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Abstract: In this article, we solved pantograph delay differential equations by utilizing an efficient
numerical technique known as Chebyshev pseudospectral method. In Caputo manner fractional
derivatives are taken. These types of problems are reduced to linear or nonlinear algebraic equations
using the suggested approach. The proposed method’s convergence is being studied with particular
care. The suggested technique is effective, simple, and easy to implement as compared to other
numerical approaches. To prove the validity and accuracy of the presented approach, we take
two examples. The solutions we obtained show greater accuracy as compared to other methods.
Furthermore, the current approach can be implemented for solving other linear and nonlinear fractional
delay differential equations, owing to its innovation and scientific significance.
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1. Introduction

Fractional calculus (FC) is considered to be the generalization of integer order derivative and
integral to arbitrary order and was originated at the end of the seventeenth century from the letter
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among the mathematicians Leibniz and L’Hospital in 1695, see [1, 2] for more details. Fractional
calculus can be viewed as one of the extensions of ordinary classical calculus. For a long time, scientists
and engineers have been interested in fractional calculus, resulting in many physical and engineering
processes. FC has played a significant role in different areas. It becomes a vital tool for finding
the solutions to many problems relating to fluid mechanics [3], electromagnetism [4, 5], visco-elastic
materials [6], propagation of spherical flames [7], continuum and statistical mechanics [8], dynamics
of viscoelastic materials [9], earthquakes [10], signal processing [11], control [12], etc.

FC has been utilized in real-world modeling applications and is proved to be well explained by
fractional differential equations (FDEs). FDEs in mathematical models have become increasingly
popular in recent years. Most of the phenomena in nature are described by nonlinear differential
equations [13–16]. The nonlinear equations represent the world’s most significant occurring
phenomena. Manipulating nonlinear phenomenons is of great importance in physics, applied
mathematics, and problems associated with engineering [17, 18]. As a result, FDEs must be solved
analytically or numerically to solve these problems. Since most FDEs analytical solution does not
exist, mathematicians have tried to develop successful numerical approaches for solving them [19,20].
Among the FDEs, fractional delay differential equations (FDDEs) are a type of differential equation
that includes time delay. The manner of the variable determines the behavior of the unknown variable
in these types of equations at any given time at past states, and there is a kind of time delay in the
system. Nowadays, researchers gained more attention from FDDEs than simple FDEs because a little
delay has a significant effect. The concept of PDDEs arises from work [21] for an electric locomotive.
The pantograph term was derived due to the accident of pantograph devices for duplicating, drawing,
and writing [22] and many applications [23–26].

Many researchers have looked into the solution of fractional pantograph delay differential equations
(FPDDEs) numerically due to their emergence and numerous applications. The well-known among
these methods are mentioned: We want to mention some well-known techniques. In [27], generalized
fractional Bernoulli wavelet functions (GFBWFs) constructed on the Bernoulli wavelets are used to
solve FPDDEs numerically. Changqing Yang et al. [28] solved FPDDEs using the Jacobi collocation
method. For handling FPDDEs, the authors proposed fractional hybrid Bessel functions (FHBFs)
built by the combination of fractional Bessel functions and block-pulse functions [29]. To achieve the
numerical result for FPDDEs, fractional Boubaker polynomials were used [30]. M. S. Hashemia et
al. [31] implemented the Generalized squared remainder minimization method [GSRM] for solving
FPDDEs. In [32], a new fractional integration operational matrices method was implemented to
solve a class of neutral pantograph delay differential equations with fractional order. To solve the
FPDDEs numerically, fractional-order generalized Taylor wavelets (FOGTW) are proposed in [33].
Furthermore, Schaefer’s and Banach fixed point theorems [34] prove Implicit FPDDEs existence and
uniqueness. The problem’s Ulam-Hyers and generalized Ulam-Hyers stability are also defined.

In this article, we solve a class of FPDDEs by using Chebyshev pseudospectral method. The
suggested technique can be applied all FDDEs. We focus on FPDDE of the form

Dγ
µζ(µ) = f (µ, ζ(µ), ζ(g(µ))), 0 < µ ≤ 1, m < γ ≤ m + 1, m = 1, 2, 3, . . . (1.1)

having initial conditions

ζ(0) = α0, ζ′′(0) = α1, (1.2)
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where α0, α1 are real constants, Dγ
µζ(µ) represents the fractional Caputo derivative of ζ(µ), f and g are

well-defined functions.

2. Preliminaries

In this section, we present FC basic definitions used in our present study.

Definition 2.1. A function ζ(µ), µ > 0 is assumed to be in Cν, ν ∈ R space for a real number p > ν with
ζ(µ) = µpζ1(µ), where ζ1(µ) ∈ [0,∞) and will be in Cκν space if and only if ζ(κ) ∈ Cν, κ ∈ N.

