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Abstract: The dynamics of Casson nanofluid with chemically reactive and thermally conducting 

medium past an elongated sheet was investigated in this work. Partial differential equations were used 

in the flow model (PDEs). The governing equations can be converted into system of ordinary 

differential equations. Using the R-K method and shooting techniques, the altered equations were 

numerically resolved. The impact of relevant flow factors was depicted  using graphs while 

computations on engineering quantities of interest are tabulated. The velocity profiles were observed 

to degrade when the visco-inelastic parameter (Casson) and magnetic parameter (M) were set to a 

higher value. An increase in magnetic specification's value has been observed to decrease the 

distribution of velocity. A huge M value originates the Lorentz force which can degenerate the motion 

of an electrically conducting fluids. Physically, the multiplication of electrical conductivity (𝜎) and 

magnetic force's magnitude possess electromagnetic force which drag back the fluid motion. As a 

result, as Gm rises, the mass buoyancy force rises, causing the velocity distribution to widen. The 

contributions of variable thermal conductivity and variable diffusion coefficient on temperature and 

concentration contours respectively have been illustrated. The boundary layer distributions degenerate 

as the unsteadiness parameter (A) is increased. The outcomes of this agrees with previous outcomes. 
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1. Introduction 

The importance of non-Newtonian fluid boundary layer flow in industrial applications has lately 

piqued the interest of significant scholars.The rheological equations for this sort of fluid are typically 

complex, posing a number of obstacles for engineers and scientists to solve. The Casson fluid (visco-

inelastic) have received greater attention among all other non-Newtonian fluids. It is a visco-inelastic 

fluid having yield stress which classify Casson fluid as blood. Therefore, the non-Newtonian nature of 

fluids is due to yield stress. The applications of such fluids are seen in food processing, polymer 

processing and many more. In 2015, Mahanta and Shaw [1] explored the analysis of Casson fluid flow 

in three dimensions that passes through a penetrable linearly stretching sheet. Kataria and Patel [2] 

reported Casson fluid movement with contributions from the radiation mode of heat transmission as 

well as chemical reactions through an oscillating vertical lamina. Ramana Reddy et al. [3] probed the 

Casson and also Maxwell fluids in the midst of cross diffusion and a heat source/sink that isn't uniform. 

Awais et al. [4] recently examined the dynamics of Casson fluid motion through penetrable channel. 

By altering the thermal conductivity and viscosity of fluids, Idowu and Falodun [5] emphasized on the 

simultaneous flow of fluids such as Casson and Walters-B. 

Magnetohydrodynamics (MHD) has high significance in MHD pumps, astrophysical plasmas, 

MHD meters to name few. In the same vein, MHD is proved to be affective in diagnostics of diseases 

which makes it to step into bio-engineering applications. Shanmugapriya et al. [6] examined the 

enhancement of MHD hybrid nanofluid motion together with activation energy. Panigrahi et al. [7] 

studied MHD Casson nanofluids dynamics in a porous channel. Bhattacharyya [8] researched the 

MHD stagnation-point involving Casson fluid motion past an extendable membrane subjected to 

electromagnetic radiation.Waleligh et al. [9] examined dynamics of MHD Casson nanofluid past an 

inclined stretchable cylinder with chemically reactive and thermally radiative effects. Mat Noor et al. [10] 

delved into squishing action of Jeffrey nanofluid in MHD along a horizontal axis. Mahabaleshwar 

et al. [11] took up the MHD non-Newtonian nanofluid flow as well as the study of mass transfer as a 

result of super-linear strecthable lamina. Wang et al. [12] assessed the magnetohydrodynamics of a 

