In this paper, we study a uniqueness question of meromorphic functions concerning fixed points and mainly prove the following theorem: Let $ f $ and $ g $ be two nonconstant meromorphic functions, let $ n, k $ be two positive integers with $ n > 3k+10.5-\Theta_{\min}(k+6.5) $, if $ \Theta_{\min}\geq \frac{2.5}{k+6.5} $, otherwise $ n > 3k+8 $, and let $ (f^{n})^{(k)} $ and $ (g^{n})^{(k)} $ share $ z $ CM, $ f $ and $ g $ share $ \infty $ IM, then one of the following two cases holds: If $ k = 1 $, then either $ f(z) = c_{1}e^{cz^{2}} $, $ g(z) = c_{2}e^{-cz^{2}} $, where $ c_{1}, c_{2} $ and $ c $ are three constants satisfying $ 4n^{2}(c_{1}c_{2})^{n}c^{2} = -1 $, or $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $; if $ k\geq2 $, then $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $. Our results extend and improve some results due to [
Citation: Jinyu Fan, Mingliang Fang, Jianbin Xiao. Uniqueness of meromorphic functions concerning fixed points[J]. AIMS Mathematics, 2022, 7(12): 20490-20509. doi: 10.3934/math.20221122
In this paper, we study a uniqueness question of meromorphic functions concerning fixed points and mainly prove the following theorem: Let $ f $ and $ g $ be two nonconstant meromorphic functions, let $ n, k $ be two positive integers with $ n > 3k+10.5-\Theta_{\min}(k+6.5) $, if $ \Theta_{\min}\geq \frac{2.5}{k+6.5} $, otherwise $ n > 3k+8 $, and let $ (f^{n})^{(k)} $ and $ (g^{n})^{(k)} $ share $ z $ CM, $ f $ and $ g $ share $ \infty $ IM, then one of the following two cases holds: If $ k = 1 $, then either $ f(z) = c_{1}e^{cz^{2}} $, $ g(z) = c_{2}e^{-cz^{2}} $, where $ c_{1}, c_{2} $ and $ c $ are three constants satisfying $ 4n^{2}(c_{1}c_{2})^{n}c^{2} = -1 $, or $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $; if $ k\geq2 $, then $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $. Our results extend and improve some results due to [
[1] | W. Bergweiler, A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoam., 11 (1995), 355–373. https://doi.org/10.4171/RMI/176 doi: 10.4171/RMI/176 |
[2] | S. S. Bhoosnurmath, R. S. Dyavanal, Uniqueness and value-sharing of meromorphic functions, Comput. Math. Appl., 53 (2007), 1191–1205. https://doi.org/10.1016/j.camwa.2006.08.045 doi: 10.1016/j.camwa.2006.08.045 |
[3] | J. Clunie, On a result of Hayman, J. London Math. Soc., s1-42 (1967), 389–392. https://doi.org/10.1112/jlms/s1-42.1.389 doi: 10.1112/jlms/s1-42.1.389 |
[4] | H. H. Chen, M. L. Fang, The value distribution of $f^{n}f'$, Sci. China Ser., 38 (1995), 789–798. |
[5] | H. H. Chen, Yosida functions and Picard values of integral functions and their derivatives, Bull. Aust. Math. Soc., 54 (1996), 373–381. https://doi.org/10.1017/S000497270002178X doi: 10.1017/S000497270002178X |
[6] | G. Frank, Eine Vermutung von Hayman $\ddot{u}ber$ Nullstellen meromorpher Funktionen, Math. Z., 149 (1976), 29–36. https://doi.org/10.1007/BF01301627 doi: 10.1007/BF01301627 |
[7] | M. L. Fang, X. H. Hua, Entire functions that share one value, J. Nanjing Univ., 13 (1996), 44–48. |
[8] | M. L. Fang, H. L. Qiu, Meromorphic functions that share fixed-points, J. Math. Anal. Appl., 268 (2002), 426–439. https://doi.org/10.1006/jmaa.2000.7270 doi: 10.1006/jmaa.2000.7270 |
[9] | M. L. Fang, Uniqueness and value-sharing of entire functionss, Comput. Math. Appl., 44 (2002), 823–831. https://doi.org/10.1016/S0898-1221(02)00194-3 doi: 10.1016/S0898-1221(02)00194-3 |
[10] | W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math., 70 (1959), 9–42. https://doi.org/10.2307/1969890 doi: 10.2307/1969890 |
[11] | W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964. |
[12] | W. Hennekemper, $\ddot{U}ber$ die Werteverteilung von $(f^{k+1})^{(k)}$, Math. Z., 177 (1981), 375–380. https://doi.org/10.1007/BF01162069 doi: 10.1007/BF01162069 |
[13] | G. Hennekemper, W. Hennekemper, Picard's exceptional values of derivatives of certain meromorphic functions, Complex Var. Theory Appl., 5 (1985), 87–93. |
[14] | I. Laine, Nevanlinna theory and complex differential equations, Berlin: De Gruyter, 1993. https://doi.org/10.1515/9783110863147 |
[15] | J. Langley, Zeros of derivatives of meromorphic functions, Comput. Methods Funct. Theory, 10 (2010), 421–439. https://doi.org/10.1007/BF03321774 doi: 10.1007/BF03321774 |
[16] | E. Mues, $\ddot{U}ber$ ein problem von Hayman, Math. Z., 164 (1979), 239–259. https://doi.org/10.1007/BF01182271 doi: 10.1007/BF01182271 |
[17] | Y. F. Wang, On Mues' conjecture and Picard values, Sci. China Ser., 36 (1993), 28–35. |
[18] | Y. F. Wang, M. L. Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sin., 14 (1998), 17–26. https://doi.org/10.1007/BF02563879 doi: 10.1007/BF02563879 |
[19] | J. F. Xu, F. $L\ddot{u}$, H. X. Yi, Fixed-points and uniqueness of meromorphic functions, Comput. Math. Appl., 59 (2010), 9–17. https://doi.org/10.1016/j.camwa.2009.07.024 doi: 10.1016/j.camwa.2009.07.024 |
[20] | C. C. Yang, On deficiencies of differential polynomials Ⅱ, Math. Z., 125 (1972), 107–112. https://doi.org/10.1007/BF01110921 doi: 10.1007/BF01110921 |
[21] | L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1993. https://doi.org/10.1007/978-3-662-02915-2 |
[22] | C. C. Yang, X. H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22 (1997), 395–406. |
[23] | C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Academic Publishers Group, Dordrecht, 2003. |
[24] | J. L. Zhang, Uniqueness theorems for entire functions concerning fixed points, Comput. Math. Appl., 56 (2008), 3079–3087. https://doi.org/10.1016/j.camwa.2008.07.006 doi: 10.1016/j.camwa.2008.07.006 |