Ω ⊂ R2 is a bounded domain with smooth boundary, and S (x, n, v,w) satisfies

S ∈ C2(Ω̄ × [0,∞)3;R2×2), (1.6)

and
|S (x, n, v,w)| ≤ CS (n + 1)−α, (x, n, v,w) ∈ Ω × [0,∞)3 (1.7)

with some CS > 0 and α ≥ 0. To state our main results of this paper, we make the following
assumptions that

ϕ ∈ W2,∞(Ω), (1.8)

Electronic Research Archive Volume 31, Issue 3, 1710–1736.



1713

and the initial data (n0, v0,w0, u0) satisfies
n0 ∈ Cι(Ω̄) with n0 ≥ 0 in Ω for certain ι > 0,
v0 ∈ W1,∞(Ω) with v0 ≥ 0 in Ω̄,
w0 ∈ W1,∞(Ω) with w0 ≥ 0 in Ω̄,
u0 ∈ D

(
Aγr

)
for some γ ∈

(
1
2 , 1

)
and any r ∈ (1,∞),

(1.9)

where Ar denotes the Stokes operator with domain D(Ar) := W2,r(Ω) ∩W1,r
0 (Ω) ∩ Lr

σ(Ω) and Lr
σ(Ω) :=

{φ ∈ Lr(Ω)|∇ · φ = 0} [37].
With these assumptions at hand, we can state the following main results.

Theorem 1.1. If (1.6), (1.7), (1.8) and (1.9) hold, then for any

α > 0, (1.10)

there exists a global classical solution (n, v,w, u, P) of problem (1.5) which fulfills

n ∈ C0(Ω̄ × [0,∞)) ∩C2,1(Ω̄ × (0,∞)),
v ∈ C0(Ω̄ × [0,∞)) ∩C2,1(Ω̄ × (0,∞)) ∩ L∞

(
[0,∞); W1,p(Ω)

)
,

w ∈ C0(Ω̄ × [0,∞)) ∩C2,1(Ω̄ × (0,∞)) ∩ L∞
(
[0,∞); W1,q(Ω)

)
,

u ∈ C0
(
Ω̄ × [0,∞);R2

)
∩C2,1

(
Ω̄ × (0,∞);R2

)
∩ L∞ ([0,∞); D (Aγ)) ,

P ∈ C1,0(Ω̄ × (0,∞))

(1.11)

with p, q > 1 and γ ∈ (0, 1), where n, v and w are nonnegative in Ω × (0,∞). Moreover, the solution is
bounded, and there exists C(γ) > 0 such that

∥n(·, t)∥L∞(Ω) + ∥w(·, t)∥W1,∞(Ω) + ∥v(·, t)∥W1,∞(Ω) + ∥Aγu(·, t)∥L2(Ω) ≤ C(γ) (1.12)

for all t > 0, where γ is given by (1.9).

Remark 1.1. Theorem 1.1 improves the result of Yu [38], which showed that if α > 0, then the Stokes
version of problem (1.5) possesses a global classical solution.

This paper is organized as follows. In Section 2, we claim that the regularized problem possesses
at least one local classical solution which is nonnegative. Relying on a series of ε-independent a priori
estimates obtained in Section 3, in Section 4 we verify the local existence of a classical solution for
regularized problem can be extended to the global. In Section 5, we will construct a global weak
solution which has enough regularity to become a classical solution to prove our main results.

2. Preliminaries

Compared with the classical Keller-Segel model, the convection term presenting in the Navier-
Stokes equations engenders more mathematical difficulties. We define

S ε(x, n, v,w) := ρε(x)χε(n)S (x, n, v,w) for all (x, n, v,w) ∈ Ω̄ × [0,∞)3, (2.1)

where {ρε}ε∈(0,1) ∈ C∞0 (Ω) is a family of standard cut-off functions fulfilling 0 ≤ ρε ≤ 1 in Ω and ρε ↗ 1
in Ω as ε↘ 0, and χε ∈ C∞0 ([0,∞)) satisfies 0 ≤ χε ≤ 1 in [0,∞) and χε ↗ 1 in [0,∞) as ε↘ 0.
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Then, we can introduce the following approximate system of (1.5):

nεt + uε · ∇nε = ∆nε − ∇ · (nεS ε(x, nε, vε,wε)∇vε) , x ∈ Ω, t > 0,
vεt + uε · ∇vε = ∆vε − vε + wε, x ∈ Ω, t > 0,
wεt + uε · ∇wε = ∆wε − wε + nε, x ∈ Ω, t > 0,
uεt + ∇Pε = ∆uε − κ (Yεuε · ∇) uε + nε∇ϕ, x ∈ Ω, t > 0,
∇ · uε = 0, x ∈ Ω, t > 0,
∇nε · ν = ∇vε · ν = ∇wε · ν = 0, uε = 0, x ∈ ∂Ω, t > 0,
nε(x, 0) = n0(x), vε(x, 0) = v0(x),wε(x, 0) = w0(x), uε(x, 0) = u0(x), x ∈ Ω,

(2.2)

where
Yεξ := (1 + εA)−1ξ for all ξ ∈ L2

σ(Ω)

is the standard Yosida approximation, and A := −P∆ is the realization of the Stokes operator with P
denoting the Helmholtz projection of L2(Ω) onto solenoidal subspace L2

σ(Ω) [37].
Our main idea is to construct a weak solution which is globally bounded (the concept of weak

solution can be found in Definition 5.1), and we claim it possesses adequate regularity to be a classical
solution. The biggest obstacle we must deal with is the bad regularity of n caused by the small exponent
α. Our main tool is based upon an energy estimate concerning the functional∫

Ω

n1+α
ε (·, t) +

∫
Ω

|∇vε(·, t)|2,

which successfully overcomes this difficulty. The appropriately regularized problem (2.2) possesses
local-in-time classical solution, which can be stated as follows.

Lemma 2.1. Suppose ϕ ∈ W2,∞(Ω) and ε ∈ (0, 1). Let Ω ⊂ R2 be a bounded domain with smooth
boundary. Then, there exist Tmax,ε ∈ (0,∞] and a classical solution (nε, vε,wε, uε, Pε) of (2.2) in Ω ×(
0,Tmax,ε

)
such that 

nε ∈ C0
(
Ω̄ ×

[
0,Tmax,ε

))
∩C2,1

(
Ω̄ ×

(
0,Tmax,ε

))
,

vε ∈ C0
(
Ω̄ ×

[
0,Tmax,ε

))
∩C2,1

(
Ω̄ ×

(
0,Tmax,ε

))
,

wε ∈ C0
(
Ω̄ ×

[
0,Tmax,ε

))
∩C2,1

(
Ω̄ ×

(
0,Tmax,ε

))
,

uε ∈ C0
(
Ω̄ ×

[
0,Tmax,ε

))
∩C2,1

(
Ω̄ ×

(
0,Tmax,ε

))
,

Pε ∈ C1,0
(
Ω̄ ×

(
0,Tmax,ε

))
(2.3)

solves (2.2) in the classical sence in Ω ×
[
0,Tmax,ε

)
, and that nε, vε and wε are nonnegative in Ω ×(

0,Tmax,ε
)
. Moreover, if Tmax,ε < ∞, then we have

∥nε(·, t)∥L∞(Ω) + ∥vε(·, t)∥W1,∞(Ω) + ∥wε(·, t)∥W1,∞(Ω) + ∥A
γuε(·, t)∥L2(Ω) → ∞

as t → Tmax,ε, where γ is similar to that in (1.9).

Proof. The fixed point argument which is established in [39,40] enables us to immediately substantiate
the local existence for a classical solution which complies with (2.3). That nε, vε and wε are nonnegative
is a clear conclusion of the maximum principle [41]. □
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3. A priori estimates

In this section, we will derive a series ε-independent a priori estimates of the classical solution
(nε, vε,wε, uε) of regularized problem (2.2) from Lemma 2.1. By the way, we take τ = min

{
1, 1

4Tmax,ε

}
.

The positive constants Ci (i ∈ N∗) appearing in the proof of every lemma are independent of ε ∈ (0, 1),
which only depend onΩ, α,CS , ϕ, n0, v0,w0 and u0 if there is no especial explanation. Firstly, by simple
integration and ODE comparison arguments, we obtain the following boundedness of L1-norms, which
is common in many chemotaxis models.