Definition 2.2. The Caputo fractional derivative having order γ is stated as [35]

Dγζ(µ) =
1

Γ(κ − γ)

∫ µ

0
(µ − ϑ)κ−γ−1ζ(κ)(ϑ)dϑ (2.1)

for κ − 1 < γ ≤ κ, κ ∈ N, µ > 0 and ζ ∈ Cm
−1.

We have the Caputo derivative [35]

DγC = 0, where C is a constant; (2.2)

Dγu℘ =

0, for ℘ ∈ N0 and ℘ < dγe;
Γ(℘+1)

Γ(℘+1−γ)u
℘−γ, for ℘ ∈ N0 and ℘ ≥ dγe,

(2.3)

where the ceiling function dγe denotes the lowest integer equal to or greater than γ and N0 = 1, 2, . . . .

Definition 2.3. The fractional Riemann-Liouville integral operator is stated as [35]

Iγζ(µ) =
1

Γ(γ)

∫ µ

0
(µ − ϑ)γ−1ζ(ϑ)dϑ (2.4)

having the following properties:

DγIγζ(µ) = ζ(µ),

IγDγζ(µ) = ζ(µ) −
κ−1∑
k=0

ζ(k)(0+)
k!

µk, µ ≥ 0, κ − 1 < γ < κ.

3. Implementation of Chebyshev series expansion to derive a fractional derivatives

The renowned Chebyshev polynomials are well-define over the interval [−1, 1] and can be defined
by recurrence formulae as [36, 37]

W j+1(µ) = 2µW j(µ) −W j−1(µ), j = 1, 2, . . . , (3.1)

where W0(µ) = 1 and W1(µ) = µ. The analytical form of Chebyshev polynomial having degree j is
as [37]

W j(µ) =
j
2

b j/2c∑
r=0

(−1)r ( j − r − 1)!
r!( j − 2r)!

(2µ) j−2r. (3.2)
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Now, by using the above polynomials in the [0, 1] interval, we describe the Chebyshev shifted
polynomials Ŵ j(µ). The Chebyshev polynomials W j(µ) are determined as [37]

Ŵ j(µ) = W j(2µ − 1) (3.3)

with recurrence formula are as follow

Ŵ j+1(µ) = 2(2µ − 1)Ŵ j(µ) − Ŵ j−1(µ), j = 1, 2, . . . (3.4)

with Ŵ0(µ) = 1 and Ŵ1(µ) = 2µ − 1. The orthogonality condition is [38]

∫ 1

0

Ŵ j(µ)Ŵk(µ)√
µ − µ2

dµ =


0, for m , j;
π
2 , for m = j , 0;
π, for m = j = 0.

(3.5)

Thus, by utilizing the renowned relation

Ŵ j(µ) = W2n
(√
µ
)
. (3.6)

Using (3.2) to obtain shifted Chebyshev polynomials analytical form considering order j:

Ŵ j(µ) =

j∑
r=0

(−1)r22 j−2r j(2 j − r − 1)!
r!(2 j − 2r)!

(2x) j−2r. (3.7)

A function ζ(µ) ∈ L2[0, 1] may be explained in manner of Chebyshev shifted polynomials as

ζ(µ) =

∞∑
j=1

c jŴ j(µ) (3.8)

and the coefficients c j, j = 1, 2, . . . are described as

c0 =
1
π

∫ 1

0

f (µ)Ŵ0(µ)√
µ − µ2

dµ and cn =
2
π

∫ 1

0

f (µ)Ŵ j(µ)√
µ − µ2

dµ. (3.9)

Hence, simply the first (m + 1)-terms are considered. Thus

ζm(µ) =

m∑
j=0

c jŴ j(µ). (3.10)

4. Theorems

The error in determining ζ(µ) by the summation of the first m terms is restricted by the summation
of the absolute values of whole ignored coefficients.
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Theorem 4.1. If

ζm(µ) =

m∑
k=0

ckWk(µ), (4.1)

then for all ζ(µ), all m and all µ ∈ [−1, 1], we get

EW(m) = |ζ(µ) − ζm(µ)| ≤
∞∑

j=m+1

|cn|. (4.2)

Proof. For any µ ∈ [−1, 1] and all k, the Chebyshev polynomials are bounded by 1, |Wk(µ)| ≤ 1.
The kth term is therefore constrained by |ck|. By deducting the reduced series from the infinite series,
bounding every term in the difference and adding the bounds, the theorem can be obtained. �

The fundamental approximation formula for the fractional derivative of ζ(µ) is provided by the
given theorem.