Williamson nanofluid flowing on top of a thin elastic lamina. [13] investigated the dynamics of 

nanofluids on electrically conducting fluids using the Soret-Dufour mechanism. A study of Kalteh [14] 

examined nanoparticle and base fluid types. The study concluded that the heat transport coefficient is 

highest for water alumina/water nanoliquid particle magnitude on thermal conductivity. Jin-Kyeong [15] 

examined the impact of nanoparticles in bubble absorption and its activeness in a binary fluid. The 

impact of thermophoresis on nanoparticle distribution has been investigated by Bahiraei [16]. It was 

found out in the study that the presence of large particles gives non-uniformity in concentration 

distribution. Seferis et al. [17] studied Grain's size together with the shape reliance of luminescence 

efficiency. The method of sedimentation was used, and the rod similar grain screens show together 

with a reduction in efficiency of luminescence values. The recent exploration of Bowers [18] presented 

the heat transport behavior of nanofluids flows in microchannels. It was found out in their study that 

much viscosity of nanofluids in comparison to water, power pumping which is required in the driving 

flow of nanofluid in microchannels elevate. Krishna et al. [19] researched thermal transport in an 

unsteady state of Powell-Eyring fluid through a sloped elastic membrane. Mahato et al. [20] presented 

an analytical study on the effects of Hall current, magnetic field, and chemical change on an unsteady 

https://zbmath.org/classification/?q=cc%3A76A05
https://zbmath.org/classification/?q=cc%3A76M30
https://zbmath.org/classification/?q=cc%3A35Q35
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MHD free convection heat and mass transmission of viscous incompressible, electrically conducting 

Casson fluid past a virtually unlimited vertical channel with heat source and sink. Kumar et al. [21] 

discussed dual formulations of Williamson fluid MHD flow across a curvy membrane. Musa et al. [22] 

explored the unsteady magnetohydrodynamics flow of nanofluids in the presence of heat radiation and 

chemical reactivity with variable fluid properties past an angled elastic membrane. Alghamdi et al. [23] 

looked at the Beale-kato-majda’s criterion for magnetohydrodynamic equations with zero viscosity.  

Sunthrayuth et al. [24] by considering an unsteady MHD flow for fractional Casson channel fluid in a 

porous medium: An application of the Caputo-Fabrizio time-fractional derivative. Zhang et al. [25] 

evaluated the heat transport phenomena for the Darcy-Forchheimer flow of Casson fluid over 

stretching sheets with electro-osmosis forces and Newtonian heating. Computational modelling of 

multiphase fluid flow behaviour over a stretching sheet in the presence of nanoparticles was studied 

by Rabbi et al. [26]. Khan et al. [27] considered the numerical simulation of a non-linear nanofluidic 

model to characterize the MHD chemically reactive flow past an inclined stretching surface. [28] 

explored the multiple slip effects on unsteady MHD Casson nanofluid flow over a porous stretching 

sheet. [29] claimed an explicit finite difference analysis of an unsteady MHD flow of a chemically 

reacting Casson fluid past a stretching sheet with Brownian motion and thermophoresis effects. 

The present paper deals with end results of radiation produced by electromagnetic waves on 

unsteady transportation of both heat and mass of Casson fluid with persistant viscosity along with 

viscous dissipation, a magnetic field, and buoyancy forces. Upon extensive literature survey it has been 

found that very few researchers worked on the present problem. Effects of elecromagnetic radiation 

and viscous dispersion has numerous applications in industrial engineering such as separation of 

isotopes, heat exchangers, petroleum reservoirs etc. Due to these applications, hence the need for this 

study. 

2. Mathematical formulation 

Consider a permeable angular elongated porous sheet with an unstable 2-directional laminar 

boundary layer of viscous incompressible MHD Casson fluid movement. Elastic sheet with holes and 

concentration of chemical species are considered and observed that heat is supplied by these to Casson 

nanofluid uniformly. The density variation with temperature and concentration is assumed to influence 

only the body force term. Thus, buoyancy forces aroused by the changes in temperature and 

concentration. Porous stretching sheet is subjected to uniform magnetic field normal to its surface. 

