
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(12): 20490–20509.
DOI: 10.3934/math.20221122
Received: 15 July 2022
Revised: 26 August 2022
Accepted: 02 September 2022
Published: 19 September 2022

Research article

Uniqueness of meromorphic functions concerning fixed points

Jinyu Fan, Mingliang Fang* and Jianbin Xiao

Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, China

* Correspondence: Email: mlfang@hdu.edu.cn.

Abstract: In this paper, we study a uniqueness question of meromorphic functions concerning fixed
points and mainly prove the following theorem: Let f and g be two nonconstant meromorphic func-
tions, let n, k be two positive integers with n > 3k + 10.5 − Θmin(k + 6.5), if Θmin ≥

2.5
k+6.5 , otherwise

n > 3k + 8, and let ( f n)(k) and (gn)(k) share z CM, f and g share ∞ IM, then one of the following two
cases holds: If k = 1, then either f (z) = c1ecz2

, g(z) = c2e−cz2
, where c1, c2 and c are three constants

satisfying 4n2(c1c2)nc2 = −1, or f = tg for a constant t such that tn = 1; if k ≥ 2, then f = tg for a
constant t such that tn = 1. Our results extend and improve some results due to [8, 9, 19, 24].
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1. Introduction and main results

In this paper, a meromorphic function always means meromorphic in the whole complex
plane. We use the following standard notations in value distribution theory, see [11, 14, 21, 23]:
T (r, f ),N(r, f ),m(r, f ), · · · .

We denote by S (r, f ) any quantity satisfying S (r, f ) = o(T (r, f )) as r → ∞ possible outside of an
exceptional set E ∈ (0,+∞) with finite logarithmic measure

∫
E

dr/r < ∞.
Let f and g be two nonconstant meromorphic functions. Define

Θ(∞, f ) = 1 − lim
r→∞

N(r, f )
T (r, f )

.

Similarly, we have the notation Θ(∞, g). Let Θmin = min{Θ(∞, f ),Θ(∞, g)}.
A meromorphic function α is said to be a small function of f if it satisfies T (r, α) = S (r, f ). Let

α be a small function of both f and g. If f − α and g − α have the same zeros counting multiplicities
(ignoring multiplicities), then we call that f and g share α CM (IM). Let N0(r, α, f , g) be counting
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function of common zeros of both f −α and g−αwith counting multiplicities. If N
(
r, 1

f−α

)
+N

(
r, 1

g−α

)
−

2N0(r, α, f , g) ≤ S (r, f ) + S (r, g), then we call that f and g share α CM almost.
Let f and g be two nonconstant meromorphic functions, and let f and g share 1 IM almost. We

denote by NL

(
r, 1

f−1

)
the counting function for 1-points of both f and g about which f has larger

multiplicity than g, with multiplicity being not counted. Similarly, we have the notation NL

(
r, 1

g−1

)
.

Especially, if f and g share 1 CM, then NL

(
r, 1

f−1

)
= NL

(
r, 1

g−1

)
= 0.

We denote by N(k(r, f ) the counting function for poles of f with multiplicity≥ k, and by N(k(r, f )
the corresponding one for which multiplicity is not counted. Set Nk(r, f ) = N(r, f ) + N(2(r, f ) + · · · +
N(k(r, f ).

Hayman [10], Clunie [3], Mues [16], Bergweiler and Eremenko [1], Chen and Fang [4] proved the
following theorem.

Theorem A. [1, 4] Let f be a transcendental meromorphic function, and let n be a positive integer.
Then f n(z) f ′(z) = 1 has infinitely many solutions.

Fang and Hua [7], Yang and Hua [22] obtained a unicity theorem corresponding to Theorem A.
Theorem B. [22] Let f and g be two nonconstant meromorphic (entire) functions, and let n ≥ 11

(n ≥ 6) be a positive integer. If f n f ′ and gng′ share 1 CM, then either f (z) = c1ecz, g(z) = c2e−cz, where
c1, c2 and c are three constants satisfying (c1c2)n+1c2 = −1, or f = tg for a constant t such that tn+1 = 1.

Fang and Qiu [8] extended Theorem B and proved the following theorem.
Theorem C. Let f and g be two nonconstant meromorphic (entire) functions, and let n ≥ 11 (n ≥ 6)

be a positive integer. If f n f ′ and gng′ share z CM, then either f (z) = c1ecz2
, g(z) = c2e−cz2

, where c1, c2

and c are three constants satisfying 4(c1c2)n+1c2 = −1, or f = tg for a constant t such that tn+1 = 1.
Hennekemper [12], Hennekemper et al. [13], Chen [5], Wang [17], Wang and Fang [18] extended

Theorem A by proving the following theorem.
Theorem D. [18] Let f be a transcendental entire function, and let n, k be two positive integers

with n ≥ k + 1. Then ( f n(z))(k) = 1 has infinitely many solutions.
Naturally, we pose the following problem.
Problem 1. Does there exist a corresponding unicity theorem to Theorem D?
Fang [9] studied this problem and proved the following result.
Theorem E. Let f and g be two nonconstant entire functions, and let n, k be two positive integers

with n > 2k + 4. If ( f n)(k) and (gn)(k) share 1 CM, then either f (z) = c1ecz, g(z) = c2e−cz, where c1, c2

and c are three constants satisfying (−1)k(c1c2)n(nc)2k = 1, or f = tg for a constant t such that tn = 1.
For meromorphic functions, Bhoosnurmath and Dyavanal [2] proved the following theorem.
Theorem F. Let f and g be two nonconstant meromorphic functions, and let n, k be two positive

integers with n > 3k + 8. If ( f n)(k) and (gn)(k) share 1 CM, then either f (z) = c1ecz, g(z) = c2e−cz, where
c1, c2 and c are three constants satisfying (−1)k(c1c2)n(nc)2k = 1, or f = tg for a constant t such that
tn = 1.

But there exists a gap in the proof of [2], which can be found in the appendix at the end of this
paper. Up to now, we don’t know whether Theorem F is valid or not.