Lemma 3.1. For any ε ∈ (0, 1), the solution of (2.2) satisfies∫
Ω

nε(·, t) =
∫
Ω

n0 for all t ∈ (0,Tmax,ε) (3.1)

as well as ∫
Ω

wε(·, t) ≤ max
{∫
Ω

n0,

∫
Ω

w0

}
for all t ∈ (0,Tmax,ε) (3.2)

and ∫
Ω

vε(·, t) ≤ max
{∫
Ω

n0,

∫
Ω

v0,

∫
Ω

w0

}
for all t ∈ (0,Tmax,ε). (3.3)

Lemma 3.2. If α > 0, then for any µ > 0, there exists a constant C > 0 independent of ε ∈ (0, 1)
such that

∥nε(·, t)∥2L1+α(Ω) ≤ µ
∥∥∥∇nαε (·, t)

∥∥∥2

L2(Ω)
+C for all t ∈

(
0,Tmax,ε

)
. (3.4)

Proof. For any µ > 0, the Gagliardo-Nirenberg inequality and the Young inequality provide positive
constants C1 and C2 such that

∥nε∥2L1+α(Ω)

=
∥∥∥nαε

∥∥∥ 2
α

L
α+1
α

≤C1

∥∥∥∇nαε
∥∥∥ 2

1+α

L2(Ω)

∥∥∥nαε
∥∥∥ 2
α(1+α)

L
1
α (Ω)
+C1

∥∥∥nαε
∥∥∥ 2
α

L
1
α (Ω)

≤µ
∥∥∥∇nαε

∥∥∥2

L2(Ω)
+C2 for all t ∈

(
0,Tmax,ε

)
,

(3.5)

where the boundedness of ∥nε∥L1(Ω) from (3.1) and the fact that 2
1+α < 2 by α > 0 are used. □

Lemma 3.3. If α > 0 and p ∈ [2, 2 + 2α
1+α ), then there exists some C > 0 such that for all ε ∈ (0, 1) the

solution of (2.2) satisfies
∫
Ω

n2α
ε (·, t) +

∫
Ω

v2
ε(·, t) +

∫
Ω

wp
ε (·, t) ≤ C for all t ∈ (0,Tmax,ε) if α ,

1
2∫

Ω

nε(·, t) ln nε(·, t) +
∫
Ω

v2
ε(·, t) +

∫
Ω

wp
ε (·, t) ≤ C for all t ∈ (0,Tmax,ε) if α =

1
2

(3.6)

and ∫ t+τ

t

∫
Ω

∣∣∣∇nαε
∣∣∣2 + ∫ t+τ

t

∫
Ω

|∇vε|2 +
∫ t+τ

t

∫
Ω

∣∣∣∣∇w
p
2
ε

∣∣∣∣2 ≤ C for all t ∈ (0,Tmax,ε − τ). (3.7)
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Proof. This proof may be divided into two cases:
Case 1, α , 1

2 .
First, multiplying the first equation of (2.2) by n2α−1

ε , employing the fact that ∇ · uε = 0, integrating
by parts, we derive

1
2α

d
dt

∫
Ω

n2α
ε +

2α − 1
α2

∫
Ω

∣∣∣∇nαε
∣∣∣2

=

∫
Ω

n2α−1
ε ∇ · (nεS ε(x, nε, vε,wε)∇vε) .

(3.8)

Applying the Young inequality and the trivial fact nε
nε+1 ≤ 1, by (1.7), we obtain

sgn(2α − 1)
2α

d
dt

∫
Ω

n2α
ε +
|2α − 1|
α2

∫
Ω

∣∣∣∇nαε
∣∣∣2

=sgn(2α − 1)
∫
Ω

n2α−1
ε ∇ · (nεS ε(x, nε, vε,wε)∇vε)

≤|2α − 1|
∫
Ω

n2α−1
ε |S ε(x, nε, vε,wε)||∇vε||∇nε|

≤|2α − 1|CS

∫
Ω

n2α−1
ε (nε + 1)−α|∇vε||∇nε|

≤
|2α − 1|

2α2

∫
Ω

∣∣∣∇nαε
∣∣∣2 + |2α − 1|

2
C2

S

∫
Ω

|∇vε|2.

(3.9)

Namely,
sgn(2α − 1)

α

d
dt

∫
Ω

n2α
ε +
|2α − 1|
α2

∫
Ω

∣∣∣∇nαε
∣∣∣2

≤|2α − 1|C2
S

∫
Ω

|∇vε|2.
(3.10)

Next, testing the second equation of (2.2) by vε, utilizing the fact that uε is divergence-free and the
continuous embedding W1,2(Ω) ↪→ L

1+α
α (Ω), by virtue of the Hölder inequality and the

Cauchy-Schwarz inequality, we deduce that there exists a constant C1 > 0 satisfying

1
2

d
dt

∫
Ω

v2
ε +

∫
Ω

|∇vε|2 +
∫
Ω

v2
ε

=

∫
Ω

vεwε

≤ ∥vε∥L 1+α
α (Ω)
∥wε∥L1+α(Ω)

≤C1 ∥vε∥W1,2(Ω) ∥wε∥L1+α(Ω)

≤
1
2

∫
Ω

v2
ε +

1
2

∫
Ω

|∇vε|2 +
1
2

C2
1 ∥wε∥

2
L1+α(Ω) .

(3.11)

Hence,
d
dt

∫
Ω

v2
ε +

∫
Ω

|∇vε|2 +
∫
Ω

v2
ε ≤ C2

1 ∥wε∥
2
L1+α(Ω) . (3.12)
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This along with a multiple of (3.10) yields that

d
dt

(
sgn(2α − 1)

2α|2α − 1|C2
S

∫
Ω

n2α
ε +

∫
Ω

v2
ε

)
+

1
2α2C2

S

∫
Ω

∣∣∣∇nαε
∣∣∣2

+
1
2

∫
Ω

|∇vε|2 +
∫
Ω

v2
ε ≤ C2

1 ∥wε∥
2
L1+α(Ω) .

(3.13)

Then, multiplying the third equation of (2.2) by wp−1
ε with p ∈ [2, 2+ 2α

1+α ), integrating by parts, applying
the Hölder and the Cauchy-Schwarz inequalities as well as the fact ∇ · uε = 0, we have

1
p

d
dt

∫
Ω

wp
ε +

4(p − 1)
p2

∫
Ω

∣∣∣∣∇w
p
2
ε

∣∣∣∣2 + ∫
Ω

wp
ε

=

∫
Ω

nεwp−1
ε

≤ ∥nε∥L1+α(Ω)

∥∥∥wp−1
ε

∥∥∥
L

1+α
α (Ω)

≤
1
2
∥nε∥2L1+α(Ω) +

1
2

∥∥∥wp−1
ε

∥∥∥2

L
1+α
α (Ω)
.