Another assumption made is with respect to the chemical reaction that is of homogeneous first order 

type with electromagnetic radiation happening in the move. It is presumed that (𝑥, 𝑡) is the velocity of 

the porous elongated lamina acting along 𝑥-axis same as the direction of the force applied and v𝑤(𝑡) is 

transfer of mass acting in the normal direction to the porous stretching lamina as shown in the physical 

model in Figure 1. Also, assumed that T(𝑥, 𝑡) be the surface temperature, C(𝑥, 𝑡) be the sheet 

concentration, 𝑇∞ be the uniform temperature at a far-off distance from the lamina and 𝐶∞ be the 

concentration considered at an appreciable distance away from the sheet. The fluid thermal properties 

such as conductivity as well as diffusivity are supposed to change linearly with temperature at the 

molecular level. 
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Figure 1. Physical geometry of the problem. 

The mathematical expression for the Casson fluid is: 

𝜏𝑖𝑗 = {
2 (𝜇𝐵 +

𝑃𝑦

√2𝜋
)𝑒𝑖𝑗, 𝜋 > 𝜋𝑐

2 (𝜇𝐵+
𝑃𝑦

√2𝜋𝑐
)𝑒𝑖𝑗, 𝜋 < 𝜋𝑐

        (1)  

where ij represents the ( ),
th

i j  stress tensor component, 
B  stands for synthetic absolute viscosity of 

non-Newtonian fluid, yp  indicates fluid’s yield stress, and   indicates the component of deformation 

rate multiplied by itself that is laid down as ,ij ije e =  and ije stands for the ( ),
th

i j  component of 

deformation rate, and c  is taken as the critical value of   based on a non-Newtonian model created. 

The governing equations for Boussinesq and flow separation approximations were indeed specified by 

Eqs (2) to (5), that are based on above assertions [23]: 
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The boundary constraints are defined as in (6): 

At𝑦 = 0, {𝑢 = 𝑢𝑤(𝑥, 𝑡) =
𝑐𝑥

1 − 𝜆𝑡
, 𝑣 = 𝑣𝑤(𝑡), 𝑇 = 𝑇∞ +

𝑏𝑥

(1 − 𝜆𝑡)2
, 𝐶 = 𝐶∞ +

𝑏𝑥

(1 − 𝜆𝑡)2
 

and as 

y → ∞𝑢 → 0,𝑇 → 𝑇∞ ,𝐶 → 𝐶∞        (6) 
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where time is symbolized by t, whilst velocity components in the x-y plane are denoted by u and v and 

β is Casson fluid parameter. K represents porous medium specification, g stands for gravity 

acceleration,  stands for fluid density, and  is fluid kinematic viscosity,  represents electrical 

conductivity,  is thermal conductivity, T represents fluid temperature, C denotes fluid concentration, 

and Cp stands for specific heat at constant pressure. DM is factor of molecular diffusion, Kr is chemical 

reaction parameter.  

The vitality condition (4) can be reduced by employing the Rosseland dispersion approach for the 

radiative flux as [13]: 

44 *

3 *
r

T
q

k y

 
= −


         (7) 

here σ* is Stefan-Boltzmann consistent and k* is the mean ingestion. If the temperature distinct inside 

the stream is very small, expanding T4 in Taylor’s approach around T, while higher terms are avoided, 

4 3 44 3T T T T = − .          (8) 

Heat flux can be estimated as 

316 *

3 *
r

T T
q

k y

 
= −


.         (9) 

With the help of Eq (9), the energy equation (4) can appear as 
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The below mentioned similarity transformation was initiated to reduce the mathematical analysis: 
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by using the similarity transformation equation (11) for a nonlinear ordinary differential equations 

(ODE) system, the governing equations (3), (5), and (10) are transcribed in a non-dimensional form: 

( )   ( )
211 0.5f A f A K M f f ff Gr Gm   −     + − + + + + − − − ,    (12) 