In this paper, we extend Theorem E and prove the following results.
Theorem 1. Let f and g be two nonconstant meromorphic functions, and let n, k be two positive

integers with n > 3k + 8 −Θmin(k + 4), if Θmin ≥
2

k+4 , otherwise n > 3k + 6. If ( f n)(k) and (gn)(k) share 1
CM, f and g share ∞ IM, then either f (z) = c1ecz, g(z) = c2e−cz, where c1, c2 and c are three constants
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satisfying (−1)k(c1c2)n(nc)2k = 1, or f = tg for a constant t such that tn = 1.
Corollary 2. Let n, k be two positive integers with n > 2k + 4, and let f and g be two nonconstant

meromorphic functions such thatΘmin >
k+3
k+4 . If ( f n)(k) and (gn)(k) share 1 CM, f and g share∞ IM, then

either f (z) = c1ecz, g(z) = c2e−cz, where c1, c2 and c are three constants satisfying (−1)k(c1c2)n(nc)2k =

1, or f = tg for a constant t such that tn = 1.
Theorem 3. Let f and g be two nonconstant meromorphic functions, and let n, k be two positive

integers with n > 3k + 6 −Θmin(k + 2), if Θmin ≥
1

k+2 , otherwise n > 3k + 5. If ( f n)(k) and (gn)(k) share 1
CM, f and g share∞ CM, then either f (z) = c1ecz, g(z) = c2e−cz, where c1, c2 and c are three constants
satisfying (−1)k(c1c2)n(nc)2k = 1, or f = tg for a constant t such that tn = 1.

Corollary 4. Let n, k be two positive integers with n > 2k + 4, and let f and g be two nonconstant
meromorphic functions such thatΘmin >

k+1
k+2 . If ( f n)(k) and (gn)(k) share 1 CM, f and g share∞CM, then

either f (z) = c1ecz, g(z) = c2e−cz, where c1, c2 and c are three constants satisfying (−1)k(c1c2)n(nc)2k =

1, or f = tg for a constant t such that tn = 1.
From Corollary 2 or Corollary 4, we get Theorem E.
In 2009, Zhang [24] studied the case of entire functions sharing fixed points and proved the follow-

ing theorem.
Theorem G. Let f and g be two nonconstant entire functions, let n, k be two positive integers

with n > 2k + 4, and let ( f n)(k) and (gn)(k) share z CM, then one of the following two cases holds:
If k = 1, then either f (z) = c1ecz2

, g(z) = c2e−cz2
, where c1, c2 and c are three constants satisfying

4n2(c1c2)nc2 = −1, or f = tg for a constant t such that tn = 1; if k ≥ 2, then f = tg for a constant t such
that tn = 1.

Xu et al. [19] studied the case of meromorphic functions.
Theorem H. Let f and g be two nonconstant meromorphic functions, and let n, k be two positive

integers with n > 3k+10. If ( f n)(k) and (gn)(k) share z CM, f and g share∞ IM, then either f (z) = c1ecz2
,

g(z) = c2e−cz2
, where c1, c2 and c are three constants satisfying 4n2(c1c2)nc2 = −1, or f = tg for a

constant t such that tn = 1.
Naturally, we ask the following problem.
Problem 2. In Theorem H, is n > 3k + 10 the best possibility?
In this paper, we study Problem 2 and prove the following results.
Theorem 5. Let f and g be two nonconstant meromorphic functions, let n, k be two positive

integers with n > 3k + 10.5 − Θmin(k + 6.5), if Θmin ≥
2.5

k+6.5 , otherwise n > 3k + 8, and let ( f n)(k) and
(gn)(k) share z CM, f and g share∞ IM, then one of the following two cases holds: If k = 1, then either
f (z) = c1ecz2

, g(z) = c2e−cz2
, where c1, c2 and c are three constants satisfying 4n2(c1c2)nc2 = −1, or

f = tg for a constant t such that tn = 1; if k ≥ 2, then f = tg for a constant t such that tn = 1.
Corollary 6. Let n, k be two positive integers with n > 2k + 4, let f and g be two nonconstant

meromorphic functions such that Θmin >
k+5.5
k+6.5 , and let ( f n)(k) and (gn)(k) share z CM, f and g share ∞

IM, then one of the following two cases holds: If k = 1, then either f (z) = c1ecz2
, g(z) = c2e−cz2

, where
c1, c2 and c are three constants satisfying 4n2(c1c2)nc2 = −1, or f = tg for a constant t such that tn = 1;
if k ≥ 2, then f = tg for a constant t such that tn = 1.

Theorem 7. Let f and g be two nonconstant meromorphic functions, let n, k be two positive
integers with n > 3k + 9 − Θmin(k + 5), if Θmin ≥

2
k+5 , otherwise n > 3k + 7 , and let ( f n)(k) and (gn)(k)

share z CM, f and g share ∞ CM, then one of the following two cases holds: If k = 1, then either
f (z) = c1ecz2

, g(z) = c2e−cz2
, where c1, c2 and c are three constants satisfying 4n2(c1c2)nc2 = −1, or
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f = tg for a constant t such that tn = 1; if k ≥ 2, then f = tg for a constant t such that tn = 1.
Corollary 8. Let n, k be two positive integers with n > 2k + 4, let f and g be two nonconstant

meromorphic functions such that Θmin >
k+4
k+5 , and let ( f n)(k) and (gn)(k) share z CM, f and g share ∞

CM, then one of the following two cases holds: If k = 1, then either f (z) = c1ecz2
, g(z) = c2e−cz2

, where
c1, c2 and c are three constants satisfying 4n2(c1c2)nc2 = −1, or f = tg for a constant t such that tn = 1;
if k ≥ 2, then f = tg for a constant t such that tn = 1.

From Corollary 6 or Corollary 8, we get Theorem G. From Theorem 5, we get Theorem H.

2. Some lemmas

For the proof of our results, we need the following lemmas.
Lemma 1. [11, 14, 21, 23] Let f be a nonconstant meromorphic function, let k be a positive integer,

and let c be a nonzero finite complex number. Then

T (r, f ) ≤N(r, f ) + N
(
r,

1
f

)
+ N

(
r,

1
f (k) − c

)
− N

(
r,

1
f (k+1)

)
+ S (r, f )

≤N(r, f ) + Nk+1

(
r,

1
f

)
+ N

(
r,

1
f (k) − c

)
− N0

(
r,

1
f (k+1)

)
+ S (r, f ),

where N0

(
r, 1

f (k+1)

)
is the counting function which only counts those points such that f (k+1)(z) = 0, but

f (z)( f (k)(z) − c) , 0.
Lemma 2. [11, 14, 21, 23] Let f be a nonconstant meromorphic function, and let k be a positive

integer. Then

m
(
r,

f (k)

f

)
= S (r, f ).