(3.14)

Combining (3.13) and (3.14), we get

d
dt

(
sgn(2α − 1)

2α|2α − 1|C2
S

∫
Ω

n2α
ε +

∫
Ω

v2
ε +

1
p

∫
Ω

wp
ε

)
+

1
2α2C2

S

∫
Ω

∣∣∣∇nαε
∣∣∣2 + 4(p − 1)

p2

∫
Ω

∣∣∣∣∇w
p
2
ε

∣∣∣∣2
+

1
2

∫
Ω

|∇vε|2 +
∫
Ω

v2
ε ≤ C2

1 ∥wε∥
2
L1+α(Ω) +

1
2
∥nε∥2L1+α(Ω) +

1
2

∥∥∥wp−1
ε

∥∥∥2

L
1+α
α (Ω)

for all t ∈ (0,Tmax,ε).
(3.15)

To handle these three terms on the right side of (3.15), one can employ the Gagliardo-Nirenberg and
the Young inequalities as well as Lemma 3.2 to estimate

C2
1 ∥wε∥

2
L1+α(Ω)

=C2
1

∥∥∥∥w
p
2
ε

∥∥∥∥ 4
p

L
2(1+α)

p (Ω)

≤C2

∥∥∥∥∇w
p
2
ε

∥∥∥∥ 4α
(1+α)p

L2(Ω)

∥∥∥∥w
p
2
ε

∥∥∥∥ 4
(1+α)p

L
2
p (Ω)
+C2

∥∥∥∥w
p
2
ε

∥∥∥∥ 4
p

L
2
p (Ω)

≤
p − 1

p2

∥∥∥∥∇w
p
2
ε

∥∥∥∥2

L2(Ω)
+C3

(3.16)

as well as
1
2

∥∥∥wp−1
ε

∥∥∥2

L
1+α
α

=
1
2

∥∥∥∥w
p
2
ε

∥∥∥∥ 4(p−1)
p

L
2(p−1)(1+α)

pα (Ω)

≤C4

∥∥∥∥∇w
p
2
ε

∥∥∥∥ 4
p (p−1− α

1+α )
L2(Ω)

∥∥∥∥w
p
2
ε

∥∥∥∥ 4α
p(1+α)

L
2
p (Ω)
+C4

∥∥∥∥w
p
2
ε

∥∥∥∥ 4(p−1)
p

L
2
p (Ω)

≤
p − 1

p2

∥∥∥∥∇w
p
2
ε

∥∥∥∥2

L2(Ω)
+C5

(3.17)
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and
1
2
∥nε∥2L1+α(Ω) ≤

1
4α2C2

S

∫
Ω

∣∣∣∇nαε
∣∣∣2 +C6 (3.18)

with positive constants C2, C3, C4, C5 and C6, where we have 4α
(1+α)p < 2 and 4

p

(
p − 1 − α

1+α

)
< 2 by

p ∈ [2, 2 + 2α
1+α ). Substituting (3.16), (3.17) and (3.18) into (3.15), one has

d
dt

(
sgn(2α − 1)

2α|2α − 1|C2
S

∫
Ω

n2α
ε +

∫
Ω

v2
ε +

1
p

∫
Ω

wp
ε

)
+

1
4α2C2

S

∫
Ω

∣∣∣∇nαε
∣∣∣2

+
2(p − 1)

p2

∫
Ω

∣∣∣∣∇w
p
2
ε

∣∣∣∣2 + 1
2

∫
Ω

|∇vε|2 +
∫
Ω

v2
ε ≤ C7 for all t ∈ (0,Tmax,ε)

(3.19)

with C7 := C3 + C5 + C6. If sgn(2α − 1) = 1 (i.e. α > 1
2 ), (3.19) in conjunction with some standard

arguments implies that (3.6) and (3.7) hold. On the other hand, if sgn(2α − 1) = −1 (i.e. 0 < α < 1
2 ),

we set
fε(t) := −

1
2α|2α − 1|C2

S

∫
Ω

n2α
ε (·, t) +

∫
Ω

v2
ε(·, t) +

1
p

∫
Ω

wp
ε (·, t) (3.20)

and
gε(t) :=

1
4α2C2

S

∫
Ω

∣∣∣∇nαε (·, t)
∣∣∣2 + 1

2

∫
Ω

|∇vε(·, t)|2 +
p − 1

p2

∫
Ω

∣∣∣∣∇w
p
2
ε (·, t)

∣∣∣∣2 . (3.21)

By the Gagliardo-Nirenberg estimate

1
p

∫
Ω

wp
ε

=
1
p

∥∥∥∥w
p
2
ε

∥∥∥∥2

L2(Ω)

≤C8

∥∥∥∥∇w
p
2
ε

∥∥∥∥2− 2
p

L2(Ω)

∥∥∥∥w
p
2
ε

∥∥∥∥ 2
p

L
2
p (Ω)
+C8

∥∥∥∥w
p
2
ε

∥∥∥∥2

L
2
p (Ω)

≤
p − 1

p2

∫
Ω

∣∣∣∣∇w
p
2
ε

∣∣∣∣2 +C9

and (3.19), we deduce

d
dt

fε(t) + fε(t) + gε(t) ≤ C10 for all t ∈
(
0,Tmax,ε

)
(3.22)

with C10 := C7 +C9, where we observe the fact that fε(t) ≤
∫
Ω

v2
ε(·, t)+

1
p

∫
Ω

wp
ε (·, t). In view of an ODE

comparison argument, from (3.22), we obtain a constant C11 > 0 such that

−
1

2α|2α − 1|C2
S

∫
Ω

n2α
ε +

∫
Ω

v2
ε +

1
p

∫
Ω

wp
ε ≤ C11. (3.23)

Since 0 < α < 1
2 , the boundedness of

∫
Ω

n2α
ε is an immediate consequence by (3.1). Thus, (3.23)

guarantees the existence of some constant C12 > 0 satisfying∫
Ω

v2
ε +

1
p

∫
Ω

wp
ε ≤

1
2α|2α − 1|C2

S

∫
Ω

n2α
ε +C11 ≤ C12 for all t ∈

(
0,Tmax,ε

)
. (3.24)
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Integrating (3.19) in time, there exists a C13 > 0 fulfilling∫ t+τ

t

∫
Ω

∣∣∣∇nαε
∣∣∣2 + ∫ t+τ

t

∫
Ω

|∇vε|2 +
∫ t+τ

t

∫
Ω

∣∣∣∣∇w
p
2
ε

∣∣∣∣2 ≤ C13 for all t ∈ (0,Tmax,ε − τ). (3.25)

Consequently, (3.6) and (3.7) hold for α , 1
2 .

Case 2, α = 1
2 .

By the first equation of (2.2), one may exploit the Young inequality to estimate

d
dt

∫
Ω

nε ln nε

=

∫
Ω

nεt ln nε +
∫
Ω

nεt

=

∫
Ω

∆nε ln nε −
∫
Ω

ln nε∇ · (nεS ε(x, nε, vε,wε)∇vε)

≤ −

∫
Ω

|∇nε|2

nε
+CS

∫
Ω

(nε + 1)−
1
2 |∇nε||∇vε|

≤ −
1
2

∫
Ω

|∇nε|2

nε
+

1
2

C2
S

∫
Ω

|∇vε|2.

(3.26)

That is,
d
dt

∫
Ω

nε ln nε +
1
2

∫
Ω

|∇nε|2

nε
≤

1
2

C2
S

∫
Ω

|∇vε|2. (3.27)

Using the same arguments as proving case 0 < α < 1
2 , it is deduced that∫

Ω

nε ln nε +
∫
Ω

v2
ε +

∫
Ω

wp
ε ≤ C14 for all t ∈ (0,Tmax,ε), (3.28)

and ∫ t+τ

t

∫
Ω

|∇nε|2

nε
+

∫ t+τ

t

∫
Ω

|∇vε|2 +
∫ t+τ

t

∫
Ω

∣∣∣∣∇w
p
2
ε

∣∣∣∣2 ≤ C15 for all t ∈ (0,Tmax,ε − τ) (3.29)

with positive constants C14 and C15. Thus, (3.6) and (3.7) hold for α = 1
2 .

Therefore, we may merge these two cases to conclude that (3.6) and (3.7) hold for any α > 0. We
complete this proof. □

Lemma 3.4. There exists a constant C > 0 independent of ε ∈ (0, 1) such that the solution
of (2.2) satisfies ∫

Ω

|uε|2 (·, t) ≤ C for all t ∈
(
0,Tmax,ε

)
(3.30)

and ∫ t+τ

t

∫
Ω

|∇uε|2 ≤ C for all t ∈
(
0,Tmax,ε − τ

)
. (3.31)
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Proof. Multiplying the fourth equation of (2.2) by uε, recalling the fact that uε is divergence-free,
integrating by parts, we have

1
2

d
dt

∫
Ω

|uε|2 +
∫
Ω

|∇uε|2 =
∫
Ω

nεuε · ∇ϕ for all t ∈
(
0,Tmax,ε

)
. (3.32)

Then, in light of the Hölder inequality as well as the Young inequality and the continuous embedding
W1,2(Ω) ↪→ L

1+α
α (Ω), we apply Lemma 3.2 to estimate∫

Ω

nεuε · ∇ϕ ≤ ∥nε∥L1+α(Ω) ∥uε∥L 1+α
α (Ω)
∥∇ϕ∥L∞(Ω)

≤ C1 ∥nε∥L1+α(Ω) ∥∇uε∥L2(Ω) ∥∇ϕ∥L∞(Ω)

≤
1
2
∥∇uε∥2L2(Ω) +C2 ∥nε∥2L1+α(Ω)

≤
1
2
∥∇uε∥2L2(Ω) +

∥∥∥∇nαε
∥∥∥2

L2(Ω)
+C3

(3.33)

with positive constants C1, C2 and C3. Now, inserting (3.33) into (3.32) and considering the estimate
obtained by (3.7), we obtain ∫

Ω

|uε|2 ≤ C4 for all t ∈
(
0,Tmax,ε

)
(3.34)

and ∫ t+τ

t

∫
Ω

|∇uε|2 ≤ C5 for all t ∈
(
0,Tmax,ε − τ

)
(3.35)

with positive constants C4 and C5. The proof is completed. □

By almost exactly analogous argument with Lemma 6.1 in [29], one can directly derive the higher
norm estimate of wε.

