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Abstract: The dynamics of Casson nanofluid with chemically reactive and thermally conducting
medium past an elongated sheet was investigated in this work. Partial differential equations were used
in the flow model (PDEs). The governing equations can be converted into system of ordinary
differential equations. Using the R-K method and shooting techniques, the altered equations were
numerically resolved. The impact of relevant flow factors was depicted using graphs while
computations on engineering quantities of interest are tabulated. The velocity profiles were observed
to degrade when the visco-inelastic parameter (Casson) and magnetic parameter (M) were set to a
higher value. An increase in magnetic specification's value has been observed to decrease the
distribution of velocity. A huge M value originates the Lorentz force which can degenerate the motion
of an electrically conducting fluids. Physically, the multiplication of electrical conductivity (¢) and
magnetic force's magnitude possess electromagnetic force which drag back the fluid motion. As a
result, as Gm rises, the mass buoyancy force rises, causing the velocity distribution to widen. The
contributions of variable thermal conductivity and variable diffusion coefficient on temperature and
concentration contours respectively have been illustrated. The boundary layer distributions degenerate
as the unsteadiness parameter (A) is increased. The outcomes of this agrees with previous outcomes.



20525

Keywords: MHD; porous medium; PDE; casson fluid; thermal radiation; chemical reaction
Mathematics Subject Classification: 76A05, 76M30, 35Q35

1. Introduction

The importance of non-Newtonian fluid boundary layer flow in industrial applications has lately
piqued the interest of significant scholars.The rheological equations for this sort of fluid are typically
complex, posing a number of obstacles for engineers and scientists to solve. The Casson fluid (visco-
inelastic) have received greater attention among all other non-Newtonian fluids. It is a visco-inelastic
fluid having yield stress which classify Casson fluid as blood. Therefore, the non-Newtonian nature of
fluids is due to yield stress. The applications of such fluids are seen in food processing, polymer
processing and many more. In 2015, Mahanta and Shaw [1] explored the analysis of Casson fluid flow
in three dimensions that passes through a penetrable linearly stretching sheet. Kataria and Patel [2]
reported Casson fluid movement with contributions from the radiation mode of heat transmission as
well as chemical reactions through an oscillating vertical lamina. Ramana Reddy et al. [3] probed the
Casson and also Maxwell fluids in the midst of cross diffusionand a heat source/sink thatisn't uniform.
Awais et al. [4] recently examined the dynamics of Casson fluid motion through penetrable channel.
By altering the thermal conductivity and viscosity of fluids, Idowu and Falodun [5] emphasized on the
simultaneous flow of fluids such as Casson and Walters-B.