Lemma 3. [11, 14, 21, 23] Let f be a nonconstant meromorphic function, and let αi (i = 1, 2, 3)
(one may be∞) be three distinct small functions of f . Then

T (r, f ) ≤
3∑

i=1

N
(
r,

1
f − αi

)
+ S (r, f ).

Lemma 4. [23] Let f be a meromorphic function such that f (k) . 0, and let k be a positive integer.
Then

T (r, f (k)) ≤T (r, f ) + kN(r, f ) + S (r, f ),

N
(
r,

1
f (k)

)
≤N

(
r,

1
f

)
+ kN(r, f ) + S (r, f ).

Lemma 5. [20, 23] Let P(z) = anzn + an−1zn−1 + · · · + a1z + a0, where an(, 0), an−1, · · · , a0 are
constants. If f is a nonconstant meromorphic function, then

T (r, P( f )) = nT (r, f ) + S (r, f ).
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Lemma 6. [23] Let fi (i = 1, 2, 3) be nonconstant meromorphic functions such that
∑3

i=1 fi ≡ 1. If
fi (i = 1, 2, 3) are linearly independent, then

T (r, fi) ≤
3∑

i=1

N2

(
r,

1
fi

)
+

3∑
i=1

N(r, fi) + o(T (r)),

where T (r) = max1≤i≤3{T (r, fi)} and r < E.
Lemma 7. [11, 21, 23] Let f be a nonconstant meromorphic function, let n ≥ 2 be a positive

integer, and let α1, α2, · · · , αn be distinct small functions of f . Then

m
(
r,

1
f − α1

)
+ · · · + m

(
r,

1
f − αn

)
≤ m

(
r,

1
f − α1

+ · · · +
1

f − αn

)
+ S (r, f ).

Lemma 8. Let n, k be two positive integers with n > k + 5, and let f and g be two meromorphic
functions such that ( f n)(k+2) . 0 and (gn)(k+2) . 0. If ( f n)(k) and (gn)(k) share z CM, then

T (r, f ) = O(T (r, g)), T (r, g) = O(T (r, f )). (2.1)

Proof. Since f and g are two nonconstant meromorphic functions, then

T (r, f ) ≥ log r + O(1), T (r, g) ≥ log r + O(1). (2.2)

By Lemma 2, Lemma 4, Lemma 7 and Nevanlinna’s first fundamental theorem, we get

m
(
r,

1
f n

)
+ m

(
r,

1
( f n)(k) − z

)
≤ m

(
r,

1
( f n)(k)

)
+ m

(
r,

1
( f n)(k) − z

)
+ S (r, f )

≤m
(
r,

1
( f n)(k+1)

)
+ m

(
r,

1
( f n)(k+1) − 1

)
+ S (r, f ) ≤ m

(
r,

1
( f n)(k+1) +

1
( f n)(k+1) − 1

)
+ S (r, f )

≤m
(
r,

1
( f n)(k+2)

)
+ S (r, f ) = T (r, ( f n)(k+2)) − N

(
r,

1
( f n)(k+2)

)
+ S (r, f )

≤T (r, ( f n)(k)) + 2N(r, f ) − N
(
r,

1
( f n)(k+2)

)
+ S (r, f ).

Since ( f n)(k) and (gn)(k) share z CM, it follows from Nevanlinna’s first fundamental theorem that

nT (r, f ) + T (r, ( f n)(k) − z)

≤N
(
r,

1
f n

)
+ N

(
r,

1
( f n)(k) − z

)
− N

(
r,

1
( f n)(k+2)

)
+ T (r, ( f n)(k)) + 2N(r, f ) + S (r, f )

≤(k + 2)N
(
r,

1
f

)
+ N

(
r,

1
(gn)(k) − z

)
+ T (r, ( f n)(k)) + 2N(r, f ) + S (r, f )

≤(k + 4)T (r, f ) + N
(
r,

1
(gn)(k) − z

)
+ T (r, ( f n)(k)) + S (r, f ). (2.3)

By (2.2), we get

T (r, ( f n)(k) − z) ≥ T (r, ( f n)(k)) − log r ≥ T (r, ( f n)(k)) − T (r, f ). (2.4)
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Hence, it follows from (2.3) and (2.4) that

(n − k − 5)T (r, f ) ≤ N
(
r,

1
(gn)(k) − z

)
+ S (r, f ). (2.5)

By Lemma 4, we have

N
(
r,

1
(gn)(k) − z

)
≤T (r, (gn)(k)) + log r + O(1)

≤T (r, gn) + kN(r, gn) + log r + S (r, g)
≤(n + k + 1)T (r, g) + S (r, g). (2.6)

It follows from (2.5) and (2.6) that

[n − k − 5]T (r, f ) ≤ (n + k + 1)T (r, g) + S (r, f ) + S (r, g). (2.7)

Similarly, we obtain

[n − k − 5]T (r, g) ≤ (n + k + 1)T (r, f ) + S (r, f ) + S (r, g). (2.8)

By (2.7), (2.8) and n > k + 5, we get (2.1).
By using the same argument as used in proof of Lemma 8, we obtain the following lemma.
Lemma 9. Let n, k be two positive integers with n > k + 2, and let f and g be two nonconstant

meromorphic functions such that ( f n)(k+1) . 0 and (gn)(k+1) . 0. If ( f n)(k) and (gn)(k) share 1 CM, then

T (r, f ) = O(T (r, g)), T (r, g) = O(T (r, f )).

Lemma 10. [6] Let f be a nonconstant entire function, and let k(≥ 2) be a positive integer. If
f (z) f (k)(z) , 0, then f (z) = eaz+b, where a(, 0), b are two constants.

Lemma 11. [22] Let f and g be two nonconstant entire functions, and let n(≥ 1) be a positive
integer. If f n f ′gng′ ≡ 1, then f (z) = c1ecz, g(z) = c2e−cz, where c1, c2 and c are three constants
satisfying (c1c2)n+1c2 = −1.