Lemma 3.5. For any q ≥ 2, one can find a constant C > 0 independent of ε ∈ (0, 1) such that

∥wε(·, t)∥Lq(Ω) ≤ C for all t ∈
(
0,Tmax,ε

)
. (3.36)

Lemma 3.6. For any ε ∈ (0, 1), there exists a constant C > 0 that satisfies∫
Ω

|∇vε(·, t)|2 ≤ C for all t ∈
(
0,Tmax,ε

)
(3.37)

and ∫ t+τ

t

∫
Ω

|∆vε|2 ≤ C for all t ∈
(
0,Tmax,ε − τ

)
. (3.38)

Proof. Testing the second equation in (2.2) by −∆vε, by applying the Young inequality and integrating
by parts, we derive

1
2

d
dt

∫
Ω

|∇vε|2 +
∫
Ω

|∆vε|2 +
∫
Ω

|∇vε|2

= −

∫
Ω

wε∆vε +
∫
Ω

(uε · ∇vε)∆vε

≤
1
4

∫
Ω

|∆vε|2 +
∫
Ω

w2
ε −

∫
Ω

∇vε · (∇uε · ∇vε)

≤
1
4

∫
Ω

|∆vε|2 −
∫
Ω

∇vε · (∇uε · ∇vε) +C1,

(3.39)
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where the positive constant C1 satisfies
∫
Ω

w2
ε ≤ C1, and we have the fact that∫

Ω

∇vε ·
(
D2vε · uε

)
=

1
2

∫
Ω

uε · ∇ |∇vε|2 = 0. (3.40)

In view of the standard elliptic regularity theory, the Gagliardo-Nirenberg inequality and the Young
inequality provide a constant C2 > 0 fulfilling

−

∫
Ω

∇vε · (∇uε · ∇vε)

≤ ∥∇uε∥L2(Ω) ∥∇vε∥2L4(Ω)

≤C2 ∥∇uε∥L2(Ω) ∥∇vε∥L2(Ω) ∥∆vε∥L2(Ω)

≤C2
2 ∥∇uε∥2L2(Ω) ∥∇vε∥2L2(Ω) +

1
4
∥∆vε∥2L2(Ω) .

(3.41)

This in conjunction with (3.39) indicates that
1
2

d
dt

∫
Ω

|∇vε|2 +
1
2

∫
Ω

|∆vε|2 +
∫
Ω

|∇vε|2

≤C2
2∥∇uε∥2L2(Ω)∥∇vε∥2L2(Ω) +C1 for all t ∈

(
0,Tmax,ε

)
.

(3.42)

If we put

yε(t) :=
1
2

∫
Ω

|∇vε(·, t)|2

and
ρε(t) := 2C2

2

∫
Ω

|∇uε(·, t)|2,

then (3.42) yields that
d
dt

yε(t) + zε(t) ≤ ρε(t)yε(t) +C1 for all t ∈
(
0,Tmax,ε

)
, (3.43)

where
zε(t) =

1
2

∫
Ω

|∆vε(·, t)|2.

Recalling the estimates inferred from (3.7) and (3.31), there are two positive constants C3 and C4

satisfying ∫ t+τ

t
yε(s)ds ≤ C3 for all t ∈

(
0,Tmax,ε − τ

)
and ∫ t+τ

t
ρε(s)ds ≤ C4 for all t ∈

(
0,Tmax,ε − τ

)
.

Furthermore, for any t ∈
(
0,Tmax,ε

)
, one can pick a t0 ∈ [(t − τ)+, t) such that yε(·, t0) ≤ C5 with some

C5 > 0. Invoking the Gronwall inequality, we obtain

yε(t) ≤ yε (t0) e
∫ t

t0
ρε(s)ds

+

∫ t

t0
e
∫ t

s ρε(τ)dτC1ds

≤ C5eC4 +

∫ t

t0
eC4C1ds

≤ C5eC4 +C1eC4 for all t ∈
(
0,Tmax,ε

)
,

(3.44)
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which implies (3.37). Finally, integrating (3.42) in time and exploiting the estimates obtained in (3.37)
and (3.31), we can verify (3.38) is valid. □

Lemma 3.7. If α > 0, then there exists a constant C > 0 independent of ε ∈ (0, 1) such that∫
Ω

n1+α
ε (·, t) ≤ C for all t ∈

(
0,Tmax,ε

)
(3.45)

and ∫ t+τ

t

∫
Ω

nα−1
ε |∇nε|2 ≤ C for all t ∈

(
0,Tmax,ε − τ

)
. (3.46)

Particularly, one has ∫ t+τ

t

∫
Ω

n2
ε ≤ C for all t ∈

(
0,Tmax,ε − τ

)
. (3.47)

Proof. Testing the first equation of (2.2) by nαε , noticing the fact that ∇·uε = 0 and integrating by parts,
by using the Young inequality and (1.7), we arrive at

1
1 + α

d
dt
∥nε∥1+αL1+α(Ω) + α

∫
Ω

nα−1
ε |∇nε|2

= −

∫
Ω

nαε∇ · (nεS ε(x, nε, vε,wε)∇vε)

≤αCS

∫
Ω

nαε (nε + 1)−α |∇nε∥∇vε|

≤
α

4

∫
Ω

nα−1
ε |∇nε|2 + αC2

S

∫
Ω

n1+α
ε (nε + 1)−2α |∇vε|2

≤
α

4

∫
Ω

nα−1
ε |∇nε|2 +

αC2
S

2

∫
Ω

n2
ε +
αC2

S

2

∫
Ω

n2α
ε (nε + 1)−4α |∇vε|4

≤
α

4

∫
Ω

nα−1
ε |∇nε|2 +

αC2
S

2

∫
Ω

n2
ε +
αC2

S

2

∫
Ω

|∇vε|4 ,

(3.48)

where one can readily see that n2α
ε (nε + 1)−4α =

(
nε

nε+1

)2α
(nε + 1)−2α < 1 by α > 0. By means of the

Gagliardo-Nirenberg inequality and the Young inequality, we conclude that

αC2
S

2

∫
Ω

n2
ε

=
αC2

S

2

∥∥∥∥n
1+α

2
ε

∥∥∥∥ 4
1+α

L
4

1+α (Ω)

≤C1

∥∥∥∥∇nε
1+α

2

∥∥∥∥ 2
1+α

L2(Ω)

∥∥∥∥n
1+α

2
ε

∥∥∥∥ 2
1+α

L
2

1+α (Ω)
+C1

∥∥∥∥n
1+α

2
ε

∥∥∥∥ 4
1+α

L
2

1+α (Ω)

≤
α

4

∫
Ω

nα−1
ε |∇nε|2 +C2

(3.49)

with positive constants C1 and C2, where we observe the truth that 2
1+α < 2 by α > 0. Moreover,

looking back on the estimate in (3.37), we utilize the Gagliardo-Nirenberg inequality and the elliptic
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regularity to ensure the existence of constants C3 > 0 and C4 > 0 such that

αC2
S

2

∫
Ω

|∇vε|4

=
αC2

S

2
∥∇vε∥4L4(Ω)

≤C3 ∥∆vε∥2L2(Ω) ∥∇vε∥2L2(Ω)

≤C4 ∥∆vε∥2L2(Ω) .