Theorem 4.2. Let the Chebyshev polynomials estimate ζ(µ) as in (3.10) with γ > 0. Then, we have

Dγ(ζm(µ)) =

m∑
j=dγe

n−dγe∑
r=0

c jb
γ
j,rµ

j−r−γ, (4.3)

where bγj,r is given by

bγj,r = (−1)r22 j−2r j(2 j − r − 1)!( j − r)!
r!(2 j − 2r)!Γ( j − r + 1 − γ)

. (4.4)

Proof. As fractional Caputo differentiation is a linear process, thus

Dγ(ζm(µ)) =

m∑
j=0

cnDγ(Ŵ j(µ)). (4.5)

Now, to calculate Dγ(Ŵ j(µ)), employing (2.2) and (2.3) to (3.7):

Dγ(Ŵ j(µ)) =

j∑
r=0

(−1)r22 j−2r j(2 j − r − 1)!
r!(2 j − 2r)!

Dγ(µ) j−r, (4.6)

where j = dγe, dγ + 1e, . . . ,m. Given that Ŵ j(µ) is a polynomial of degree j, we have

Dγ(Ŵ j(µ)) = 0 (4.7)

for all j = 0, 1, 2, . . . , dγe − 1 and γ > 0. The outcome of combining (4.5)–(4.7) is as follows:

Dγ(ζm(µ)) =

m∑
j=dγe

n−dγe∑
r=0

c j(−1)r22 j−2r j(2 j − r − 1)!( j − r)!
r!(2 j − 2r)!Γ( j − r + 1 − γ)

µ j−r−γ

=

m∑
j=dγe

n−dγe∑
r=0

c jb
γ
j,rµ

j−r−γ, (4.8)

which is the desired result. �
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5. Chebyshev collocation method

In this section, we discuss the solution of FPDDE (1.1) having boundary conditions (1.2) by means
of Chebyshev collocation method. To attain this goal, we estimated ζ(µ) as

ζm(µ) =

m∑
j=0

c jŴ j(µ) (5.1)

By means of Theorem 4.2 and (1.1), (5.1) we get

m∑
j=dγe

n−dγe∑
r=0

c jb
γ
j,rµ

j−2r−γ = F

µ, m∑
j=0

c jŴ j(µ),
m∑

j=0

c jŴ j(g(µ))

 (5.2)

for 0 < µ < 1 and m + 1 < γ < m.
Thus, we collocate (5.2) at µp points as p = 0, 1, 2, . . . ,m − dγe :

m∑
j=dγe

n−dγe∑
r=0

c jb
γ
j,rµ

j−2r−γ
p = F

µp,

m∑
j=0

c jŴ j(µp),
m∑

j=0

c jŴ j(g(µp))

 (5.3)

for p = 0, 1, · · ·m − dγe and m + 1 < γ < m.
Now, by substituting (5.1) in (1.2), we get the following dγe equations:

m∑
i=0

(−1)ici = α0,

m∑
i=0

ci = α1. (5.4)

Thus, we get (m + 1 − dγe) algebraic equations from (5.3) and (dγe) algebraic equations from (5.4)
for the unknowns c j, j = 0, 1, 2, . . . ,m which can be solved to calculate ζm(µ).

6. Numerical implementation

In this section, we implemented the suggested approach for solving two problems. The proposed
problems results are compared with other techniques. All the computational work is done through
maple.

Example 1. Consider the following PDDE of the form [39]

Dγ
µζ(µ) =

1
2
ζ(qµ) − ζ(µ) −

1
2

exp (−qµ) , 0 ≤ µ ≤ R, 0 < γ ≤ 1, 0 < q ≤ 1 (6.1)

with initial condition ζ(0) = 1.
The problem accurate solution for γ = 1 is

ζ(µ) = exp (−µ) .

The exact and proposed method solution for q = 0.5 and m = 8 are shown in Figure 1. Similarly,
Figure 2 shows the solution graph of the suggested approach at different fractional-orders. Table 1
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illustrates the behavior of exact, CPM solution with the aid of absolute error for Example 1. In Table 2,
we give the absolute error comparison with the technique in [39, 40] at q = 0.5 and q = 0.99. Also,
at q = 1, we compared our solution with the Runge-Kutta method, Taylor polynomial approach and
Boubaker matrix method in Table 3. From both the tables it is clear that the error of the presented
method is less than that of others which confirms that CPM approaches fast as compared to other
methods.

Figure 1. The exact and CPM solutions at m = 8 for Example 1.

Figure 2. The Example 1 solution graph at different fractional orders.
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Table 1. Behavior of exact, CPM solution along with absolute error for Example 1.