Lemma 12. [8] Let f and g be two nonconstant entire functions, and let n(≥ 2) be a positive integer.
If f n f ′gng′ ≡ z2, then f (z) = c1ecz2

, g(z) = c2e−cz2
, where c1, c2 and c are three constants satisfying

4(c1c2)n+1c2 = −1.
By Theorem 2.2 [15], we get the following result.
Lemma 13. Let f be a meromorphic function, and let k be a positive integer with k ≥ 2. If f (z) and

f (k)(z) have finitely many zeros, then f (z) = R(z)eP(z), where R(z) is a rational function and P(z) is a
polynomial.

3. Proof of theorems

3.1. Proof of Theorem 1

Set
F = ( f n)(k), G = (gn)(k).
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Since ( f n)(k) and (gn)(k) share 1 CM, then F and G share 1 CM.
By Lemma 4, we obtain

T (r, F) =T (r, ( f n)(k)) ≤ T (r, f n) + kN(r, f ) + S (r, f ) ≤ (n + k)T (r, f ) + S (r, f ).

It follows S (r, F) = S (r, f ). Similarly, we get S (r,G) = S (r, g).
Set

ϕ =
F′

F(F − 1)
−

G′

G(G − 1)
. (3.1)

Next, we consider two cases.
Case 1. ϕ ≡ 0. Then by (3.1), we have

F − 1
F
≡ C

G − 1
G
, (3.2)

where C is a nonzero finite complex number. In the following, we consider two subcases.
Case 1.1. C = 1. It follows from (3.2) that F ≡ G, that is ( f n)(k) ≡ (gn)(k). It follows f n = gn + P,

where P is a polynomial with deg P ≤ k − 1.
If P . 0, then we have

f n

P
−

gn

P
= 1. (3.3)

Since f and g are two nonconstant meromorphic functions, then

T (r, f ) ≥ log r + O(1), T (r, g) ≥ log r + O(1). (3.4)

By Nevanlinna’s first fundamental theorem and (3.4), we obtain

T
(
r,

f n

P

)
≤T (r, f n) + T (r, P) + O(1)

≤nT (r, f ) + (k − 1) log r + O(1)
≤(n + k − 1)T (r, f ) + O(1).

Hence, we get

S
(
r,

f n

P

)
= S (r, f ). (3.5)

By n > 2k + 4, Nevanlinna’s second fundamental theorem and (3.3)–(3.5), we have

nT (r, f ) = T (r, f n) ≤ T
(
r,

f n

P

)
+ T (r, P)

≤N
(
r,

f n

P

)
+ N

(
r,

P
f n

)
+ N

r, 1
f n

P − 1

 + (k − 1) log r + S (r, f )

≤N(r, f ) + N
(
r,

1
f

)
+ N

(
r,

1
g

)
+ 2(k − 1) log r + S (r, f )

≤2kT (r, f ) + N
(
r,

1
g

)
+ S (r, f ). (3.6)
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It follows from (3.6) that

(n − 2k)T (r, f ) ≤ N
(
r,

1
g

)
+ S (r, f ). (3.7)

Similarly, we have

(n − 2k)T (r, g) ≤ N
(
r,

1
f

)
+ S (r, g). (3.8)

By either n > 3k + 6 or n > 3k + 8 − Θmin(k + 4) ≥ 2k + 4, we get

T (r, f ) + T (r, g) ≤ S (r, f ) + S (r, g),

a contradiction.
Hence, P ≡ 0. It follows f ≡ tg, where t is a constant such that tn = 1.
Case 1.2. C , 1. Then by (3.2), we obtain

1
F
−

C
G
= 1 −C. (3.9)

Since f and g share∞ IM, it follows from (3.9) that F , ∞ and G , ∞. Hence 1
F , 0, then by (3.9)

we deduce that G , C
C−1 .

By Lemma 1, we obtain

nT (r, g) = T (r, gn)

≤N(r, gn) + N
(
r,

1
gn

)
+ N

r, 1
(gn)(k) − C

C−1

 − N
(
r,

1
(gn)(k+1)

)
+ S (r, g)

≤(k + 1)N
(
r,

1
g

)
+ S (r, g).

It follows from either n > 3k + 6 or n > 3k + 8 − Θmin(k + 4) ≥ 2k + 4 that T (r, g) ≤ S (r, g), a
contradiction.

Case 2. ϕ . 0.
Let z0 be a pole of f with multiplicity l1. Then by f and g share ∞ IM, we know that z0 is a pole

of g with multiplicity l2. Set l = min{l1, l2}, by (3.1), we deduce that z0 is a zero of ϕ with multiplicity
≥ nl + k − 1. Hence, by Lemma 2, we have

N(r, f ) = N(r, g) ≤
1

n + k − 1
N

(
r,

1
ϕ

)
≤

1
n + k − 1

T (r, ϕ) + O(1)

=
1

n + k − 1
N(r, ϕ) +

1
n + k − 1

m(r, ϕ) + O(1)

≤
1

n + k − 1

[
N

(
r,

1
F

)
+ N

(
r,

1
G

)]
+ S (r, f ) + S (r, g). (3.10)
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It follows from Lemma 4 that

N
(
r,

1
F

)
= N

(
r,

1
( f n)(k)

)
=N

(
r,

1
( f n)(k)

)
−

[
N

(
r,

1
( f n)(k)

)
− N

(
r,

1
( f n)(k)

)]
≤N

(
r,

1
f n

)
+ kN(r, f ) −

[
N

(
r,

1
( f n)(k)

)
− N

(
r,

1
( f n)(k)

)]
+ S (r, f )

≤(k + 1)N
(
r,

1
f

)
+ kN(r, f ) + S (r, f )

≤(2k + 1)T (r, f ) + S (r, f ). (3.11)

Similarly, we have

N
(
r,

1
G

)
≤ (2k + 1)T (r, g) + S (r, g). (3.12)

By (3.10)–(3.12), we get

N(r, f ) = N(r, g) ≤
2k + 1

n + k − 1
[T (r, f ) + T (r, g)] + S (r, f ) + S (r, g). (3.13)

Set
φ =

F′′

F′
− 2

F′

F − 1
−

G′′

G′
+ 2

G′

G − 1
. (3.14)

Suppose φ . 0. Let z0 be a common simple zeros of F(z)−1 and G(z)−1, by a simple computation,
we see that φ(z0) = 0. Thus, by Nevanlinna’s first fundamental theorem and Lemma 2, we have

N1)

(
r,

1
F − 1

)
= N1)

(
r,

1
G − 1

)
≤ N

(
r,

1
φ

)
≤ T (r, φ) + O(1) ≤ N(r, φ) + S (r, F) + S (r,G), (3.15)

where N1)

(
r, 1

F−1

)
is the counting function of simple zeros of F(z) − 1.