(3.50)

Accordingly, (3.48) in combination with (3.49) and (3.50) leads to

1
1 + α

d
dt
∥nε∥1+αL1+α(Ω) +

α

2

∫
Ω

nα−1
ε |∇nε|2

≤C4

∫
Ω

|∆vε|2 +C2 for all t ∈
(
0,Tmax,ε

)
.

(3.51)

Recalling the spatio-temporal boundedness of
∫ t+τ

t

∫
Ω
|∆vε|2 inferred from (3.38), (3.51) implies (3.45)

and (3.46). Finally, integrating (3.49) in time, (3.46) yields (3.47). □

Relying on the spatio-temporal estimates of
∫ t+τ

t

∫
Ω
|∇uε|2 (see Lemma 3.4) and

∫ t+τ

t

∫
Ω

n2
ε (see

Lemma 3.7), one can improve the regularity features of the corresponding fluid field. Since the proof
may be found in many papers [42], the details are omitted in order to avoid duplication.

Lemma 3.8. There exists some C > 0 such that for all ε ∈ (0, 1) the solution of (2.2) satisfies∫
Ω

|∇uε(·, t)|2 ≤ C for all t ∈
(
0,Tmax,ε

)
. (3.52)

4. The global solvability of regularized problem (2.2)

In this section, we will prove the local-in-time solutions of regularized problem (2.2) are actually
global. Without loss of generality, in this section we presume 0 < α < 1

2 . If α ≥ 1
2 , at least the

boundedness of ∥nε∥L 3
2 (Ω)

can be deduced from (3.45). With the higher regularity of nε, it becomes

easier than case 0 < α < 1
2 to get our desired conclusion. Thanks to the well-known smoothing

properties of the Stokes semigroup and the Neumann heat semigroup, one can derive the following
uniform L∞ estimates for nε, ∇vε, ∇wε and uε.

Lemma 4.1. If α > 0 and γ ∈
(

1
2 , 1

)
, then there exists a constant C > 0 such that for all ε ∈ (0, 1), the

classical solution of (2.2) satisfies

∥nε(·, t)∥L∞(Ω)+∥vε(·, t)∥W1,∞(Ω)+∥wε(·, t)∥W1,∞(Ω)+∥uε(·, t)∥L∞(Ω)+∥Aγuε(·, t)∥L2(Ω) ≤ C for all t ∈ (0,Tmax,ε).
(4.1)

Moreover, for p > 1, we can find a positive constant C(p) such that

∥∇uε(·, t)∥Lp(Ω) ≤ C(p) for all t ∈
(
0,Tmax,ε

)
. (4.2)
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Proof. For the sake of clarity, this proof is divided into several steps. It is worth mentioning that the
following constants Ci (i ∈ N∗) are independent of ε ∈ (0, 1).

Step 1. The boundedness of ∥∇wε(·, t)∥L 2
1−α (Ω)

and ∥∇vε(·, t)∥L p̃(Ω) with p̃ > 2 for all t ∈
(
0,Tmax,ε

)
.

Since 0 < α < 1
2 , we have 2

1−α > 2. First, utilizing the variation-of-constants formula for wε, we
obtain

∥∇wε(·, t)∥L 2
1−α (Ω)

≤
∥∥∥∇e−t(−∆+1)w0

∥∥∥
L

2
1−α (Ω)

+

∫ t

0

∥∥∥∇e−(t−s)(−∆+1)nε(·, s)
∥∥∥

L
2

1−α (Ω)
ds

+

∫ t

0

∥∥∥∇e−(t−s)(−∆+1)∇ · (uε(·, s)wε(·, s))
∥∥∥

L
2

1−α (Ω)
ds.

(4.3)

With the boundedness of ∥nε(·, s)∥L1+α(Ω) obtained by Lemma 3.7, in view of the Lp − Lq estimates
associated heat semigroup, we deduce∥∥∥∇e−t(−∆+1)w0

∥∥∥
L

2
1−α (Ω)

≤ C11 for all t ∈
(
0,Tmax,ε

)
(4.4)

and ∫ t

0

∥∥∥∇e−(t−s)(−∆+1)nε(·, s)
∥∥∥

L
2

1−α (Ω)
ds

≤C1

∫ t

0

[
(t − s)−

1
2−( 1

1+α−
1−α

2 ) + 1
]

e−λ(t−s) ∥nε(·, s)∥L1+α(Ω) ds

≤C2 for all t ∈
(
0,Tmax,ε

)
(4.5)

with λ > 0, where we have the fact that −1
2 −

(
1

1+α −
1−α

2

)
> −1 by 0 < α < 1

2 . Furthermore, taking

ς = 19
40 and δ = 1

80 so that 1
2 +

(
1
5 −

1−α
2

)
< ς and −ς − 1

2 − δ > −1, we can infer that∫ t

0

∥∥∥∇e−(t−s)(−∆+1)∇ · (wε(·, s)uε(·, s))
∥∥∥

L
2

1−α (Ω)
ds

≤C3

∫ t

0

∥∥∥(−∆ + 1)ςe−(t−s)(−∆+1)∇ · (wε(·, s)uε(·, s))
∥∥∥

L5(Ω)
ds

≤C4

∫ t

0
(t − s)−ς−

1
2−δe−µ(t−s) ∥wε(·, s)uε(·, s)∥L5(Ω) ds

≤C5

∫ t

0
(t − s)−ς−

1
2−δe−µ(t−s) ∥wε(·, s)∥L10(Ω) ∥uε(·, s)∥L10(Ω) ds

≤C6 for all t ∈
(
0,Tmax,ε

)
,

(4.6)

where the boundedness of ∥uε(·, s)∥L10(Ω) is derived from Lemma 3.8 along with the continuous
embedding W1,2(Ω) ↪→ L10(Ω), and ∥wε(·, s)∥L10(Ω) is ensured by Lemma 3.5. Therefore, by
accumulating (4.3)-(4.6), the boundedness of ∥∇wε(·, t)∥L 2

1−α (Ω)
is obtained. With some very similar

arguments, one can derive the boundedness of ∥∇vε(·, t)∥L p̃(Ω) with some p̃ > 2.
Step 2. The boundedness of ∥nε(·, t)∥L∞(Ω) for all t ∈

(
0,Tmax,ε

)
.

Letting
M(T ) := sup

t∈(0,T )
∥nε(·, t)∥L∞(Ω)
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and
h̃ε := S ε (x, nε, vε, vε)∇vε + uε,

then by the L p̃ estimate of ∇vε, we obtain∥∥∥h̃ε(·, t)
∥∥∥

L p̃(Ω)
≤ C7 for all t ∈

(
0,Tmax,ε

)
. (4.7)

Exploiting the associate variation-of-constants formula for nε, in light of the fact that ∇ · uε = 0, we
obtain

nε(·, t) = e(t−t0)∆nε (·, t0) −
∫ t

t0
e(t−s)∆∇ ·

(
nε(·, s)h̃ε(·, s)

)
ds for t ∈ (t0,T ) with t0 := (t − 1)+. (4.8)

If 0 < t ≤ 1, then in view of the maximum principle, we have∥∥∥e(t−t0)∆nε (·, t0)
∥∥∥

L∞(Ω)
≤ ∥n0∥L∞(Ω) . (4.9)

If t > 1, then by the Lp − Lq estimates of the Neumann heat semigroup, we deduce∥∥∥e(t−t0)∆nε (·, t0)
∥∥∥

L∞(Ω)
≤ C8 (t − t0)−

2
2 ∥nε (·, t0)∥L1(Ω) ≤ C9. (4.10)

Next, fixing q ∈ (2, p̃), we may utilize the well-known smoothing properties of the Neumann heat
semigroup and the Hölder inequality to conclude∫ t

t0
∥e(t−s)∆∇ · (nε(·, s)h̃ε(·, s))∥L∞(Ω)ds

≤C10

∫ t

t0
(t − s)−

1
2−

2
2q ∥nε(·, s)h̃ε(·, s)∥Lq(Ω)ds

≤C10

∫ t

t0
(t − s)−

1
2−

2
2q ∥nε(·, s)∥

L
qp̃
p̃−q (Ω)
∥h̃ε(·, s)∥L p̃(Ω)ds

≤C10

∫ t

t0
(t − s)−

1
2−

2
2q ∥nε(·, s)∥σL∞(Ω)∥nε(·, s)∥1−σL1(Ω)∥h̃ε(·, s)∥L p̃(Ω)ds

≤C11Mσ(T ) for all t ∈ (0,T ),

(4.11)

where σ := qp̃− p̃+q
qp̃ ∈ (0, 1), and −1

2 −
2

2q > −1 by q > 2. Collecting (4.7)–(4.11) and utilizing the
definition of M(T ), there is a C12 > 0 such that

M(T ) ≤ C12 +C12Mσ(T ) for all T ∈
(
0,Tmax,ε

)
.