Magnetohydrodynamics (MHD) has high significance in MHD pumps, astrophysical plasmas,
MHD meters to name few. Inthe same vein, MHD is proved to be affective in diagnostics of diseases
which makes it to step into bio-engineering applications. Shanmugapriya et al. [6] examined the
enhancement of MHD hybrid nanofluid motion together with activation energy. Panigrahi et al. [7]
studied MHD Casson nanofluids dynamics in a porous channel. Bhattacharyya [8] researched the
MHD stagnation-point involving Casson fluid motion past an extendable membrane subjected to
electromagnetic radiation.Waleligh et al. [9] examined dynamics of MHD Casson nanofluid past an
inclined stretchable cylinder with chemically reactive and thermally radiative effects. Mat Noor et al. [10]
delved into squishing action of Jeffrey nanofluid in MHD along a horizontal axis. Mahabaleshwar
et al. [11] took up the MHD non-Newtonian nanofluid flow as well as the study of mass transfer as a
result of super-linear strecthable lamina. Wang et al. [12] assessed the magnetohydrodynamics of a
Williamson nanofluid flowing on top of a thin elastic lamina. [13] investigated the dynamics of
nanofluids on electrically conducting fluids using the Soret-Dufour mechanism. A study of Kalteh [14]
examined nanoparticle and base fluid types. The study concluded that the heat transport coefficient is
highest forwateralumina/water nanoliquid particle magnitude on thermal conductivity. Jin-Kyeong [15]
examined the impact of nanoparticles in bubble absorption and its activeness in a binary fluid. The
impact of thermophoresis on nanoparticle distribution has been investigated by Bahiraei [16]. It was
found out in the study that the presence of large particles gives non-uniformity in concentration
distribution. Seferis et al. [17] studied Grain's size together with the shape reliance of luminescence
efficiency. The method of sedimentation was used, and the rod similar grain screens show together
with areduction in efficiency of luminescence values. The recent exploration of Bowers [18] presented
the heat transport behavior of nanofluids flows in microchannels. It was found out in their study that
much viscosity of nanofluids in comparison to water, power pumping which is required in the driving
flow of nanofluid in microchannels elevate. Krishna et al. [19] researched thermal transport in an
unsteady state of Powell-Eyring fluid through a sloped elastic membrane. Mahato et al. [20] presented
an analytical study on the effects of Hall current, magnetic field, and chemical change on an unsteady
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MHD free convection heat and mass transmission of viscous incompressible, electrically conducting
Casson fluid past a virtually unlimited vertical channel with heat source and sink. Kumar et al. [21]
discussed dual formulations of Williamson fluid MHD flow across a curvy membrane. Musa et al. [22]
explored the unsteady magnetohydrodynamics flow of nanofluids in the presence of heat radiation and
chemical reactivity with variable fluid properties past an angled elastic membrane. Alghamdi et al. [23]
looked at the Beale-kato-majda’s criterion for magnetohydrodynamic equations with zero viscosity.
Sunthrayuth et al. [24] by considering an unsteady MHD flow for fractional Casson channel fluid in a
porous medium: An application of the Caputo-Fabrizio time-fractional derivative. Zhang et al. [25]
evaluated the heat transport phenomena for the Darcy-Forchheimer flow of Casson fluid over
stretching sheets with electro-osmosis forces and Newtonian heating. Computational modelling of
multiphase fluid flow behaviour over a stretching sheet in the presence of nanoparticles was studied
by Rabbi et al. [26]. Khan et al. [27] considered the numerical simulation of a non-linear nanofluidic
model to characterize the MHD chemically reactive flow past an inclined stretching surface. [28]
explored the multiple slip effects on unsteady MHD Casson nanofluid flow over a porous stretching
sheet. [29] claimed an explicit finite difference analysis of an unsteady MHD flow of a chemically
reacting Casson fluid past a stretching sheet with Brownian motion and thermophoresis effects.

The present paper deals with end results of radiation produced by electromagnetic waves on
unsteady transportation of both heat and mass of Casson fluid with persistant viscosity along with
viscous dissipation, a magnetic field,and buoyancy forces. Upon extensive literature survey it has been
found that very few researchers worked on the present problem. Effects of elecromagnetic radiation
and viscous dispersion has numerous applications in industrial engineering such as separation of
isotopes, heat exchangers, petroleum reservoirs etc. Due to these applications, hence the need for this
study.

2. Mathematical formulation

Consider a permeable angular elongated porous sheet with an unstable 2-directional laminar
boundary layer of viscous incompressible MHD Casson fluid movement. Elastic sheet with holes and
concentration of chemical species are considered and observed that heat is supplied by these to Casson
nanofluid uniformly. The density variation with temperature and concentration is assumed to influence
only the body force term. Thus, buoyancy forces aroused by the changes in temperature and
concentration. Porous stretching sheet is subjected to uniform magnetic field normal to its surface.
Another assumption made is with respect to the chemical reaction that is of homogeneous first order
type with electromagnetic radiation happening in the move. It is presumed that (x, t) is the velocity of
the porous elongated lamina acting along x-axis same as the direction of the force applied and vw(t) is
transfer of mass acting in the normal direction to the porous stretching lamina as shown in the physical
model in Figure 1. Also, assumed that T(x, t) be the surface temperature, C(x, t) be the sheet
concentration, T« be the uniform temperature at a far-off distance from the lamina and C be the
concentration considered at an appreciable distance away from the sheet. The fluid thermal properties
such as conductivity as well as diffusivity are supposed to change linearly with temperature at the
molecular level.
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Figure 1. Physical geometry of the problem.