It follows from F and G share 1 CM and (3.14) that

N(r, φ) ≤N(r, f ) + N(r, g) + N
(
r,

1
f

)
+ N

(
r,

1
g

)
+ N0

(
r,

1
F′

)
+ N0

(
r,

1
G′

)
, (3.16)

where N0

(
r, 1

F′

)
is the counting function for which F′(z) = 0 and f (z)(F(z) − 1) , 0.

Since F and G share 1 CM, then we get

N
(
r,

1
F − 1

)
+ N

(
r,

1
G − 1

)
= 2N

(
r,

1
F − 1

)
≤ N1)

(
r,

1
F − 1

)
+ N

(
r,

1
F − 1

)
=N1)

(
r,

1
F − 1

)
+

1
2

[
N

(
r,

1
F − 1

)
+ N

(
r,

1
G − 1

)]
. (3.17)

By Lemma 1, we have

T (r, f n) ≤N(r, f ) + Nk+1

(
r,

1
f n

)
+ N

(
r,

1
F − 1

)
− N0

(
r,

1
F′

)
+ S (r, f ), (3.18)
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T (r, gn) ≤N(r, g) + Nk+1

(
r,

1
gn

)
+ N

(
r,

1
G − 1

)
− N0

(
r,

1
G′

)
+ S (r, g). (3.19)

It follows from (3.15)-(3.19) that

T (r, f n) + T (r, gn) ≤2N(r, f ) + 2N(r, g) + Nk+1

(
r,

1
f n

)
+ Nk+1

(
r,

1
gn

)
+ N

(
r,

1
f

)
+N

(
r,

1
g

)
+

1
2

[
N

(
r,

1
F − 1

)
+ N

(
r,

1
G − 1

)]
+ S (r, f ) + S (r, g). (3.20)

By Nevanlinna’s first fundamental theorem and Lemma 4, we get

N
(
r,

1
F − 1

)
+ N

(
r,

1
G − 1

)
≤ T (r, ( f n)(k)) + T (r, (gn)(k)) + O(1)

≤T (r, f n) + T (r, gn) + kN(r, f ) + kN(r, g) + S (r, f ) + S (r, g). (3.21)

We note that

Nk+1

(
r,

1
f n

)
= (k + 1)N

(
r,

1
f

)
, Nk+1

(
r,

1
gn

)
= (k + 1)N

(
r,

1
g

)
. (3.22)

Since f and g share∞ IM, then by (3.20)-(3.22), we obtain

n
2

[T (r, f ) + T (r, g)] ≤
(

k
2
+ 2

)
[N(r, f ) + N(r, g)]

+(k + 2)
[
N

(
r,

1
f

)
+ N

(
r,

1
g

)]
+ S (r, f ) + S (r, g). (3.23)

Next, we consider two subcases.
If Θmin ≥

2
k+4 . By Lemma 9, we get S (r, f ) = S (r, g).

Without loss of generality, we suppose that there exists a set I with infinite measure such that
T (r, f ) ≤ T (r, g) for r ∈ I.

It follows from (3.23) that

[n − 2(k + 2)]T (r, f ) ≤(k + 4)N(r, f ) + S (r, f ), r ∈ I. (3.24)

By (3.24), we get

n − 2(k + 2) ≤(k + 4)lim
r→∞
r∈I

N(r, f )
T (r, f )

+ lim
r→∞
r∈I

S (r, f )
T (r, f )

≤ (k + 4)lim
r→∞

N(r, f )
T (r, f )

≤(k + 4)(1 − Θ(∞, f )) ≤ (k + 4)(1 − Θmin). (3.25)

Hence, it follows from n > 3k + 8 − Θmin(k + 4) and (3.25) that we get a contradiction.
Otherwise, by (3.13) and (3.23), we have
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[n
2
− (k + 2)

]
[T (r, f ) + T (r, g)]

≤
(k + 4)(2k + 1)

n + k − 1
[T (r, f ) + T (r, g)] + S (r, f ) + S (r, g). (3.26)

It follows from n > 3k + 6 and (3.26) that

T (r, f ) + T (r, g) ≤ S (r, f ) + S (r, g),

a contradiction.
Thus, we get φ ≡ 0, that is

F′′

F′
− 2

F′

F − 1
≡

G′′

G′
− 2

G′

G − 1
. (3.27)

By solving this equation, we obtain

1
F − 1

=
a

G − 1
+ b, (3.28)

where a(, 0), b are two finite complex numbers. Next, we consider two subcases.
Case 2.1. b , 0. Since f and g share ∞ IM, we know that F and G share ∞ IM, it follows

from (3.28) that F , ∞, G , ∞. Hence 1
F−1 , 0, thus by (3.28) we deduce that G , b−a

b .
Now, we consider two subcases.
Case 2.1.1. b = a. It follows from a

G−1 , 0 and (3.28) that F , 1 + 1
b . In the following, we consider

two subcases.
Case 2.1.1.1. b , −1. Then we have 1 + 1

b , 0. By Lemma 1, we obtain

nT (r, f ) ≤N(r, f ) + N
(
r,

1
f n

)
+ N

r, 1
F − (1 + 1

b )

 − N
(
r,

1
F′

)
+ S (r, f )

≤N(r, f ) + (k + 1)N
(
r,

1
f

)
+ N

r, 1
F − (1 + 1

b )

 + S (r, f )

≤(k + 1)T (r, f ) + S (r, f ).

It follows from either n > 3k + 6 or n > 3k + 8 − Θmin(k + 4) ≥ 2k + 4 that T (r, f ) ≤ S (r, f ), a
contradiction.

Case 2.1.1.2. b = −1, Thus a = −1. By (3.28), we deduce that FG ≡ 1, that is

( f n)(k)(gn)(k) ≡ 1. (3.29)

Since f and g share ∞ IM, then by (3.29), we deduce that f , ∞, g , ∞. It follows from (3.29)
that ( f n)(k) , 0, (gn)(k) , 0, f , 0, g , 0.