Since σ < 1, by some basic calculation we have

∥nε(·, t)∥L∞(Ω) ≤ C13 for all t ∈
(
0,Tmax,ε

)
.

Step 3. The boundedness of ∥uε(·, t)∥L∞(Ω) and ∥Aγuε(·, t)∥L2(Ω) for all t ∈
(
0,Tmax,ε

)
.

Employing the Helmholtz projection P to the fourth equation in (2.2), we get the variation-of-
constants formula of uε

uε(·, t) = e−tAu0 +

∫ t

0
e−(t−s)Ahε(·, s)ds for all t ∈

(
0,Tmax,ε

)
,
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where hε(·, s) = P
[
nε(·, s)∇ϕ − κ (Yεuε(·, s) · ∇) uε(·, s)

]
. With the standard smoothing properties of the

Stokes semigroup, we derive that for all t ∈
(
0,Tmax,ε

)
and any γ ∈

(
1
2 , 1

)
, there exist C14 > 0 and

C15 > 0 fulfilling
∥Aγuε(·, t)∥L2(Ω)

≤ ∥Aγu0∥L2(Ω) +

∫ t

0

∥∥∥Aγe−(t−s)Ahε(·, s)
∥∥∥

L2(Ω)
ds

≤C14 +C15

∫ t

0
(t − s)−γ−

(
1

p0
− 1

2

)
e−λ(t−s) ∥hε(·, s)∥Lp0 (Ω) ds.

(4.12)

Choosing p0 ∈
(

2
3−2γ , 2

)
such that

−γ −

(
1
p0
−

1
2

)
> −1, (4.13)

the L∞-estimate of nε provides a C16 > 0 fulfilling

∥nε(·, t)∥Lp0 (Ω) ≤ C16 for all t ∈
(
0,Tmax,ε

)
.

Next, considering the embedding W1,2(Ω) ↪→ L
2p0

2−p0 (Ω) and the boundedness of ∥∇uε(·, t)∥L2(Ω) (see
Lemma 3.8), we employ the Hölder inequality and the fact that P is continuous in Lp

(
Ω;R2

)
to achieve

that
∥hε(·, t)∥Lp0 (Ω)

≤C17 ∥(Yεuε(·, t) · ∇) uε(·, t)∥Lp0 (Ω) +C17 ∥nε(·, t)∥Lp0 (Ω)

≤C17 ∥Yεuε(·, t)∥
L

2p0
2−p0 (Ω)

∥∇uε(·, t)∥L2(Ω) +C18

≤C19 ∥∇Yεuε(·, t)∥L2(Ω) ∥∇uε(·, t)∥L2(Ω) +C18

≤C20 for all t ∈
(
0,Tmax,ε

)
,

(4.14)

where we notice the fact that

∥∇Yεuε∥L2(Ω) = ∥A
1
2 Yεuε∥L2(Ω) = ∥YεA

1
2 uε∥L2(Ω) ≤ ∥A

1
2 uε∥L2(Ω) = ∥∇uε∥L2(Ω).

Assembling (4.12), (4.13) and (4.14), we conclude that

∥Aγuε(·, t)∥L2(Ω)

≤C21 +C21

∫ t

0
(t − s)−γ−

(
1

p0
− 1

2

)
e−λ(t−s) ∥hε(·, s)∥Lp0 (Ω) ds

≤C22 for all t ∈
(
0,Tmax,ε

)
,

(4.15)

which in combination with the continuous embedding D (Aγ) ↪→ L∞(Ω) by γ ∈
(

1
2 , 1

)
yields that

∥uε(·, t)∥L∞(Ω) ≤ C23 for all t ∈
(
0,Tmax,ε

)
. (4.16)

Step 4. The boundedness of ∥∇uε(·, t)∥Lp(Ω) with p > 1 for all t ∈
(
0,Tmax,ε

)
.

For any p > 1, we can pick suitable γ ∈
(

1
2 , 1

)
satisfying γ > 1 − 1

p . By means of the embedding
D(Aγ) ↪→ W1,p(Ω;R2) (see [37]), (4.2) holds.

Step 5. The boundedness of ∥wε(·, t)∥W1,∞(Ω) and ∥vε(·, t)∥W1,∞(Ω) for all t ∈
(
0,Tmax,ε

)
.
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Fixing θ ∈
(

1
2 +

1−α
2 , 1

)
, the domain of the fractional power D

(
(−∆ + 1)θ

)
can be embedded into

W1,∞(Ω) [4]. Accordingly, exploiting the Lp − Lq estimates associated heat semigroup, one has

∥wε(·, t)∥W1,∞(Ω)

≤C24

∥∥∥(−∆ + 1)θwε(·, t)
∥∥∥

L
2

1−α (Ω)

≤C25t−θe−µt ∥w0∥L
2

1−α (Ω)
+C25

∫ t

0
(t − s)−θe−µ(t−s) ∥(nε − uε · ∇wε) (·, s)∥

L
2

1−α (Ω)
ds

≤C26 +C26

∫ t

0
(t − s)−θe−µ(t−s)

[
∥nε(·, s)∥

L
2

1−α (Ω)
+ ∥uε(·, s)∥L∞(Ω) ∥∇wε(·, s)∥

L
2

1−α (Ω)

]
ds

≤C27 for all t ∈
(
τ0,Tmax,ε

)
with τ0 ∈

(
0,Tmax,ε

)
. An application of the local solvability of (2.2) indicates that for some C28 > 0,

∥wε(·, t)∥W1,∞(Ω) ≤ C28 for all t ∈
(
0,Tmax,ε

)
. (4.17)

Meanwhile, a similar argument yields a C29 > 0 satisfying

∥vε(·, t)∥W1,∞(Ω) ≤ C29 for all t ∈
(
0,Tmax,ε

)
. (4.18)

The proof is completed. □

With the uniform L∞ bounds of nε, ∇vε, ∇wε and uε at hand, we claim that the local classical solution
of regularized problem (2.2) which is constructed in Lemma 2.1 can be extended to the global.

Proposition 4.1. Let α > 0, γ ∈
(

1
2 , 1

)
. Let (nε, vε,wε, uε, Pε)ε∈(0,1) be classical solutions of (2.2)

constructed in Lemma 2.1 on
[
0,Tmax,ε

)
. Then, we have Tmax,ε = ∞. Moreover, one can find a C > 0

which is independent of ε ∈ (0, 1) such that

∥nε(·, t)∥L∞(Ω) + ∥vε(·, t)∥W1,∞(Ω) + ∥wε(·, t)∥W1,∞(Ω) + ∥uε(·, t)∥L∞(Ω) + ∥A
γuε(·, t)∥L2(Ω) ≤ C for all t ∈ (0,∞).

(4.19)
In addition, there is a C(p) > 0 fulfilling

∥∇uε(·, t)∥Lp(Ω) ≤ C(p) for all t ∈ (0,∞). (4.20)

As the straightforward result of Proposition 4.1, in light of the standard parabolic regularity (see
e.g. Lemmata 3.18 and 3.19 in [43]), we can get the following Hölder continuity of vε,∇vε as well as
wε,∇wε and uε.

