In this article, we solved pantograph delay differential equations by utilizing an efficient numerical technique known as Chebyshev pseudospectral method. In Caputo manner fractional derivatives are taken. These types of problems are reduced to linear or nonlinear algebraic equations using the suggested approach. The proposed method's convergence is being studied with particular care. The suggested technique is effective, simple, and easy to implement as compared to other numerical approaches. To prove the validity and accuracy of the presented approach, we take two examples. The solutions we obtained show greater accuracy as compared to other methods. Furthermore, the current approach can be implemented for solving other linear and nonlinear fractional delay differential equations, owing to its innovation and scientific significance.
Citation: M. Mossa Al-Sawalha, Azzh Saad Alshehry, Kamsing Nonlaopon, Rasool Shah, Osama Y. Ababneh. Fractional view analysis of delay differential equations via numerical method[J]. AIMS Mathematics, 2022, 7(12): 20510-20523. doi: 10.3934/math.20221123
In this article, we solved pantograph delay differential equations by utilizing an efficient numerical technique known as Chebyshev pseudospectral method. In Caputo manner fractional derivatives are taken. These types of problems are reduced to linear or nonlinear algebraic equations using the suggested approach. The proposed method's convergence is being studied with particular care. The suggested technique is effective, simple, and easy to implement as compared to other numerical approaches. To prove the validity and accuracy of the presented approach, we take two examples. The solutions we obtained show greater accuracy as compared to other methods. Furthermore, the current approach can be implemented for solving other linear and nonlinear fractional delay differential equations, owing to its innovation and scientific significance.
[1] | M. A. M. Mu'lla, Fractional calculus, fractional differential equations and applications, Open Access Libr. J., 7 (2020), e6244. https://doi.org/10.4236/oalib.1106244 doi: 10.4236/oalib.1106244 |
[2] | F. Mainardi, Fractional calculus: Theory and applications, Mathematics, 6 (2018), 145. https://doi.org/10.3390/math6090145 doi: 10.3390/math6090145 |
[3] | V. V. Kulish, J. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 (2002), 803–806. https://doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062 |
[4] | N. Engheta, On fractional calculus and fractional multipoles in electromagnetism, IEEE T. Antenn. Propag., 44 (1996), 554–566. https://doi.org/10.1109/8.489308 doi: 10.1109/8.489308 |
[5] | K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012 |
[6] | R. L. Bagley, P. J. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA J., 23 (1985), 918–925. https://doi.org/10.2514/3.9007 doi: 10.2514/3.9007 |
[7] | F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004 |
[8] | K. A. Lazopoulos, Non-local continuum mechanics and fractional calculus, Mech. Res. Commun., 33 (2006), 753–757. https://doi.org/10.1016/j.mechrescom.2006.05.001 doi: 10.1016/j.mechrescom.2006.05.001 |
[9] | C. Lederman, J. Roquejoffre, N. Wolanski, Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames, Ann. Mat. Pura Appl., 183 (2004), 173–239. https://doi.org/10.1007/s10231-003-0085-1 doi: 10.1007/s10231-003-0085-1 |
[10] | J. H. He, Nonlinear oscillation with fractional derivative and its applications, Dalian: International Conference on Vibrating Engineering, 1998,288–291. |
[11] | E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of the fractional-order Navier-Stokes equations by a novel approach, J. Funct. Spaces, 2022, (2022), 8979447. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447 |
[12] | O.P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38 (2004), 323–337. https://doi.org/10.1007/s11071-004-3764-6 doi: 10.1007/s11071-004-3764-6 |
[13] | N. A. Shah, E. R. El-Zahar, A. Akgül, A. Khan, J. Kafle, Analysis of fractional-order regularized long-wave models via a novel transform, J. Funct. Spaces, 2022 (2022), 2754507. https://doi.org/10.1155/2022/2754507 doi: 10.1155/2022/2754507 |