The mathematical expression for the Casson fluid is:
P
2 (,uB +—\/£)eu,n > 1,
7, = : @)
2 (,uB + —\/L)el],n <m,

where T represents the (i, j)th stress tensor component, ., stands for synthetic absolute viscosity of
non-Newtonian fluid, P, indicates fluid’s yield stress, and 7 indicates the component of deformation

rate multiplied by itself that is laid down as 7 =€;€;, and &; stands for the (i, j) component of

deformation rate, and 7 is taken as the critical value of 77 based on a non-Newtonian model created.

The governing equations for Boussinesq and flow separation approximations were indeed specified by
Egs (2) to (5), that are based on above assertions [23]:

ou ov
—+—=0, (2)
OX oy
2 2
%+ug—i+v%=v(1+%]%_{aso+%}u+[gﬂr(T—Tw)+gﬂC(C—Cw)]cosa, 3)
2 2
LTI I 612'_ £ [1+£](8_uj __1 % (4)
ot ox oy pCpoy” pCp B\ oy pCp oy
2
@+u§ o« =D,, oc —-Ke(C-C,). 5)
ot OX 8y ay
The boundary constraints are defined as in (6):
At —0{— (x,t) = =v, (), T=T,+—— bx c=C_+ bx
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and as
y—oou—-0T->T,C-C, (6)
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where time is symbolized by t, whilst velocity components in the x-y plane are denoted by uand v and
S is Casson fluid parameter. K represents porous medium specification, g stands for gravity
acceleration, p stands for fluid density, and v is fluid kinematic viscosity, o represents electrical
conductivity, a is thermal conductivity, T represents fluid temperature, C denotes fluid concentration,
and Cp standsfor specific heat at constant pressure. Dw is factor of molecular diffusion, Kr is chemical
reaction parameter.

The vitality condition (4) can be reduced by employing the Rosseland dispersion approach for the
radiative flux as [13]:

4o*oT*

d, =T 3r Y (7

here o* is Stefan-Boltzmann consistent and k* is the mean ingestion. If the temperature distinct inside
the stream is very small, expanding T# in Taylor’s approach around T, while higher terms are avoided,

T =4T°T 3T, 8)
Heat flux can be estimated as
16T 3> oT
G = A ©)
3k* oy

With the help of Eq (9), the energy equation (4) can appear as

orT oT T «x 0T u 1(au) 1 16T 0" \o°T
—+U—+V—= >+ I+— || —| + -
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The below mentioned similarity transformation was initiated to reduce the mathematical analysis:

C Ve T-T, C-C, _
1= o Y Y g W 3 e T ) @

(10)

w

by using the similarity transformation equation (11) for a nonlinear ordinary differential equations
(ODE) system, the governing equations (3), (5), and (10) are transcribed in a non-dimensional form:

(1+871) £"—05Apf"+[A+K+M]f'+(f') - ff"—Gro—Gmg, (12)
(1+R) 6" ~Pr| A(059)0'+2A0+ 110 f6'~Ec(1+ 57)(1")' |=0, (13)
¢"—Sc| A(0.57)¢' +(2A+Kr+ f)p—f4]=0. (14)

The corresponding dimensionless form of boundary conditions are given by the equation:
f=S, f'=1 6=1 ¢=1 at n=0

15
f">0, 6500 as n—owo (15)

where S, A, K, M, Gr, Gm, Pr, R, Kr, Ec, and Sc are the Casson fluid parameter, unsteadiness
parameter, porous medium parameter, magnetic parameter, thermal Grashof number, solutal or
concentration Grashof number, Prandtl number, thermal radiation parameter, chemical reaction
parameter, Eckert number, and the Schmidt number, respectively.
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The skin-friction coefficient, Nusselt number (Nu), and Sherwood number (Sh) are the three basic
physical characteristics that are taken into account:

_ MU | ou _| X« (ol _| XDy [ oC
Cf*‘ﬁ[pui{aylo}m {ﬁ(ayjyjﬁh {ﬁ[ay]} =

Substituting Eq (11) into (16) to obtain the final dimensional form:
C,=f ”(O), Nu = —6?’(0),Sh = —¢5’(0) 17)

2
where Re, =% stands for local Reynolds number, Cs is the local skin friction, Nu is the local

v(1-1t)
Nusselt number and Sh is the local Sherwood number.

The dynamic of fluid parcels is described with the help of Newton’s second law. An accelerating
parcel of fluid is subject to inertial effects. The Reynolds number is a dimensionless quantity which
characterizes the magnitude of inertial effects compared to the magnitude of viscous effects. A low
Reynolds number (Re<«1) indicates that viscous forces are very strong compared to inertial forces. In
such cases, inertial forces are sometimes neglected; this flow regime is called Stokes. In contrast, high
Reynolds numbers (Re>>1) indicate that the inertial effects have more effect on the velocity field than
the viscous effects. In high Reynolds number flows, the flow is often modeled as an inviscid flow, an
approximation in which viscosity is completely neglected. Eliminating viscosity allows the Navier-
Stokes equations to be simplified into the Euler equations. The integration of the Euler equations along
a streamline in an inviscid flow yield Bernoulli’s equation. When, in addition to being inviscid, the
flow is irrotational everywhere, Bernoulli’s equation can completely describe the flow everywhere.
Such flows are called potential flows, because the velocity field may be expressed as the gradient of a
potential energy expression. This idea can work fairly well when the Reynolds number is high.
However, problems such as those involving solid boundaries may require that the viscosity be included.
Viscosity cannot be neglected near solid boundaries because the no-slip condition generates a thin
region of large strain rate, the boundary layer, in which viscosity effects dominate and which thus
generates vorticity. Therefore, to calculate net forces on bodies (such as wings), viscous flow equations
must be used: Inviscid flow theory fails to predict drag forces, a limitation known as the d’Alembert’s
paradox. A commonly used model, especially in computational fluid dynamics, is to use two flow
models: The Euler equations away from the body, and boundary layer equations in a region close to
the body. The two solutions can then be matched with each other, using the method of matched
asymptotic expansions.

3. Numerical solution of the problem

To solve the system of ordinary differential equations (12)—(14) with their corresponding initial
and boundary conditions (15) numerically, the domain [0, «) has been substituted by the bounded
domain [0, 1] where 7. Is a suitable finite real number that should be chosen in such a way that the

AIMS Mathematics Volume 7, Issue 12, 20524-20542.


https://en.wikipedia.org/wiki/Reynolds_number
https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Inviscid_flow
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Euler_equations_(fluid_dynamics)
https://en.wikipedia.org/wiki/Lamellar_field
https://en.wikipedia.org/wiki/Potential_flow
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/No-slip_condition
https://en.wikipedia.org/wiki/Boundary_layer
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Vorticity
https://en.wikipedia.org/wiki/Drag_(physics)
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Boundary_layer
https://en.wikipedia.org/wiki/Method_of_matched_asymptotic_expansions
https://en.wikipedia.org/wiki/Method_of_matched_asymptotic_expansions

20530

solution satisfies the domain. Also (12)—(14) form a highly nonlinear coupled initial boundary value
problem of third and second order ordinary differential equations. For this reason, (12)—(14) have been
reduced to a system of seven initial problems of the first order of seven unknowns following the
supposition in:

f=f.f =f@).f =f3)0=f(4.0=f(5).¢=/[(6).9 =f. (18)

Thus, we develop the most effective numerical shooting technique in line with the fourth order Runge-
Kutta method. To solve this system, we require seven initial conditions whereas we have only four
initial conditions for f(0), f'(0),6(0) and ¢(0), while the other three f”"(0),6'(0) and ¢'(0)and
¢(0), were not given; hence, we employ numerical shooting technique where these three initial
conditions are guessed to produce the required three ending boundary conditions. The step size
A7 =0.001 is used to obtain the numerical solution with six decimals (1><107%) as a criterion of

convergence.
4. Results and discussion

This study examined heat and mass transportation's impacts on the movement of MHD Casson
nanofluid with variable properties. The transformed equations (12)—(14) with the associated boundary
conditions in Eq (15) has been mathematically resolved by utilizing the Runge-Kutta techniques along
with the shooting techniques. All flow parameters' contributions such as unsteadiness parameter (A),
Casson parameter (), magnetic specification (M), radiative Grashof number (Gr), mass Grashof
number (Gm), Prandtl number (Pr) and so on are represented using graphs.