Lemma 4.2. If α > 0, then there exist µ ∈ (0, 1) and some C > 0 such that

∥vε(·, t)∥Cµ, µ2 (Ω×[t,t+1])
+ ∥wε(·, t)∥Cµ, µ2 (Ω×[t,t+1])

+ ∥uε(·, t)∥Cµ, µ2 (Ω×[t,t+1])
≤ C for all t ∈ (0,∞). (4.21)

Moreover, for any τ > 0, one can find a C(τ) > 0 satisfying

∥∇vε(·, t)∥Cµ, µ2 (Ω×[t,t+1])
+ ∥∇wε(·, t)∥Cµ, µ2 (Ω×[t,t+1])

≤ C(τ) for all t ∈ (τ,∞). (4.22)
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5. The proof of main results

With all the results established above, we are adequately prepared for proving Theorem 1.1. First,
we state the concept of global weak solution.

Definition 5.1. Let (n0, v0,w0, u0) satisfy (1.9) and T ∈ (0,∞]. Then, a fourfold of functions (n, v,w, u)
which fulfills 

n ∈ L1
loc(Ω̄ × [0,T )),

v ∈ L1
loc

(
[0,T ); W1,1(Ω)

)
,

w ∈ L1
loc

(
[0,T ); W1,1(Ω)

)
,

u ∈ L1
loc

(
[0,T ); W1,1(Ω)

)
,

(5.1)

and n as well as v and w are nonnegative in Ω × (0,T ) and u is divergence-free in Ω × (0,T ), and

u ⊗ u ∈ L1
loc

(
Ω̄ × [0,∞);R2×2

)
and n ∈ L1

loc(Ω̄ × [0,∞)),

vu,wu, nu and nS (x, n, v,w)∇v ∈ L1
loc

(
Ω̄ × [0,∞);R2

)
(5.2)

is called a weak solution of problem (1.5) if the following integral identities are satisfied:

−

∫ T

0

∫
Ω

nφt −

∫
Ω

n0φ(·, 0)

=

∫ T

0

∫
Ω

∇n · ∇φ +
∫ T

0

∫
Ω

nS (x, n, v,w)∇v · ∇φ +
∫ T

0

∫
Ω

nu · ∇φ
(5.3)

for any φ ∈ C∞0 (Ω̄ × [0,T )) satisfying ∂φ
∂ν
= 0 on ∂Ω × (0,T ) and

−

∫ T

0

∫
Ω

vφt −

∫
Ω

v0φ(·, 0)

= −

∫ T

0

∫
Ω

∇v · ∇φ −
∫ T

0

∫
Ω

vφ +
∫ T

0

∫
Ω

wφ +
∫ T

0

∫
Ω

vu · ∇φ
(5.4)

as well as

−

∫ T

0

∫
Ω

wφt −

∫
Ω

w0φ(·, 0)

= −

∫ T

0

∫
Ω

∇w · ∇φ −
∫ T

0

∫
Ω

wφ +
∫ T

0

∫
Ω

nφ +
∫ T

0

∫
Ω

wu · ∇φ
(5.5)

for any φ ∈ C∞0 (Ω̄ × [0,T )) and

−

∫ T

0

∫
Ω

uφt −

∫
Ω

u0φ(·, 0)

= κ

∫ T

0

∫
Ω

u ⊗ u · ∇φ −
∫ T

0

∫
Ω

∇u · ∇φ −
∫ T

0

∫
Ω

n∇ϕ · φ
(5.6)

for any φ ∈ C∞0
(
Ω̄ × [0,T );R2

)
which is divergence-free in Ω × (0,T ). If Ω × (0,∞) −→ R5 is a weak

solution of (1.5) in Ω × (0,T ) for all T > 0, then (n, v,w, u) is called a global weak solution of (1.5).
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In the following auxiliary outcome, we will derive the regularity property of time derivative so as to
invoke the Aubin-Lions compactness lemma, which plays a prominent role in proving Theorem 1.1.

Lemma 5.1. If α > 0, then for any T > 0 and all ε ∈ (0, 1), there exists C(T ) > 0 such that∫ T

0

∫
Ω

|∇nε|2 ≤ C(T ) (5.7)

and ∫ T

0
∥∂tnε(·, t)∥(W1,2

0 (Ω))∗ dt ≤ C(T ). (5.8)

Proof. Firstly, in view of Proposition 4.1, there exists a C1 > 0 such that

nε ≤ C1, |∇vε| ≤ C1 and |uε| ≤ C1 in Ω × (0,∞). (5.9)

Then, testing the first equation in (2.2) by nε, by virtue of (5.9), we have

1
2

d
dt
∥nε∥2L2(Ω) +

∫
Ω

|∇nε|2 = −
∫
Ω

nε∇ · (nεS ε (x, nε, vε,wε)∇vε)

≤ CS

∫
Ω

nε |∇nε| |∇vε|

≤
1
2

∫
Ω

|∇nε|2 +
1
2

C2
S C4

1 |Ω|.

(5.10)

Integrating (5.10) over (0,T ), (5.7) is valid. Testing the first equation in (2.2) by φ ∈ C∞0 (Ω), we
conclude there is a C̃ := C(C1,Ω,CS ) > 0 such that∫

Ω

nεt(·, t) · φ

=

∫
Ω

[∆nε − ∇ · (nεS ε (x, nε, vε,wε)∇vε) − uε · ∇nε] · φ

= −

∫
Ω

∇nε · ∇φ +
∫
Ω

nεS ε (x, nε, vε,wε)∇vε · ∇φ +
∫
Ω

nεuε · ∇φ

≤C̃
(
∥∇nε∥L2(Ω) + ∥∇vε∥L2(Ω)

)
∥φ∥W1,2

0 (Ω).

(5.11)

Therefore, by the definition of the operator norm, one has

∥nεt(·, t)∥2(W1,2
0 (Ω))∗ ≤ C̃

(
∥∇nε∥2L2(Ω) + ∥∇vε∥2L2(Ω)

)
. (5.12)

Recalling the estimates obtained in (5.7) and (3.37), integrating (5.12) in time, we finally get (5.8). □

As an application of the parabolic regularity theory, we may further derive the following Hölder
continuity of nε.

Lemma 5.2. For any ε ∈ (0, 1), there exist a positive constant C and θ ∈ (0, 1) such that

∥nε(·, t)∥Cθ, θ2 (Ω̄×[t,t+1])
≤ C for all t ∈ (0,∞). (5.13)

Electronic Research Archive Volume 31, Issue 3, 1710–1736.



1730

Proof. Firstly, the first equation of (2.2) can be rewritten as the following sub-problem:
nεt = ∇ · a(x, t,∇nε) + b(x, t,∇nε), x ∈ Ω, t > 0,
a(x, t,∇nε) · ν = 0, x ∈ ∂Ω, t > 0,
nε(x, 0) = n0(x), x ∈ Ω,

(5.14)

where a(x, t, ξ) := ξ − nεS ε(x, nε, vε,wε)∇vε and b(x, t, ξ) := −uε · ξ with (x, t, ξ) ∈ Ω × (0,∞) × R2. By
means of the Young inequality and basic analysis as well as Proposition 4.1, we obtain

ξ · a(x, t, ξ) = |ξ|2 − nεS ε(x, nε, vε,wε)∇vε · ξ ≥
1
2
|ξ|2 −C1|∇vε|2, (x, t, ξ) ∈ Ω × (0,∞) × R2 (5.15)

and
|a(x, t, ξ)| ≤ C2|∇vε| + |ξ|, (x, t, ξ) ∈ Ω × (0,∞) × R2 (5.16)

as well as

|b(x, t, ξ)| ≤
1
2
|ξ|2 +C3, (x, t, ξ) ∈ Ω × (0,∞) × R2 (5.17)

with positive constants C1, C2 and C3. Moreover, Proposition 4.1 points out that |∇vε| and |∇vε|2 belong
to L∞((0,∞); Lp(Ω)) for any p > 1. In light of the parabolic regularity theory [44], for any τ > 0, there
exist θ := θ(τ) ∈ (0, 1) and some constant C(τ) > 0 such that

∥nε(·, t)∥Cθ, θ2 (Ω̄×[t,t+1])
≤ C(τ) for all t ≥ τ, (5.18)

which completes the proof. □

According to classical Schauder estimates, we may exploit the same arguments with Lemmata
9.1, 9.2 and 9.3 in [29] to derive the Hölder estimates in C2+θ,1+ θ2 for vε, wε and uε, so we leave out
the details.