( ) ( ) ( )( )
211 Pr 0.5 2 1 0R A A f f Ec f       −     + − + + − − + =

  ,   (13) 

( ) ( )0.5 2 0Sc A A Kr f f        − + + + − =  .      (14) 

The corresponding dimensionless form of boundary conditions are given by the equation: 

, 1, 1, 1 at 0

0, 0, 0 as

f S f

f

  
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= = = = =

→ → → →
       (15) 

where , 𝐴, K, 𝑀, 𝐺𝑟, 𝐺m, 𝑃𝑟, 𝑅, 𝐾𝑟, 𝐸𝑐, and 𝑆𝑐 are the Casson fluid parameter, unsteadiness 

parameter, porous medium parameter, magnetic parameter, thermal Grashof number, solutal or 

concentration Grashof number, Prandtl number, thermal radiation parameter, chemical reaction 

parameter, Eckert number, and the Schmidt number, respectively. 
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The skin-friction coefficient, Nusselt number (Nu), and Sherwood number (Sh) are the three basic 

physical characteristics that are taken into account: 

2
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Substituting Eq (11) into (16) to obtain the final dimensional form: 

( ) ( ) ( )0 , 0 , 0fC f Nu Sh   = = − = −        (17) 

where 
( )

2

Re
1

x

cx

t 
=

−
 stands for local Reynolds number, Cf is the local skin friction, Nu is the local 

Nusselt number and Sh is the local Sherwood number. 

The dynamic of fluid parcels is described with the help of Newton’s second law. An accelerating 

parcel of fluid is subject to inertial effects. The Reynolds number is a dimensionless quantity which 

characterizes the magnitude of inertial effects compared to the magnitude of viscous effects. A low 

Reynolds number (Re≪1) indicates that viscous forces are very strong compared to inertial forces. In 

such cases, inertial forces are sometimes neglected; this flow regime is called  Stokes. In contrast, high 

Reynolds numbers (Re≫1) indicate that the inertial effects have more effect on the velocity field than 

the viscous effects. In high Reynolds number flows, the flow is often modeled as an inviscid flow, an 

approximation in which viscosity is completely neglected. Eliminating viscosity allows the Navier-

Stokes equations to be simplified into the Euler equations. The integration of the Euler equations along 

a streamline in an inviscid flow yield Bernoulli’s equation. When, in addition to being inviscid, the 

flow is irrotational everywhere, Bernoulli’s equation can completely describe the flow everywhere. 

Such flows are called potential flows, because the velocity field may be expressed as the gradient of a 

potential energy expression. This idea can work fairly well when the Reynolds number is high. 

However, problems such as those involving solid boundaries may require that the viscosity be included. 

Viscosity cannot be neglected  near solid boundaries because the no-slip condition generates a thin 

region of large strain rate, the boundary layer, in which viscosity effects dominate and which thus 

generates vorticity. Therefore, to calculate net forces on bodies (such as wings), viscous flow equations 

must be used: Inviscid flow theory fails to predict drag forces, a limitation known as the d’Alembert’s 

paradox. A commonly used model, especially in computational fluid dynamics, is to use two flow 

models: The Euler equations away from the body, and boundary layer equations in a region close to 

the body. The two solutions can then be matched with each other, using the method of matched 

asymptotic expansions. 

3. Numerical solution of the problem 

To solve the system of ordinary differential equations (12)–(14) with their corresponding initial 

and boundary conditions (15) numerically, the domain [0, ∞) has been substituted by the bounded 

domain [0, 𝜂∞] where 𝜂∞ is a suitable finite real number that should be chosen in such a way that the 

https://en.wikipedia.org/wiki/Reynolds_number
https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Inviscid_flow
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Euler_equations_(fluid_dynamics)
https://en.wikipedia.org/wiki/Lamellar_field
https://en.wikipedia.org/wiki/Potential_flow
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/No-slip_condition
https://en.wikipedia.org/wiki/Boundary_layer
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Vorticity
https://en.wikipedia.org/wiki/Drag_(physics)
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Boundary_layer
https://en.wikipedia.org/wiki/Method_of_matched_asymptotic_expansions
https://en.wikipedia.org/wiki/Method_of_matched_asymptotic_expansions
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solution satisfies the domain. Also (12)–(14) form a highly nonlinear coupled initial boundary value 

problem of third and second order ordinary differential equations. For this reason, (12)–(14) have been 

reduced to a system of seven initial problems of the first order of seven unknowns following the 

supposition in: 