Figure 2 depicts, how the Casson parameter () affects the velocity contour. The velocity
distributions are observed to decrease as the () value increases. This is true because the moment ()
enlarges, the yield stress Py of the Casson fluid parameter () degenerates that lead to improve plastic
dynamic fluid flow rate. As the plastic absolute viscosity increases, it causes fluid flow resistance by
reducing the velocity contour. Figures 3-5 describes the extent of unsteadiness variable (A) on the
flow speed, temperature, and concentration proportions. A spike in the unsteadiness variable causes a
reduction in flow speed, temperature, and concentration proportions. The yield exhibiting Casson
nanofluid dominate viscosity which is accountable for the degeneration of fluid flow speed,
temperature, and concentration contours. Physically, significant amount of A leads to the degradation
of boundary layers thickness.

Figure 6 depicts the implications of a porous medium specification (K) on velocity contour. A
rise in (K), the porous medium specification is noticed to cause reduction in fluid velocity contour. A
random mixing of the Casson nanoparticles together with the imposed magnetic field strength causes
the penetration of fluids to be very slow. Physically, the porous medium allows the passage of fluid
particles within the boundary layer but plastic dynamic viscosity of the yield exhibiting fluid slows
down its motion. Figure 7 indicates outcome of magnetic specification on velocity contour. An
increase in magnetic specification’s value has been observed to decrease the distribution of velocity.
A huge M value originates the Lorentz force which can degenerate the motion of an electrically
conducting fluids. Physically, the multiplication of electrical conductivity (o) and magnetic force’s
magnitude possess electromagnetic force which drag back the fluid motion.
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In Figure 8, the contribution of the radiative Grashof number (Gr) to the flow speed contour is
shown. The fluid velocity profile is improved by an improvement in Gr. By increasing the velocity
contour, the buoyancy force acts on the fluid, causing a rapid flow within the layer. The contribution
of the mass Grashof (Gc) on the flow speed contour is seen in Figure 9. A significant amount of Gm
causes the flow speed contour to accelerate. In the model, the mass Grashof number is physically
responsible for mass transfer. As a result, as Gc rises, the mass buoyancy force rises, causing the
velocity distribution to widen.
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The function of Prandtl number (Pr) on the temperature contour is seen in Figure 10. The
temperature distributions degenerate as the value of Pr rises significantly. Pr is noted to be the inverse
of thermal diffusivity in the model of heat transfer. When Prandtl number, Pr<<1 it shows that thermal
conductivity manages the nature of flow while Pr>>1 means momentum diffusivity command the flow.
Figure 11 outlines the impact of the Eckert number on temperature profiles. The temperature contour
is lowered as Ec rises. Because of the plastic dynamic viscosity and magnetic field strength, this is
true. The significance of Schmidt number (Sc) as well as the chemical change parameter (Kr) on the
concentration proportion is shown in Figurers 12 and 13. A substantial amount of both Sc and Kr

AIMS Mathematics Volume 7, Issue 12, 20524-20542.



20535

degenerates the concentration contours. Figure 14 highlights the influence of electromagnetic radiation
variable (R) on the temperature distributions. A large R value appears to raise the fluid temperature.
This aids the fluid's thermal state and has uses in thermal engineering. Figure 15 shows the flow chart
for implementing the numerical technique.
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Figure 11. Impact of Eckert number on temperature profiles.
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Figure 14. Influence of radiant heat variable on the temperature contour.
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Figure 15. Flow chart of the problem.