Lemma 5.3. If α > 0, then for τ > 0, there exist θ ∈ (0, 1) and C(τ) > 0 such that the solution
of (2.2) satisfies

∥uε(·, t)∥C2+θ,1+ θ2 (Ω̄×[t,t+1])
+ ∥vε(·, t)∥C2+θ,1+ θ2 (Ω̄×[t,t+1])

+ ∥wε(·, t)∥C2+θ,1+ θ2 (Ω̄×[t,t+1])
≤ C(τ) for all t ≥ τ. (5.19)

Based on above preparations, Theorem 1.1 may be proved by utilizing some standard compactness
arguments and the parabolic regularity theory.

Lemma 5.4. If α > 0, then there exist θ ∈ (0, 1), {ε j} j∈N ⊂ (0, 1) and functions

n ∈ Cθ,
θ
2

loc (Ω̄ × [0,∞)) ∩C2+θ,1+ θ2
loc (Ω̄ × (0,∞)),

v ∈ Cθ,
θ
2

loc (Ω̄ × [0,∞)) ∩C2+θ,1+ θ2
loc (Ω̄ × (0,∞)),

w ∈ Cθ,
θ
2

loc (Ω̄ × [0,∞)) ∩C2+θ,1+ θ2
loc (Ω̄ × (0,∞)),

u ∈ Cθ,
θ
2

loc

(
Ω̄ × [0,∞);R2

)
∩C2+θ,1+ θ2

loc

(
Ω̄ × (0,∞);R2

)
,

P ∈ C1,0(Ω̄ × (0,∞))

(5.20)
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such that n, v and w are nonnegative in Ω × (0,T ), and that
nε → n ∈ C0

loc (Ω̄ × [0,∞)),
vε → v ∈ C0

loc (Ω̄ × [0,∞)),
wε → w ∈ C0

loc (Ω̄ × [0,∞)),
uε → u ∈ C0

loc

(
Ω̄ × [0,∞);R2

) (5.21)

as ε = ε j ↘ 0, and (n, v,w, u, P) solves (1.5) classically in Ω × (0,∞).

Proof. By virtue of Proposition 4.1, Lemmata 4.2 and 5.1 and the Arzelà-Ascoli theorem, we can find
a sequence ε = ε j ↘ 0 as j→ ∞ such that

nε ⇀ n weakly star in L∞(Ω × (0,∞)), (5.22)
∇nε ⇀ ∇n weakly in L2

loc(Ω̄ × [0,∞)), (5.23)
vε → v in C0

loc(Ω̄ × [0,∞)), (5.24)
∇vε → ∇v in C0

loc(Ω̄ × (0,∞)), (5.25)
∇vε ⇀ ∇v weakly star in L∞(Ω × (0,∞)), (5.26)

wε → w in C0
loc(Ω̄ × [0,∞)), (5.27)

∇wε → ∇w in C0
loc(Ω̄ × (0,∞)), (5.28)

∇wε ⇀ ∇w weakly star in L∞(Ω × (0,∞)) (5.29)

as well as
uε → u in C0

loc(Ω̄ × [0,∞)), (5.30)

and
Duε ⇀ Du weakly star in L∞(Ω × (0,∞)) (5.31)

hold with some limit functions n, v,w and u.
By Lemma 5.1, we assert that nε belongs to L2((0,T ); W1,2(Ω)), and ∂tnε is bounded in

L1((0,T ); (W1,2
0 (Ω))∗) for any T > 0. Noticing the embedding W1,2(Ω) ↪→↪→ L2(Ω) ↪→ (W1,2

0 (Ω))∗, the
Aubin-Lions lemma ( [45]) along with some standard arguments allows us to derive

nε → n a.e. in Ω × (0,∞). (5.32)

Now, we may verify the limit functions n, v, w and u exactly comply with the properties of a weak
solution which are stated by Definition 5.1. The integrability conditions in (5.1) and (5.2) and the
nonnegativity of n, v and w are evident by (5.22), (5.23), (5.24), (5.26), (5.27), (5.29), (5.30) and (5.32).
Applying the dominated convergence theorem and some standard arguments to the corresponding weak
formulations in the regularized problem (2.2) as ε = ε j ↘ 0, one can derive the integral identities
(5.3)–(5.6) by using (5.22)–(5.32). Moreover, we have

nεS ε (x, nε, vε,wε)∇vε → nS (x, n, v,w)∇v a.e. in Ω × (0,∞). (5.33)

Thus, (n, v,w, u) becomes a global weak solution which exactly enjoys the conditions in Definition 5.1.
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Lastly, we claim that this weak solution is virtually a solution in the classical sense. Our method is
strongly inspired by Lemma 4.3 in [46]. By means of Lemmata 5.2 and 5.3, we obtain

nε → n ∈ Cθ1,
θ1
2

loc (Ω̄ × [0,∞)),

vε → v ∈ Cθ1,
θ1
2

loc (Ω̄ × [0,∞)) ∩C2+θ1,1+
θ1
2

loc (Ω̄ × (0,∞)),

wε → w ∈ Cθ1,
θ1
2

loc (Ω̄ × [0,∞)) ∩C2+θ1,1+
θ1
2

loc (Ω̄ × (0,∞)),

uε → u ∈ Cθ1,
θ1
2

loc

(
Ω̄ × [0,∞);R2

)
∩C2+θ1,1+

θ1
2

loc

(
Ω̄ × (0,∞);R2

) (5.34)

with some θ1 ∈ (0, 1) and subsequence ε = ε j. In view of (5.7) and the Hölder regularities provided by
(5.34), n possesses the needed regularity properties of a well-established result concerning the gradient
Hölder continuity [47], which entails

n ∈ C1+θ2,
1+θ2

2
loc (Ω̄ × (0,∞)) for some θ2 ∈ (0, 1). (5.35)

Now, we consider the sub-problem nt − ∆n = g(x, t) with boundary condition ∂n
∂ν
= h(x, t) · ν, where

g := −∇ · (nu + nS (x, n, v,w)∇v) and h := nS (x, n, v,w)∇v. As the desired Hölder estimates

∥g(x, t)∥
C
α1 ,
α1
2

loc (Ω̄×(0,∞))

≤ ∥u · ∇n∥
C
α1 ,
α1
2

loc (Ω̄×(0,∞))
+ ∥nS (x, n, v,w)∇v∥

C
α1 ,
α1
2

loc (Ω̄×(0,∞))

≤C1 for some α1 ∈ (0, 1)

(5.36)

and

∥h(x, t)∥
C

1+α2 ,
1+α2

2
loc (Ω̄×(0,∞))

= ∥nS (x, n, v,w)∇v∥
C

1+α2 ,
1+α2

2
loc (Ω̄×(0,∞))

≤ C2 for some α2 ∈ (0, 1) (5.37)

are warranted by (5.34) and (5.35), invoking the standard parabolic regularity theory [48], we can find
a θ3 ∈ (0, 1) such that

n ∈ C2+θ3,1+
θ3
2

loc (Ω̄ × (0,∞)). (5.38)

This in combination with (5.34) yields a θ4 ∈ (0, 1) such that

n ∈ Cθ4,
θ4
2

loc (Ω̄ × [0,∞)) ∩C2+θ4,1+
θ4
2

loc (Ω̄ × (0,∞)),

v ∈ Cθ4,
θ4
2

loc (Ω̄ × [0,∞)) ∩C2+θ4,1+
θ4
2

loc (Ω̄ × (0,∞)),

w ∈ Cθ4,
θ4
2

loc (Ω̄ × [0,∞)) ∩C2+θ4,1+
θ4
2

loc (Ω̄ × (0,∞)),

u ∈ Cθ4,
θ4
2

loc

(
Ω̄ × [0,∞);R2

)
∩C2+θ4,1+

θ4
2

loc

(
Ω̄ × (0,∞);R2

)
,

(5.39)

which guarantees the sufficient Hölder regularity of (n, v,w, u) to be a solution in the classical sense
and thereby completes the proof. □

Finally, Theorem 1.1 is immediate.

Proof of Theorem 1.1. The statement follows from Lemma 5.4 in conjunction with Proposition 4.1.
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