𝑓 = 𝑓(1),𝑓 ′ = 𝑓(2), 𝑓″ = 𝑓(3),𝜃 = 𝑓(4),𝜃 ′ = 𝑓(5),𝜙 = 𝑓(6),𝜙′ = 𝑓.   (18) 

Thus, we develop the most effective numerical shooting technique in line with the fourth order Runge-

Kutta method. To solve this system, we require seven initial conditions whereas we have only four 

initial conditions for ( ) ( ) ( ) ( )0 , 0 , 0  and 0 ,  f f    while the other three ( ) ( ) ( )0 , 0  and 0f     and 

𝜙(0), were not given; hence, we employ numerical shooting technique where these three initial 

conditions are guessed to produce the required three ending boundary conditions. The step size 

0.001 =  is used to obtain the numerical solution with six decimals (1×10−6) as a criterion of 

convergence. 

4. Results and discussion 

This study examined heat and mass transportation's impacts on the movement of MHD Casson 

nanofluid with variable properties. The transformed equations (12)–(14) with the associated boundary 

conditions in Eq (15) has been mathematically resolved by utilizing the Runge-Kutta techniques along 

with the shooting techniques. All flow parameters' contributions such as unsteadiness parameter (A), 

Casson parameter (𝛽), magnetic specification (M), radiative Grashof number (Gr), mass Grashof 

number (Gm), Prandtl number (Pr) and so on are represented using graphs. 

Figure 2 depicts, how the Casson parameter (𝛽) affects the velocity contour. The velocity 

distributions are observed to decrease as the (β) value increases. This is true because the moment (𝛽) 

enlarges, the yield stress Py of the Casson fluid parameter (𝛽) degenerates that lead to improve plastic 

dynamic fluid flow rate. As the plastic absolute viscosity increases, it causes fluid flow resistance by 

reducing the velocity contour. Figures 3–5 describes the extent of unsteadiness variable (A) on the 

flow speed, temperature, and concentration proportions. A spike in the unsteadiness variable causes a 

reduction in flow speed, temperature, and concentration proportions. The yield exhibiting Casson 

nanofluid dominate viscosity which is accountable for the degeneration of fluid flow speed, 

temperature, and concentration contours. Physically, significant amount of A leads to the degradation 

of boundary layers thickness. 

Figure 6 depicts the implications of a porous medium specification (K) on velocity contour. A 

rise in (K), the porous medium specification is noticed to cause reduction in fluid velocity contour. A 

random mixing of the Casson nanoparticles together with the imposed magnetic field strength causes 

the penetration of fluids to be very slow. Physically, the porous medium allows the passage of fluid 

particles within the boundary layer but plastic dynamic viscosity of the yield exhibiting fluid slows 

down its motion. Figure 7 indicates outcome of magnetic specification on velocity contour. An 

increase in magnetic specification’s value has been observed to decrease the distribution of velocity. 

A huge M value originates the Lorentz force which can degenerate the motion of an electrically 

conducting fluids. Physically, the multiplication of electrical conductivity (𝜎) and magnetic force’s 

magnitude possess electromagnetic force which drag back the fluid motion. 
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Figure 2. Velocity profiles for different values of Casson parameter. 

 

Figure 3. Velocity profiles for different values of unsteadiness parameter. 
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Figure 4. Temperature profiles for different values of unsteadiness parameter. 