µ Exact CPM CPM Error
0 1.00000000000000 1.00000000000000 0.0000000000E+00
0.1 0.90483741803482 0.90483741803596 1.1326881600E-12
0.2 0.81873075302927 0.81873075307798 4.8707551100E-11
0.3 0.74081822032894 0.74081822068171 3.5277246821E-10
0.4 0.67032004486301 0.67032004603563 1.1726267785E-09
0.5 0.60653065730985 0.60653065971263 2.4027784946E-09
0.6 0.54881163270937 0.54881163609402 3.3846474234E-09
0.7 0.49658530034770 0.49658530379141 3.4437015128E-09
0.8 0.44932896119523 0.44932896411722 2.9219862717E-09
0.9 0.40656965663434 0.40656965974059 3.1062560826E-09
1.0 0.36787943966839 0.36787944117144 1.5030479540E-09

Table 2. The absolute error comparison for Example 1.
m Technique in [42] Technique in [42] Technique in [43] Technique in [43] CPM for CPM for

for q = 0.5 for q = 0.99 q = 0.5 q = 0.99 q = 0.5 q = 0.99
6 1.351E-4 7.362E-7 3.5007E-8 3.7109E-8 1.6458E-10 1.6598E-10
8 1.102E-6 1.891E-9 5.0088E-10 8.8818E-16 1.1327E-12 1.1518E-12
10 5.662E-9 3.598E-12 3.2419E-14 4.6384E-8 3.6180E-15 3.6878E-15
14 1.854E-13 4.442E-16 0.00 3.8858E-16 3.00E-20 2.00E-20
16 5.552E-16 4.442E-16 5.8842E-15 3.9413E-15 0.00 0.00

Table 3. The absolute error comparison for Example 1 at q = 1.

µ Runge-Kutta Taylor polynomial Boubaker matrix CPM
method (q = 1) [44] approach [45] method [40]

2−1 0.5000E-5 0.1000E-9 1.2000E-9 1.5600E-12
2−2 0.1870E-6 0.2000E-9 9.1000E-10 2.9150E-13
2−3 0.6430E-8 0.2000E-9 1.0000E-9 1.1830E-14
2−4 0.2100E-9 0.2000E-9 1.0000E-9 2.8200E-16
2−5 0.6700E-11 0.1000E-9 9.0000E-10 5.3700E-18
2−6 0.210E-12 0.000000 1.0000E-9 8.0000E-20

Example 2. Consider the following PDDE of the form [41]

Dγ
µζ(µ) = −ζ(µ) + 5ζ2

(
µ

2

)
, µ ≥ 0, 1 < γ ≤ 2 (6.2)

having initial conditions ζ(0) = 1 and ζ′(0) = −2.
The problem accurate solution for γ = 2 is

ζ(µ) = exp (−2µ) .

The accurate and proposed method solution at m = 12 are illustrated in Figure 3. Table 4 illustrates
accurate solution, CPM solution and CPM absolute error at m = 12. Similarly, Figure 4 illustrates the
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solution graph of the presented approach at different fractional-orders. From the Figures, it is observed
that as the value of m increases, the absolute error tends to zero. It has been noted that the results of
the suggested approach are more favourable for this example.

Figure 3. The exact and CPM solutions at m = 8 for Example 2.

Table 4. Behavior of Exact, CPM solution along with absolute error for Example 2.

µ Exact CPM CPM Error
0 1.00000000000000 1.00000000000000 0.0000000000E+00
0.1 0.81873075307800 0.81873075307798 1.9310670000E-14
0.2 0.67032004603683 0.67032004603563 1.1963473900E-12
0.3 0.54881163610331 0.54881163609402 9.2906713200E-12
0.4 0.44932896414715 0.44932896411722 2.9930749730E-11
0.5 0.36787944123109 0.36787944117144 5.9648713620E-11
0.6 0.30119421200338 0.30119421191220 9.1182147850E-11
0.7 0.24659696406387 0.24659696394160 1.2226468655E-10
0.8 0.20189651814768 0.20189651799465 1.5302873585E-10
0.9 0.16529888840530 0.16529888822158 1.8372224028E-10
1.0 0.13533528345066 0.13533528323661 2.1405679253E-10
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Figure 4. The Example 2 solution graph at various fractional orders.

7. Conclusions

In this article, we implemented Chebyshev pseudospectral method to solve FPDDEs. The Caputo
derivative was approximated by a Chebyshev series expansion formula. Chebyshev polynomials
features are used to convert DFDEs into easily solvable linear or nonlinear algebraic equations. The
methodology is simple to use and has a higher rate of convergence than previous approaches. Some
problems are solved to demonstrate the efficacy of the current approach. The obtained solutions are
compared to other approaches such as the Runge-Kutta method, Taylor polynomial approach, and
Boubaker matrix method were used to compare our results. CPM has greater accuracy than any of
these approaches, as illustrated by comparison. CPM, on the other hand, can be easily implemented to
various fractional delay or non-delay physics and real-life scientific models.
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