If k ≥ 2, then by Lemma 10, we get f (z) = c1ecz, g(z) = c2e−cz, where c1, c2 and c are three constants
satisfying(−1)k(c1c2)n(nc)2k = 1.

If k = 1, then by Lemma 11, we get f (z) = c1ecz, g(z) = c2e−cz, where c1, c2 and c are three constants
satisfying (c1c2)n+1c2 = −1.
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Case 2.1.2. b , a. Hence, we have b−a
b , 0, G − b−a

b , 0. In this case, by using the same argument
as used in Case 2.1.1.1, we get a contradiction.

Case 2.2. b = 0. Thus by (3.28), we have 1
F−1 =

a
G−1 , that is

aF −G = a − 1. (3.30)

If a = 1, then by (3.30), we have F ≡ G. That is ( f n)(k) ≡ (gn)(k). By using the same argument as
used in Case 1.1, we get f ≡ tg, where t is a constant such that tn = 1.

If a , 1, then by (3.30), we get a( f n)(k) − (gn)(k) = a − 1, that is (a f n − gn)(k) = a − 1. Thus, we
obtain a f n − gn = p, where p is a polynomial of degree k. Then by using the same argument as used in
Case 1.1, we get a contradiction.

This completes the proof of Theorem 1.

3.2. Proof of Theorem 3

Imitating the proof of Theorem 1, we can easily to prove Theorem 3 only by replacing (3.16) with
the following formule:

N(r, φ) ≤ N
(
r,

1
f

)
+ N

(
r,

1
g

)
+ N0

(
r,

1
F′

)
+ N0

(
r,

1
G′

)
.

Thus, we omit the details.

3.3. Proof of Theorem 5

Since ( f n)(k) and (gn)(k) share z CM, f and g share∞ IM, then

H =
( f n)(k) − z
(gn)(k) − z

, (3.31)

where H(. 0,∞) is a meromorphic function.
From (3.31), we get

N(r,H) ≤ NL(r, f ), N
(
r,

1
H

)
≤ NL(r, g). (3.32)

Let

f1 =
( f n)(k)

z
, f2 = H, f3 = −

H(gn)(k)

z
, (3.33)

then
∑3

i=1 fi ≡ 1.
It follows from Lemma 4 that

T (r, f1) + T (r, f2) + T (r, f3) ≤ O(T (r, f ) + T (r, g)).

We first suppose that both f2 and f3 are not constants.
If f1, f2, f3 are linearly independent, then by (3.32) and (3.33) and Lemma 6 we have
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T (r, f1) ≤N2

(
r,

1
f1

)
+ N2

(
r,

1
f2

)
+ N2

(
r,

1
f3

)
+ N(r, f1) + N(r, f2) + N(r, f3) + o(T (r))

≤N2

(
r,

z
( f n)(k)

)
+ N2

(
r,

1
H

)
+ N2

(
r,

z
H(gn)(k)

)
+ N

(
r,

( f n)(k)

z

)
+N(r,H) + N

(
r,

H(gn)(k)

z

)
+ S (r, f ) + S (r, g)

≤N2

(
r,

1
( f n)(k)

)
+ 2NL(r, g) + N2

(
r,

1
(gn)(k)

)
+ 2N(r, f ) + NL(r, f )

+2 log r + S (r, f ) + S (r, g). (3.34)

By (3.34), we obtain

T (r, ( f n)(k)) ≤ T (r, f1) + log r

≤N2

(
r,

1
( f n)(k)

)
+ N2

(
r,

1
(gn)(k)

)
+ 2NL(r, g) + 2N(r, f )

+NL(r, f ) + 3 log r + S (r, f ) + S (r, g)

=N
(
r,

1
( f n)(k)

)
−

[
N(3

(
r,

1
( f n)(k)

)
− 2N(3

(
r,

1
( f n)(k)

)]
+N

(
r,

1
(gn)(k)

)
−

[
N(3

(
r,

1
(gn)(k)

)
− 2N(3

(
r,

1
(gn)(k)

)]
+2NL(r, g) + 2N(r, f ) + NL(r, f ) + 3 log r + S (r, f ) + S (r, g). (3.35)

Let z0 be a zero of f with multiplicity p. Then z0 is a zero of ( f n)(k) with multiplicity np − k ≥ 3.
So, we have

N(3

(
r,

1
( f n)(k)

)
− 2N(3

(
r,

1
( f n)(k)

)
≥ (n − k − 2)N

(
r,

1
f

)
. (3.36)

Similarly, we have

N(3

(
r,

1
(gn)(k)

)
− 2N(3

(
r,

1
(gn)(k)

)
≥ (n − k − 2)N

(
r,

1
g

)
. (3.37)

By Nevanlinna’s first fundamental theorem, we have

m
(
r,

1
f n

)
≤m

(
r,

1
( f n)(k)

)
+ S (r, f ) = T (r, ( f n)(k)) − N

(
r,

1
( f n)(k)

)
+ S (r, f ). (3.38)

By (3.35)–(3.38) and Lemma 4, we get

nT (r, f ) ≤(k + 2)N
(
r,

1
f

)
+ (k + 2)N

(
r,

1
g

)
+ 2NL(r, g)

+(k + 2)N(r, f ) + NL(r, f ) + 3 log r + S (r, f ) + S (r, g). (3.39)
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Similarly, we obtain

nT (r, g) ≤(k + 2)N
(
r,

1
g

)
+ (k + 2)N

(
r,

1
f

)
+ 2NL(r, f )

+(k + 2)N(r, g) + NL(r, g) + 3 log r + S (r, f ) + S (r, g). (3.40)

Noting that
NL(r, f ) + NL(r, g) ≤ N(r, f ) = N(r, g). (3.41)

It follows from (3.39)–(3.41) that

[n − 2(k + 2)](T (r, f ) + T (r, g))

≤

(
k +

7
2

)
[N(r, f ) + N(r, g)] + 6 log r + S (r, f ) + S (r, g). (3.42)

Next, we consider two cases.
Case 1. If f and g have poles, since f and g share∞ IM, then

N(r, f ) = N(r, g) ≥ log r. (3.43)

Set

F =
( f n)(k)

z
, G =

(gn)(k)

z
. (3.44)

It follows from ( f n)(k) and (gn)(k) share z CM that F and G share 1 CM almost.
By Lemma 4 and (3.44), we obtain

T (r, F) ≤T (r, ( f n)(k)) + log r

≤T (r, f n) + kN(r, f ) + log r + S (r, f )
≤(n + k + 1)T (r, f ) + S (r, f ).

It follows S (r, F) = S (r, f ). Similarly, we get S (r,G) = S (r, g).
Set

ϕ =
F′

F(F − 1)
−

G′

G(G − 1)
. (3.45)

In the following, we consider two subcases.
Case 1.1. ϕ ≡ 0. Then by (3.45), we have

F − 1
F
≡ C

G − 1
G
, (3.46)

where C is a nonzero finite complex number. Next, we consider two subcases.
Case 1.1.1. C = 1. It follows from (3.46) that F ≡ G, that is ( f n)(k) ≡ (gn)(k). Next, by using the

same argument as used in proof of Theorem 1, we have f ≡ tg, where t is a constant such that tn = 1.
Case 1.1.2. C , 1. Then by (3.46), we obtain

1
F
−

C
G
= 1 −C. (3.47)
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Next, using the same argument as used in the proof of Theorem 1, we get a contradiction.
Case 1.2. ϕ . 0.
Let z0 be a pole of f with multiplicity l1. Then by f and g share∞ IM, we know that z0 is a pole of g

with multiplicity l2. Set l = min{l1, l2}, by (3.45), we get z0 is a zero of ϕ with multiplicity ≥ nl+ k − 1.
Hence, by Lemma 2, we have

N(r, f ) = N(r, g) ≤
1

n + k − 1
N

(
r,

1
ϕ

)
≤

1
n + k − 1

T (r, ϕ) + O(1)

=
1

n + k − 1
N(r, ϕ) +

1
n + k − 1

m(r, ϕ) + O(1)

≤
1

n + k − 1

[
N

(
r,

1
F

)
+ N

(
r,

1
G

)]
+ S (r, f ) + S (r, g). (3.48)

It follows from Lemma 4 that

N
(
r,

1
F

)
= N

(
r,

z
( f n)(k)

)
= N

(
r,

1
( f n)(k)

)
=N

(
r,

1
( f n)(k)

)
−

[
N

(
r,

1
( f n)(k)

)
− N

(
r,

1
( f n)(k)

)]
≤N

(
r,

1
f n

)
+ kN(r, f ) −

[
N

(
r,

1
( f n)(k)

)
− N

(
r,

1
( f n)(k)

)]
+ S (r, f )

≤(k + 1)N
(
r,

1
f

)
+ kN(r, f ) + S (r, f )

≤(2k + 1)T (r, f ) + S (r, f ). (3.49)

Similarly, we have

N
(
r,

1
G

)
≤ (2k + 1)T (r, g) + S (r, g). (3.50)

By (3.48)–(3.50), we get

N(r, f ) = N(r, g) ≤
2k + 1

n + k − 1
[T (r, f ) + T (r, g)] + S (r, f ) + S (r, g). (3.51)

Next, we consider two subcases.
If Θmin ≥

2.5
k+6.5 . By Lemma 8, we get S (r, f ) = S (r, g).

Without loss of generality, we suppose that there exists a set I with infinite measure such that
T (r, f ) ≤ T (r, g) for r ∈ I.

It follows from (3.42) and (3.43) that

2[n − 2(k + 2)]T (r, f ) ≤(2k + 13)N(r, f ) + S (r, f ), r ∈ I. (3.52)

By (3.52), we obtain
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2[n − 2(k + 2)] ≤(2k + 13)lim
r→∞
r∈I

N(r, f )
T (r, f )

+ lim
r→∞
r∈I

S (r, f )
T (r, f )

≤ (2k + 13)lim
r→∞

N(r, f )
T (r, f )

≤(2k + 13)(1 − Θ(∞, f )) ≤ (2k + 13)(1 − Θmin). (3.53)

Hence, it follows from n > 3k + 10.5 − Θmin(k + 6.5) and (3.53) that we get a contradiction.
Otherwise, by (3.42), (3.43) and (3.51), we get

[n − 2(k + 2)][T (r, f ) + T (r, g)]

≤
(2k + 13)(2k + 1)

n + k − 1
[T (r, f ) + T (r, g)] + S (r, f ) + S (r, g). (3.54)

It follows from n > 3k + 8 that

T (r, f ) + T (r, g) ≤ S (r, f ) + S (r, g),

a contradiction.
Thus, we deduce that f1, f2, f3 are linearly dependent, so there exists three constants (c1, c2, c3) ,

(0, 0, 0) such that
c1 f1 + c2 f2 + c3 f3 ≡ 0. (3.55)

Assuming that c1 = 0, by (3.55), we get c2 f2 + c3 f3 ≡ 0 and c3 , 0, that is

(gn)(k) =
c2

c3
z,

thus, g is a polynomial, which is a contradiction.
Therefore, we get c1 , 0. we deduce that (c2, c3) , (0, 0). Suppose that c2 , 0, by (3.55) and∑3

i=1 fi ≡ 1, we obtain (
1 −

c2

c1

)
f2 +

(
1 −

c3

c1

)
f3 = 1,

and c1 , c2, c1 , c3.
Thus, it follows from (3.31) and (3.33) that(

1 −
c3

c1

)
(gn)(k)

z
+

(gn)(k) − z
( f n)(k) − z

= 1 −
c2

c1
. (3.56)

Since ( f n)(k) and (gn)(k) share z CM, f and g share∞ IM and f and g have poles, then by (3.56), we
get a contradiction.

Therefore, c2 = 0, c3 , 0, by (3.55) and
∑3

i=1 fi ≡ 1, we obtain(
1 −

c1

c3

)
f1 + f2 = 1,

similarly, we have a contradiction.
Hence, we deduce that either f2 or f3 is a constant. Next, we consider two subcases.
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Case 1.2.1. f2 = C. By (3.33) and
∑3

i=1 fi ≡ 1, we have

( f n)(k)

z
−C

(gn)(k)

z
= 1 −C. (3.57)

If C , 1, then by (3.57), we get ( f n)(k) − C(gn)(k) = (1 − C)z, that is ( f n − Cgn)(k) = (1 − C)z. Thus,
we obtain f n −Cgn = p, where p is a polynomial of degree k + 1. Then by using the same argument as
used in proof of Theorem 1, we get a contradiction.