[14] | A. A. Alderremy, S. Aly, R. Fayyaz, A. Khan, R. Shah, N. Wyal, The analysis of fractional-order nonlinear systems of third order KdV and Burgers equations via a novel transform, Complexity, 2022 (2022), 4935809. https://doi.org/10.1155/2022/4935809 doi: 10.1155/2022/4935809 |
[15] | K. Nonlaopon, A. M. Alsharif, A. M. Zidan, A. Khan, Y. S. Hamed, R. Shah, Numerical investigation of fractional-order Swift-Hohenberg equations via a novel transform, Symmetry, 13 (2021), 1263. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263 |
[16] | M. K. Alaoui, R. Fayyaz, A. Khan, R. Shah, M. S. Abdo, Analytical investigation of noyes-field model for time-fractional belousov-zhabotinsky reaction, Complexity, 2021 (2021), 3248376. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376 |
[17] | J. T. Edwards, N. J. Ford, A. C. Simpson, The numerical solution of linear multi-term fractional differential equations: Systems of equations, J. Comput. Appl. Math., 148 (2002), 401–418. https://doi.org/10.1016/s0377-0427(02)00558-7 doi: 10.1016/s0377-0427(02)00558-7 |
[18] | R. Garrappa, Numerical solution of fractional differential equations: A survey and a software tutorial, Mathematics, 6 (2018), 16. https://doi.org/10.3390/math6020016 doi: 10.3390/math6020016 |
[19] | S. Esmaeili, M. Shamsi, Y. Luchko, Numerical solution of fractional differential equations with a collocation method based on Muntz polynomials, Comput. Math. Appl., 62 (2011), 918–929. https://doi.org/10.1016/j.camwa.2011.04.023 doi: 10.1016/j.camwa.2011.04.023 |
[20] | A. S. Alshehry, M. Imran, R. Shah, W. Weera, Fractional-view analysis of Fokker-Planck equations by ZZ transform with Mittag-Leffler Kernel, Symmetry, 14 (2022), 1513. https://doi.org/ 10.3390/sym14081513 doi: 10.3390/sym14081513 |
[21] | J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. R. Soc. A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078 |
[22] | M. Dehghan, F. Shakeri, The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics, Phys. Scr., 78 (2008), 065004. https://doi.org/10.1088/0031-8949/78/06/065004 doi: 10.1088/0031-8949/78/06/065004 |
[23] | C. M. Pappalardo, M. C. De Simone, D. Guida, Multibody modeling and nonlinear control of the pantograph/catenary system, Arch. Appl. Mech., 89 (2019), 1589–1626. https://doi.org/10.1007/s00419-019-01530-3 doi: 10.1007/s00419-019-01530-3 |
[24] | D. F. Li, C. J. Zhang, Long time numerical behaviors of fractional pantograph equations, Math. Comput. Simulat., 172 (2020), 244–257. https://doi.org/10.1016/j.matcom.2019.12.004 doi: 10.1016/j.matcom.2019.12.004 |
[25] | A. S. Alshehry, M. Imran, A. Khan, R. Shah, W. Weera, Fractional view analysis of Kuramoto-Sivashinsky equations with non-singular Kernel operators, Symmetry, 14, (2022), 1463. https://doi.org/10.3390/sym14071463 doi: 10.3390/sym14071463 |
[26] | K. Z. Guan, Q. S. Wang, Asymptotic behavior of solutions of a nonlinear neutral generalized pantograph equation with impulses, Math. Slovaca, 65 (2015), 1049–1062. https://doi.org/10.1515/ms-2015-0072 doi: 10.1515/ms-2015-0072 |
[27] | P. Rahimkhani, Y. Ordokhani, E. Babolian, Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet, J. Comput. Appl. Math., 309 (2017), 493–510. https://doi.org/10.1016/j.cam.2016.06.005 doi: 10.1016/j.cam.2016.06.005 |
[28] | C. Q. Yang, J. H. Hou, X. G. Lv, Jacobi spectral collocation method for solving fractional pantograph delay differential equations, Eng. Comput., 38 (2020), 1985–1994. https://doi.org/10.1007/s00366-020-01193-7 doi: 10.1007/s00366-020-01193-7 |
[29] | H. Dehestani, Y. Ordokhani, M. Razzaghi, Numerical technique for solving fractional generalized pantograph-delay differential equations by using fractional-order hybrid bessel functions, Int. J. Appl. Comput. Math., 6 (2020), 9. https://doi.org/10.1007/s40819-019-0756-2 doi: 10.1007/s40819-019-0756-2 |