In order to validate our modern-day consequences and to determine the accuracy of the existing
evaluation, comparisons with to be had results of the skin friction coefficient for the unsteady flow of
viscous incompressible Newtonian fluid are finished. In Table 1, we compare our results of the skin
friction coefficient generated by way of Chamkha et al. [30] and Mabood et al. [31]. In this desk, we
examine that there may be an extraordinary agreement among our effects, and those look at on this
table that the skin friction coefficient increases with the increasing values of the stretching parameter.
In Table 2, we observe that there is an excellent agreement among our present consequences with the
ones previously received by using Mabood and Das [32] and Mabood et al. [31]. We also observe in
this table that, because the magnetic parameter M will increase, the pores and skin friction substantially
increase due to the Lorentz drag pressure resulting from electromagnetism increases.
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Table 1. Comparison of —f"(0) for various values of A when S =M =Gr =Gm=0.

A Chamkha et al. [30] Fazle Mabood et al. [31] Present
0.8 1.261512 1.261042 1.261044
1.2 1.378052 1.377724 1.377827

Table 2. Comparison of —f "(O) for various values of M when S=A=0.

M Mabood and Das et al [32] Fazle Mabood et al. [31] Present

0 -1.000008 -1.0000084 -1.0000079
1 1.4142135 1.41421356 1.41213494
5 2.4494897 2.44948974 2.44948975
10 3.3166247 3.31662479 3.31662480

5. Conclusions

Heat and mass are examined for transport of MHD Casson nanofluid movement by considering
constant physical properties past a stretchable sheet has been explored in this paper. The flow is
stretchable within the boundary layer through the penetrable medium. The present outcomes portray
that constant viscosity and thermal conductivity elevates thermal buoyancy force. The Runge-Kutta
technique alongside shooting method is found to be efficient because it solves the highly nonlinear
differential equations numerically. The following are the key findings:

(i)
(i)

(iii)

(iv)
v)

A large value of the visco-inelastic parameter (B) is found to degenerates the velocity
profile.

The Lorentz force is constructed by the applied field of attraction. The Lorentz force gains
its strength when the magnetic specification is increased, giving rise to the electromagnetic
force.

Raising the unsteadiness parameter (A) causes the velocity, temperature, and concentration
proportions to degenerate.

By raising the temperature contour, a boost in thermal radiation variable raises the fluid
thermal condition.

An improvement of Schmidt number (Sc) and chemical change variable is found to
degenerate fluid concentration.
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Nomenclature

x: Coordinate along the stretching sheet

y: Distance normal to the stretching sheet
c: Initial stretching rate

b: Constants

t: Time

u: Velocity along the x— direction

v: Velocity along the y— direction

uw(x, t): Velocity of the stretching sheet
vw(t): Velocity of the mass transfer

F: Force applied along the x— axis

Tw(x, t): Temperature of the sheet at the wall
Cw(x, t): Concentration of the fluid at the wall
T: Uniform temperature far from the sheet
Cw: Uniform concentration far from the sheet
Bo: Magnetic induction

Cp: Specific heat at constant pressure

Kr: Chemical reaction parameter

Ec: Eckert number

Sc: Schmidt number

Cf: Skin friction coefficient

Nux: Nusselt number

Shx: Sherwood number

qw: Heat flux

Rex: Reynolds number

K: Thermal conductivity

D: Molecular diffusivity

T: Temperature of the species

C: Concentration of the species

g: Acceleration due to gravity

qr: Radiation heat flux

Vo: Constant

K«: Thermal conductivity of the ambient
Dw: Diffusion coefficient of the ambient
M: Magnetic parameter

A: Unsteadiness parameter

Gr: Thermal Grashof number

Gc: Solutal or concentration Grashof number
Pr: Prandtl number

R: Thermal Radiation parameter

S: Suction/Injection parameter.

Greek Symbols

a: Inclination angle

A: Constant

. Stream function
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o*: Stefan- Boltzmann constant

B1: Variable thermal conductivity

B2: Variable diffusion coefficient

Tw: Shear stress

K: Porous medium parameter

v: Kinematic viscosity

u: Coefficient of viscosity

¢: Dimensionless concentration function
pr: Coefficient of thermal expansion

Bc: Volumetric concentration coefficient
6: Dimensionless temperature function
n: Dimensionless space variable

p: Fluid density

o: Electrical conductivity.

Subscripts

o: Free stream condition

w: Properties at the plate
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