 

Figure 5. Concentration profiles for different values of unsteadiness parameter. 
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Figure 6. Outcome of porous medium specification (K) on velocity profiles. 

 

Figure 7. Impact of magnetic specification on the velocity profiles. 

In Figure 8, the contribution of the radiative Grashof number (Gr) to the flow speed contour is 

shown. The fluid velocity profile is improved by an improvement in Gr. By increasing the velocity 

contour, the buoyancy force acts on the fluid, causing a rapid flow within the layer. The contribution 

of the mass Grashof (Gc) on the flow speed contour is seen in Figure 9. A significant amount of Gm 

causes the flow speed contour to accelerate. In the model, the mass Grashof number is physically 

responsible for mass transfer. As a result, as Gc rises, the mass buoyancy force rises, causing the 

velocity distribution to widen. 
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Figure 8. Outcome of radiative Grashof number on the velocity profiles. 

 

Figure 9. Consequence of mass Grashof number on the velocity profiles. 

The function of Prandtl number (Pr) on the temperature contour is seen in Figure 10. The 

temperature distributions degenerate as the value of Pr rises significantly. Pr is noted to be the inverse 

of thermal diffusivity in the model of heat transfer. When Prandtl number, Pr<<1 it shows that thermal 

conductivity manages the nature of flow while Pr>>1 means momentum diffusivity command the flow. 

Figure 11 outlines the impact of the Eckert number on temperature profiles. The temperature contour 

is lowered as Ec rises. Because of the plastic dynamic viscosity and magnetic field strength, this is  

true. The significance of Schmidt number (Sc) as well as the chemical change parameter (Kr) on the 

concentration proportion is shown in Figurers 12 and 13. A substantial amount of both Sc and Kr 
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degenerates the concentration contours. Figure 14 highlights the influence of electromagnetic radiation 

variable (R) on the temperature distributions. A large R value appears to raise the fluid temperature. 

This aids the fluid's thermal state and has uses in thermal engineering. Figure 15 shows the flow chart 

for implementing the numerical technique. 

 

Figure 10. Impact of Prandtl number on temperature profiles. 

 

Figure 11. Impact of Eckert number on temperature profiles. 
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Figure 12. Influence of Schmidt number on concentration profiles. 

 

Figure 13. Impact of chemical change variable on the concentration profiles. 

 

Figure 14. Influence of radiant heat variable on the temperature contour. 
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Figure 15. Flow chart of the problem. 

In order to validate our modern-day consequences and to determine the accuracy of the existing 

evaluation, comparisons with to be had results of the skin friction coefficient for the unsteady flow of 

viscous incompressible Newtonian fluid are finished. In Table 1, we compare our results of the skin 

friction coefficient generated by way of Chamkha et al. [30] and Mabood et al. [31]. In this desk, we 

examine that there may be an extraordinary agreement among our effects, and those look at on this 

table that the skin friction coefficient increases with the increasing values of the stretching parameter. 

In Table 2, we observe that there is an excellent agreement among our present consequences with the 

ones previously received by using Mabood and Das [32] and Mabood et al. [31]. We also observe in 

this table that, because the magnetic parameter M will increase, the pores and skin friction substantially 

increase due to the Lorentz drag pressure resulting from electromagnetism increases. 
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Table 1. Comparison of ( )0f −  for various values of A when 0.S M Gr Gm= = = =  

A Chamkha et al. [30] Fazle Mabood et al. [31] Present 

0.8 1.261512 1.261042 1.261044 

1.2 1.378052 1.377724 1.377827 

Table 2. Comparison of ( )0f −  for various values of M when 0.S A= =  

M Mabood and Das et al [32] Fazle Mabood et al. [31] Present 

0 -1.000008 -1.0000084 -1.0000079 

1 1.4142135 1.41421356 1.41213494 

5 2.4494897 2.44948974 2.44948975 

10 3.3166247 3.31662479 3.31662480 

5. Conclusions 

Heat and mass are examined for transport of MHD Casson nanofluid movement by considering 

constant physical properties past a stretchable sheet has been explored in this paper. The flow is 

stretchable within the boundary layer through the penetrable medium. The present outcomes portray 

that constant viscosity and thermal conductivity elevates thermal buoyancy force. The Runge-Kutta 

technique alongside shooting method is found to be efficient because it solves the highly nonlinear 

differential equations numerically. The following are the key findings: 

(i) A large value of the visco-inelastic parameter (𝛽) is found to degenerates the velocity 

profile. 

(ii) The Lorentz force is constructed by the applied field of attraction. The Lorentz force gains 

its strength when the magnetic specification is increased, giving rise to the electromagnetic 

force. 

(iii) Raising the unsteadiness parameter (A) causes the velocity, temperature, and concentration 

proportions to degenerate.  

(iv) By raising the temperature contour, a boost in thermal radiation variable raises the fluid 

thermal condition. 

(v) An improvement of Schmidt number (Sc) and chemical change variable is found to 

degenerate fluid concentration. 
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Nomenclature 

𝑥: Coordinate along the stretching sheet 

𝑦: Distance normal to the stretching sheet 

𝑐: Initial stretching rate 

𝑏: Constants 

𝑡: Time 

𝑢: Velocity along the 𝑥− direction 

v: Velocity along the 𝑦− direction 

𝑢𝑤(𝑥, 𝑡): Velocity of the stretching sheet 

v𝑤(𝑡): Velocity of the mass transfer 

𝐹: Force applied along the 𝑥− axis 

𝑇𝑤(𝑥, 𝑡): Temperature of the sheet at the wall 

𝐶𝑤(𝑥, 𝑡): Concentration of the fluid at the wall 

𝑇∞: Uniform temperature far from the sheet 

𝐶∞: Uniform concentration far from the sheet 

𝐵0: Magnetic induction 

𝐶𝑝: Specific heat at constant pressure 

𝐾𝑟: Chemical reaction parameter 

𝐸𝑐: Eckert number 

𝑆𝑐: Schmidt number 

𝐶𝑓: Skin friction coefficient 

𝑁𝑢𝑥: Nusselt number 

𝑆ℎ𝑥: Sherwood number 

𝑞𝑤: Heat flux 

𝑅𝑒𝑥: Reynolds number 

𝐾: Thermal conductivity 

𝐷: Molecular diffusivity 

𝑇: Temperature of the species 

𝐶: Concentration of the species 

𝑔: Acceleration due to gravity 

𝑞𝑟: Radiation heat flux 

v0: Constant 

𝐾∞: Thermal conductivity of the ambient 

𝐷M: Diffusion coefficient of the ambient 

𝑀: Magnetic parameter 

𝐴: Unsteadiness parameter 

𝐺𝑟: Thermal Grashof number 

𝐺𝑐: Solutal or concentration Grashof number 

𝑃𝑟: Prandtl number 

𝑅: Thermal Radiation parameter 

S: Suction/Injection parameter. 

Greek Symbols 

𝛼: Inclination angle 

𝜆: Constant 

𝜓: Stream function 
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𝜎∗: Stefan- Boltzmann constant 

𝛽1: Variable thermal conductivity 

𝛽2: Variable diffusion coefficient 

𝜏𝑤: Shear stress 

K: Porous medium parameter 

: Kinematic viscosity 

𝜇: Coefficient of viscosity 

𝜙: Dimensionless concentration function 

𝛽𝑇: Coefficient of thermal expansion 

𝛽𝐶: Volumetric concentration coefficient 

𝜃: Dimensionless temperature function 

𝜂: Dimensionless space variable 

𝜌: Fluid density 

𝜎: Electrical conductivity. 

Subscripts 

∞: Free stream condition 

𝑤: Properties at the plate 
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