[30] | K. Rabiei, Y. Ordokhani, Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials, Eng. Comput., 35 (2018), 1431–1441. https://doi.org/10.1007/s00366-018-0673-8 doi: 10.1007/s00366-018-0673-8 |
[31] | M. S. Hashemi, A. Atangana, S. Hajikhah, Solving fractional pantograph delay equations by an effective computational method, Math. Comput. Simulat., 177 (2020), 295–305. https://doi.org/10.1016/j.matcom.2020.04.026 doi: 10.1016/j.matcom.2020.04.026 |
[32] | L. Shi, X. H. Ding, Z. Chen, Q. Ma, A new class of operational matrices method for solving fractional neutral pantograph differential equations, Adv. Differ. Equ., 2018 (2018), 94. https://doi.org/10.1186/s13662-018-1536-8 doi: 10.1186/s13662-018-1536-8 |
[33] | B. Yuttanan, M. Razzaghi, T. N. Vo, A fractional-order generalized Taylor wavelet method for nonlinear fractional delay and nonlinear fractional pantograph differential equations, Math. Method. Appl. Sci., 44 (2021), 4156–4175. https://doi.org/10.1002/mma.7020 doi: 10.1002/mma.7020 |
[34] | I. Ahmed, P. Kumam, K. Shah, P. Borisut, K. Sitthithakerngkiet, M. A. Demba, Stability results for implicit fractional pantograph differential equations via $\phi$-Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, Mathematics, 8 (2020), 94. https://doi.org/10.3390/math8010094 doi: 10.3390/math8010094 |
[35] | P. Sunthrayuth, R. Ullah, A. Khan, R. Shah, J. Kafle, I. Mahariq, et al., Numerical analysis of the fractional-order nonlinear system of Volterra integro-differential equations, J. Funct. Spaces, 2021 (2021), 1537958. https://doi.org/10.1155/2021/1537958 doi: 10.1155/2021/1537958 |
[36] | J. P. Boyd, Spectral methods in fluid dynamics (C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang), SIAM Rev., 30 (1988), 666–668. https://doi.org/10.1137/1030157 doi: 10.1137/1030157 |
[37] | G. M. Zaslavsky, Book Review: "Theory and applications of fractional differential equations" by Anatoly A. Kilbas, Hari M. Srivastava and Juan J. Trujillo, Fractals, 15 (2007), 101–102. https://doi.org/10.1142/s0218348x07003447 doi: 10.1142/s0218348x07003447 |
[38] | A. Kadem, D. Baleanu, Analytical method based on Walsh function combined with orthogonal polynomial for fractional transport equation, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 491–501. https://doi.org/10.1016/j.cnsns.2009.05.024 doi: 10.1016/j.cnsns.2009.05.024 |
[39] | H. Jafari, M. Mahmoudi, M. H. N. Skandari, A new numerical method to solve pantograph delay differential equations with convergence analysis, Adv. Differ. Equ., 2021 (2021), 129. https://doi.org/10.1186/s13662-021-03293-0 doi: 10.1186/s13662-021-03293-0 |
[40] | T. Akkaya, S. Yalcinbas, M. Sezer, Numeric solutions for the pantograph type delay differential equation using first Boubaker polynomials, Appl. Math. Comput., 219 (2013), 9484–9492. https://doi.org/10.1016/j.amc.2013.03.021 doi: 10.1016/j.amc.2013.03.021 |
[41] | B. Benhammouda, H. Vazquez-Leal, L. Hernandez-Martinez, Procedure for exact solutions of nonlinear pantograph delay differential equations, J. Adv. Math. Comput. Sci., 4 (2014), 2738–2751. https://doi.org/10.9734/bjmcs/2014/11839 doi: 10.9734/bjmcs/2014/11839 |
[42] | I. Ali, H. Brunner, T. Tang, A Spectral method for pantograph-type delay differential equations and its convergence analysis, J. Comput. Math., 27 (2009), 254–265. |
[43] | H. Jafari, M. Mahmoudi, M. H. N. Skandari, A new numerical method to solve pantograph delay differential equations with convergence analysis, Adv. Differ. Equ., 2021 (2021), 129. https://doi.org/10.1186/s13662-021-03293-0 doi: 10.1186/s13662-021-03293-0 |
[44] | Y. Muroya, E. Ishiwata, H. Brunner, On the attainable order of collocation methods for pantograph integro-differential equations, J. Comput. Appl. Math., 152 (2003), 347–366. https://doi.org/10.1016/s0377-0427(02)00716-1 doi: 10.1016/s0377-0427(02)00716-1 |
[45] | M. Sezer, S. Yalcinbas, M. Gulsu, A Taylor polynomial approach for solving generalized pantograph equations with nonhomogenous term, Int. J. Comput. Math., 85 (2008), 1055–1063. https://doi.org/10.1080/00207160701466784 doi: 10.1080/00207160701466784 |