Hence, C = 1, we have ( f n)(k) ≡ (gn)(k). Next, by using the same argument as used in proof of
Theorem 1, we have f ≡ tg, where t is a constant such that tn = 1.

Case 1.2.2. f3 = C. By (3.31), (3.33) and
∑3

i=1 fi ≡ 1, we obtain

( f n)(k)

z
+

( f n)(k) − z
(gn)(k) − z

= 1 −C. (3.58)

If C , 1, since ( f n)(k) and (gn)(k) share z CM, f and g share ∞ IM and f and g have poles, then by
(3.58), we get a contradiction.

So, we have C = 1. By (3.33) and
∑3

i=1 fi ≡ 1, we obtain

(gn)(k)

z
= −

1
H
,

( f n)(k)

z
= −H.

Hence, we have ( f n)(k)(gn)(k) ≡ z2. We know that f and g share ∞ IM, thus, f , ∞, g , ∞, we get
a contradiction.

Case 2. If f and g are two entire functions, from the assumption and Lemma 8, we deduce that
either both f and g are two transcendental entire functions or both f and g are two polynomials. In the
following, we consider two subcases.

Case 2.1. f and g are two transcendental entire functions. By the arguments similar to the proof of
Case 1, we easily get either ( f n)(k) ≡ (gn)(k) or ( f n)(k)(gn)(k) ≡ z2.

If ( f n)(k) ≡ (gn)(k), then by using the same argument as used in the proof of Theorem 1, we get
f ≡ tg, where t is a constant such that tn = 1.

If ( f n)(k)(gn)(k) ≡ z2, it follows from either n > k + 3 that f , 0, g , 0, that is f n , 0, gn , 0.
Furthermore, we see that either ( f n)(k) or (gn)(k) has at most two zeros.

If k = 1, then by Lemma 12, we get f (z) = c1ecz2
, g(z) = c2e−cz2

, where c1, c2 and c are three
constants satisfying 4(c1c2)n+1c2 = −1.

If k ≥ 2, since f and g are two nonconstant entire functions and have no zeros, then by Lemma 13,
we deduce that f = ep, g = eq, where p and q are two polynomials.

Hence, we have

( f n)(k) = A[(p′)k + Pk−1(p′)]enp, (gn)(k) = A[(q′)k + Pk−1(q′)]enq, (3.59)

where A is a nonzero constant, Pk−1(h) is a differential polynomial in h of degree at most k − 1 and
h = {p′, q′}.

Thus, by (3.59), we get

A2[(p′)k + Pk−1(p′)][(q′)k + Pk−1(q′)]en(p+q) ≡ z2. (3.60)
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From (3.60), we deduce p + q = a, where a is a constant. Then p′ = −q′, hence, we obtain

A1(p′)2k = z2 + R2k−1(p′). (3.61)

where A1 is a nonzero constant, R2k−1(p′) is a differential polynomial in p′ of degree at most 2k − 1.
It follows (3.61) and k ≥ 2 that we get a contradiction.
Case 2.2. f and g are two polynomials. Since ( f n)(k) and (gn)(k) share z CM, we have

( f n)(k) − z = c((gn)(k) − z), (3.62)

where c is a nonzero constant.
If c , 1, it follows from (3.62) that ( f n)(k) − c(gn)(k) = (1 − c)z, that is ( f n − cgn)(k) = (1 − c)z. Thus,

we obtain f n − cgn = p, where p is a polynomial of degree k + 1. Next, by using the same argument
as used in proof of Theorem 1, we get a contradiction. Thus c = 1, we get ( f n)(k) ≡ (gn)(k). Next, by
using the same argument as used in proof of Theorem 1, we have f ≡ tg, where t is a constant such
that tn = 1.

This completes the proof of Theorem 5.

3.4. Proof of Theorem 7

Since ( f n)(k) and (gn)(k) share z CM, f and g share∞ CM, then

eh =
( f n)(k) − z
(gn)(k) − z

,

where h is a nonconstant entire function.
Next, using the same argument as used in the proof Theorem 5, Theorem 7 is proved. Thus, we

omit the details.

4. Conclusions

In this work, we study a uniqueness question of meromorphic functions concerning fixed points.
By using deficiencies, we extend and improve some results. We establish the relationship between the
uniqueness of meromorphic functions and entire functions.
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Appendix

The exact mistakes in the proof of Theorem 2 in Bhoosnurmath and Dyavanal [2]

In 2007, Bhoosnurmath and Dyavanal made a defective reasoning in the proof of Theorem 2 ([2],
p.1200). We now analyze the defective reasoning as follows:

Bhoosnurmath and Dyavanal ([2], p.1200) wrote: Suppose that f has a zero z0 of order p, then z0 is a
zero of ( f n)(k) of order (3k+k1)p−k = 3pk+k1 p−k, and z0 is a pole of order (3k+k1)q+k = 3qk+k1q+k,
where 3k + k1 = n, k1 > 8. By the assumption

( f n)(k)(gn)(k) = 1, (4.1)

we have
3pk + k1 p − k = 3qk + k1q + k,

i.e.,
3k(p − q) + k1(p − q) = 2k,

i.e.,
(3k + k1)(p − q) = 2k,

which is impossible since p, q are integers and k1 > 8. Therefore f , 0 and g , 0.
Similarly,

f , ∞ and g , ∞. (4.2)

Obviously, the reasoning of the lines before the claim (4.2) is right. But the claim (4.2) is not easy
to obtain. By the context of the claim (4.2), we can find the following meanings of the authors of the
reference [2]: Every pole of f satisfying (4.1) must be a zero of g, and every pole of g must be a zero
of f . But this is a defective reasoning. In fact, if z0 is a pole of f satisfying (4.2), then z0 is a zero
of (gn)(k). But z0 is not necessarily a zero of gn and g. Similarly, if z1 is a pole of g satisfying (4.2),
then z1 is a zero of ( f n)(k). But z1 is not necessarily a zero of f n and f . Therefore, the reasoning of the
claim (4.2) in the reference [2] is invalid.
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