Research article

Uniqueness of meromorphic functions concerning fixed points

  • Received: 15 July 2022 Revised: 26 August 2022 Accepted: 02 September 2022 Published: 19 September 2022
  • MSC : 30D35

  • In this paper, we study a uniqueness question of meromorphic functions concerning fixed points and mainly prove the following theorem: Let $ f $ and $ g $ be two nonconstant meromorphic functions, let $ n, k $ be two positive integers with $ n > 3k+10.5-\Theta_{\min}(k+6.5) $, if $ \Theta_{\min}\geq \frac{2.5}{k+6.5} $, otherwise $ n > 3k+8 $, and let $ (f^{n})^{(k)} $ and $ (g^{n})^{(k)} $ share $ z $ CM, $ f $ and $ g $ share $ \infty $ IM, then one of the following two cases holds: If $ k = 1 $, then either $ f(z) = c_{1}e^{cz^{2}} $, $ g(z) = c_{2}e^{-cz^{2}} $, where $ c_{1}, c_{2} $ and $ c $ are three constants satisfying $ 4n^{2}(c_{1}c_{2})^{n}c^{2} = -1 $, or $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $; if $ k\geq2 $, then $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $. Our results extend and improve some results due to [8,9,19,24].

    Citation: Jinyu Fan, Mingliang Fang, Jianbin Xiao. Uniqueness of meromorphic functions concerning fixed points[J]. AIMS Mathematics, 2022, 7(12): 20490-20509. doi: 10.3934/math.20221122

    Related Papers:

  • In this paper, we study a uniqueness question of meromorphic functions concerning fixed points and mainly prove the following theorem: Let $ f $ and $ g $ be two nonconstant meromorphic functions, let $ n, k $ be two positive integers with $ n > 3k+10.5-\Theta_{\min}(k+6.5) $, if $ \Theta_{\min}\geq \frac{2.5}{k+6.5} $, otherwise $ n > 3k+8 $, and let $ (f^{n})^{(k)} $ and $ (g^{n})^{(k)} $ share $ z $ CM, $ f $ and $ g $ share $ \infty $ IM, then one of the following two cases holds: If $ k = 1 $, then either $ f(z) = c_{1}e^{cz^{2}} $, $ g(z) = c_{2}e^{-cz^{2}} $, where $ c_{1}, c_{2} $ and $ c $ are three constants satisfying $ 4n^{2}(c_{1}c_{2})^{n}c^{2} = -1 $, or $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $; if $ k\geq2 $, then $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $. Our results extend and improve some results due to [8,9,19,24].



    加载中


    [1] W. Bergweiler, A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoam., 11 (1995), 355–373. https://doi.org/10.4171/RMI/176 doi: 10.4171/RMI/176
    [2] S. S. Bhoosnurmath, R. S. Dyavanal, Uniqueness and value-sharing of meromorphic functions, Comput. Math. Appl., 53 (2007), 1191–1205. https://doi.org/10.1016/j.camwa.2006.08.045 doi: 10.1016/j.camwa.2006.08.045
    [3] J. Clunie, On a result of Hayman, J. London Math. Soc., s1-42 (1967), 389–392. https://doi.org/10.1112/jlms/s1-42.1.389 doi: 10.1112/jlms/s1-42.1.389
    [4] H. H. Chen, M. L. Fang, The value distribution of $f^{n}f'$, Sci. China Ser., 38 (1995), 789–798.
    [5] H. H. Chen, Yosida functions and Picard values of integral functions and their derivatives, Bull. Aust. Math. Soc., 54 (1996), 373–381. https://doi.org/10.1017/S000497270002178X doi: 10.1017/S000497270002178X
    [6] G. Frank, Eine Vermutung von Hayman $\ddot{u}ber$ Nullstellen meromorpher Funktionen, Math. Z., 149 (1976), 29–36. https://doi.org/10.1007/BF01301627 doi: 10.1007/BF01301627
    [7] M. L. Fang, X. H. Hua, Entire functions that share one value, J. Nanjing Univ., 13 (1996), 44–48.
    [8] M. L. Fang, H. L. Qiu, Meromorphic functions that share fixed-points, J. Math. Anal. Appl., 268 (2002), 426–439. https://doi.org/10.1006/jmaa.2000.7270 doi: 10.1006/jmaa.2000.7270
    [9] M. L. Fang, Uniqueness and value-sharing of entire functionss, Comput. Math. Appl., 44 (2002), 823–831. https://doi.org/10.1016/S0898-1221(02)00194-3 doi: 10.1016/S0898-1221(02)00194-3
    [10] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math., 70 (1959), 9–42. https://doi.org/10.2307/1969890 doi: 10.2307/1969890
    [11] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
    [12] W. Hennekemper, $\ddot{U}ber$ die Werteverteilung von $(f^{k+1})^{(k)}$, Math. Z., 177 (1981), 375–380. https://doi.org/10.1007/BF01162069 doi: 10.1007/BF01162069
    [13] G. Hennekemper, W. Hennekemper, Picard's exceptional values of derivatives of certain meromorphic functions, Complex Var. Theory Appl., 5 (1985), 87–93.
    [14] I. Laine, Nevanlinna theory and complex differential equations, Berlin: De Gruyter, 1993. https://doi.org/10.1515/9783110863147
    [15] J. Langley, Zeros of derivatives of meromorphic functions, Comput. Methods Funct. Theory, 10 (2010), 421–439. https://doi.org/10.1007/BF03321774 doi: 10.1007/BF03321774
    [16] E. Mues, $\ddot{U}ber$ ein problem von Hayman, Math. Z., 164 (1979), 239–259. https://doi.org/10.1007/BF01182271 doi: 10.1007/BF01182271
    [17] Y. F. Wang, On Mues' conjecture and Picard values, Sci. China Ser., 36 (1993), 28–35.
    [18] Y. F. Wang, M. L. Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sin., 14 (1998), 17–26. https://doi.org/10.1007/BF02563879 doi: 10.1007/BF02563879
    [19] J. F. Xu, F. $L\ddot{u}$, H. X. Yi, Fixed-points and uniqueness of meromorphic functions, Comput. Math. Appl., 59 (2010), 9–17. https://doi.org/10.1016/j.camwa.2009.07.024 doi: 10.1016/j.camwa.2009.07.024
    [20] C. C. Yang, On deficiencies of differential polynomials Ⅱ, Math. Z., 125 (1972), 107–112. https://doi.org/10.1007/BF01110921 doi: 10.1007/BF01110921
    [21] L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1993. https://doi.org/10.1007/978-3-662-02915-2
    [22] C. C. Yang, X. H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22 (1997), 395–406.
    [23] C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Academic Publishers Group, Dordrecht, 2003.
    [24] J. L. Zhang, Uniqueness theorems for entire functions concerning fixed points, Comput. Math. Appl., 56 (2008), 3079–3087. https://doi.org/10.1016/j.camwa.2008.07.006 doi: 10.1016/j.camwa.2008.07.006
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1361) PDF downloads(88) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog