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1. Introductions and research background

Quantum calculus (known as g-calculus) extends traditional calculus by introducing the parameter
g, offering flexible and powerful tools for analyzing mathematical functions. This framework has
attracted growing attention due to its applications in various fields, including mathematics, engineering,
and physics. Recent advancements have amplified its relevance, with notable applications in g-
transform analysis, g-difference and g-integral equations, optimal control, and fractional calculus.

The g-derivative operator plays a central role in the theory of special functions, enabling the
definition and in-depth analysis of various subclasses of analytic functions. For instance, Mahmood
et al. [1] investigated the coefficients of g-starlike functions associated with conic domains, Ahmad et
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al. [2] explored the Hankel determinants and Zalcman conjecture for g-starlike functions associated
with the balloon-shaped domain, and Shi et al. [3] studied the properties of generalized integral
operators in the lemniscate domain of Bernoulli. Ahmad et al. [4] extended these ideas by exploring
Janowski functions to establish g-analogues of differential subordination results. The g-derivative
operator also underpins the g-extension of starlike functions, as discussed in [5].

Recent research highlights the significant role of g-calculus in advancing contemporary
mathematical theory. Studies such as [6—8] deepen our understanding of analytic and symmetric
functions through g-analytic techniques. This body of work demonstrates the broad applicability
of g-calculus, with potential implications across quantum theory, number theory, and statistical
mechanics. For further exploration of fractional derivatives, including Caputo and conformable
fractional derivatives, readers may consult [9, 10] and their references.

We present some basic definitions related to our work before moving on to our primary findings.

Let H (D) denote the class of all analytic functions f defined in the open unit disk

D={ceC: |g<1},

where C represents the set of complex numbers. Let A C H (D) be the subclass of all analytic functions
f having the Taylor series representation:

f(8)=8+Z§ksk (e€D). (1.1)
k=2

Suppose that P represents the Carathéodory class of analytic functions 4 normalized by

(o)

he) =1+ ) e, (1.2)
n=1
such that the real part is positive:
R(h(e)) > 0.
For each given analytic function f € A, the " Hankel determinant 4, is defined in [11] as follows,
é:n §n+l .. §n+r—l

ﬂr’n (f) _ ‘:fn+1 :§n+2 :fn+r

§n+r—1 §n+r §n+2r—2

where r,n € N and & = 1. The following are two second Hankel determinants.

& & &
& & & &

In recent years, considerable attention has been devoted to investigating the upper bounds of the
expression |H2,2( f)| across various subclasses of analytic functions. Key contributions in this domain
have been made by researchers such as Noonan and Thomas [12], Hayman [13], Ohran et al. [14], and
Shi et al. [15]. Babalola [16] initiated the study of bounds for the third Hankel determinant, further
enriching the field.

Hoa(f) = =& -8, Hoo(f) = =& - &. (1.3)
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For a deeper exploration of this subject, recent studies provide valuable insights and are discussed in
references [17-19]. This growing body of research highlights the importance of Hankel determinants
in analytic function theory, offering the potential for discoveries and advancing our understanding of
this mathematical area.

For the functions f and g € H (D), we say that f is subordinated to g, written as

fle) <g(e),

if there exists a Schwarz function w(g), which is an analytic function in © with w (0) = 0 and |w(e)| < 1,
such that

fle) = g(w(e)).

Furthermore, if two functions f and g are analytic in © and g is univalent, then f is subordinated to g
if and only if
f®cg(® and f(0)=g(0).

There are some applications of subordination below; see [20] for more applications.

Definition 1.1. A function p € P [A, B] if

1 + Ae
-1<B<A<]1).
pE) < — (Fl<B<A<])
Equivalently,
‘p(e)—l
A= Bp(e)

In particular, f is a Janowski starlike function if Sf(g) € P[A, B]. See [21] for more details about
Janowski starlike functions.

We take into consideration a class of functions in the domain bounded by a tangent function. All
functions & will belong to such a class if they fulfill

h(e) < 1+ %tan (e). (1.4)

The images of these functions lie in the right-half plane and the geometrical representation is like an
eight-shape domain. Simple computations allow the above (1.4) to be expressed as

|tan™" (2h(e) - 2)| < L. (L.5)

In parallel comparison to starlike functions, Khan et al. [22] introduced the following class of Janowski-
type starlike functions along with some properties.
ef’ (e) 1 }

<1+ —tan(g)

f(e) 2

St = {f(s) eA: (1.6)

Thus, by the relation of (1.4) and (1.5),

St = {f(s) €eA:

1,8l (&)
tan (2 © —2)|<1}.

AIMS Mathematics Volume 9, Issue 10, 28421-28446



28424

Definition 1.2. [23] For a function f, the g-derivative (also known as the g-difference operator) is
defined by

_J©-fge)

(Dof) (o) = R (1.7)

where e # 0 and 0 < g < 1.

For example, for n € N and € € D, we have

=1

D, {i fns"} = i [nl, €™, (1.8)
n n=1

where the g-number is defined by

1_qn n—1 l
=1+ q' and [0], = 0.
1-¢q ; 1

[n], =

k

Now, we introduce a new class S;,, (¢) of Janowski-type g-starlike functions associated with
the eight-shaped image domain. Several classes of Janowski-type g-starlike functions have been
investigated previously (see [24]).

Definition 1.3. A function f in A is said to belong to S, (q) if the following holds

tan

i%;Ld+%m@. (1.9)

Remark 1.1. One can see that

lim S, (9) = S
q—1"

%

The graphological representation for the class S,

(q) is given in the following Figure 1.
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0]

2+tan(e)

Figure 1. Graph of === under open unit disc D.

In our research, we set out to explore and characterize a novel class of g-starlike functions associated
with an eight-like image domain. We employed differential subordination and quantum calculus
techniques to achieve this goal. Our primary aim is to establish a fundamental understanding of the
behavior of these g-starlike functions, focusing on deriving first-order differential subordination results.
Additionally, we sought to determine sharp inequalities for initial Taylor coefficients and provide
optimal estimates for the Fekete-Szego problem and a second-order Hankel determinant applicable
to all g-starlike functions within this newly defined class. Through this work, we intend to contribute
to the broader field of geometric function theory, demonstrating the wider implications of our findings
through a series of corollaries.

2. A set of lemmas

The following lemmas are essential to investigate our main results.

Lemma 2.1. [25] (g-Jack’s Lemma) Let w (&) € H (D) with w (0) = 0. If |w ()| achieves the maximum
value on the circle |e| = r at a point &, then

g0 (Dyw) (80) = mw (2) .

where 0 < g < 1andm > 1.

Lemma 2.2. [26] Let h € P have the series of the form (1.2). Then the following inequalities hold
true:

le,] <2 (@=1), 2.1

Crok — VCiC| < 2 O<v<l). 2.2)
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Lemma 2.3. [27] Let h € P be represented by (1.2), and then the following inequality holds.

P2 — Ap}| <2 max {l;22- 1]} (1€0).

Lemma 2.4. Let h € P be given in (1.2), and then there exist k and 6 € D such that

er= 3 (G +k(4- ),

_ 15 2 2 2 2 2
3 = Z(cl +2c1k(4—cl) = (4= c}) ek +2(4 = c}) (1 - k) 6).
The values given in (2.3) and (2.4) are due to [26] and [28], respectively.
Lemma 2.5. [28] If h € P has the form (1.2), then
|alcf —2asc100 + 3| £ 2,

where
0<a; <1 and a1 Qo —-1)<a; <a.

Lemma 2.6. [29] Suppose that

max {|[P + Qx + R®| + 1 =[x’} = x (P, Q. R),

where P, Q, and R are real numbers, and x € D= {eeC: gl <1}
If PR > 0, then

| IPI+1Ql + IR, 10l > 2(1 —|RD),
X(RQ’R)‘{1+|P|+ﬁ, 10l <2(1-IR)).

3. First-order differential subordination results

(2.3)

(2.4)

(2.5)

(2.6)

In this section, we start with the results of differential subordination. In the next section, we derive
the sharp constraints for the first three unknown coefficients, the sharp Fekete-Szeg6 problem, and
the sharp estimate of the second-order Hankel determinant for the newly defined class of g-starlike
functions. In addition, the consequences of these results are given in the form of corollaries. In the last

section, we establish the sufficient criteria for functions belonging to the class S, (¢) .
Theorem 3.1. Let f () € A and h(g) € H (D). Suppose that

sec h? (1)
-1<B<——<AK<L1,
<B<— gy <4<

6> 2(A-B)
~ (sech? (1) —|B|sec2 (1))

If the following condition holds:
1+ Ae

1+ 6eD,h < .
it ) 1+ Be

Then
2 + tan (&)

h(e) < >

(3.1

(3.2)
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Proof. Suppose that

p(e) =1+0eD,h(e). 3.3)
Also, for w(e) € H (D), we consider
he)=1+ w (3.4)

It is sufficient to demonstrate that |w (g)| < 1 in order to yield the required result. Using (3.3) and (3.4),

we have
sec? (w (&) eDyw (&)

=1+6 ,
pEe)=1+ >
and hence,
' ple-1] | 6 sec? (w (€)) eD,w (&)
A-— Bp (8) A—-B (1 + 5SGC2(OJ(82))8un)(s))
~ §sec? (w (€)) eDyw (&)
" |2(A-B) - Bosec? (w(g) eDyw (e)|’

If w (¢) achieves, at some point & = &, its maximum value |w (&) = 1, i.e., w (&) = €%, 6 € [-n, 7],
then, by Lemma 2.1, form > 1,
goD,w (g9) = mw (&) .

Thus,
‘ p (&) —1
A - Bp (&)
d sec? (e”’) mw (&)

2(A — B) — BS sec? (') mw (&)

|6 m 'sec (e"")‘2

. 35
" 2(A - B) +|B||5| m |sec (¢ G-

A direct computation gives that

'sec (e"g)‘2 = ; : . : . 2
|cos (cos 8) cosh (sin §) — i sin (cos #) sinh (sin 6)|
1

cosh? (sin §) + cos? (cos 6) — 1 i

Since ¢ (—0) = ¢ (0), for 8 € [0, rr], then

min {¢ (6)) = so(’z—r) = sech? (1),

max {¢ (0)} = ¢ (0) = ¢ (1) = sec’ (1).
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Therefore,

sech? (1) < ‘sec (eig)'z <sec’(1).

Putting values of (3.6) into (3.5) , we get

' p(g) —1 S |6] m sec h? (1)
A—Bp(g))l ~ 2(A—-B)+|B||6|msec? (1)
Let
&) |6 m sec h* (1)
m) = )
2 (A — B) + |B||6| msec? (1)
Then

2(A - B)sech®(1)]d]
(2(A — B) + |B||8| msec? (1))

¢’ (m) =

(3.6)

(3.7)

which shows the increasing behavior of ¢ (), so the maximum of ¢ (m) will be obtained at m = 1. It

follows that

' p(g) -1 6] sec h% (1)
A—-Bp(gy)|l  2(A-B)+|B||6]sec2 (1)
From (3.1),

' p(g) —1

A-Bp(g)l

which contradicts (3.2), thus |w (g)| < 1 and we achieve the intended outcome.

By taking A (¢) = dj,"é ;g), we deduce the following result.
Corollary 3.1. Let f (g) € A and h(s) = gl}"(’; ;8). Suppose that
sech? (1)
-1<B<——=<A<],
secZ (1)
2(A-B)

o] > .
(sec h? (1) — |B| sec? (1))
If the following condition holds:

|+ 8eD ‘9(qu)(8) 1 + Ae
TR T e | 1+ Be

Then
eD,f (¢) - 2 + tan (&)

[ 2

(3.8)

(3.9)
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Theorem 3.2. Let h(e) € H (D) with h(0) = 1. Suppose that

sec h? (1)
-1<B< m <A<,
6 > (A-B)(2+tan(1))
~ 2(sech?(1) —|B|sec? (1))

If the following subordination criteria hold:

Then the following subordi

Proof. Define

gD, h(g) 1+ Ae
1 1 .
+5( ) )<1+Bs

nation holds:

he) < 2+tan(8).
2
B eD,h (&)
p(e) = 1+5( % )

Let w(e) € H (D), and consider

2 + tan (w (&))

h(e) = >

(3.10)

(3.11)

(3.12)

(3.13)

We need to show that |w(e)| < 1. Using logarithmic differentiation on (3.13), we obtain from (3.12)

that

and so

2sec’ (w (&) eDyw (€)

P =1+ 6— @®)

b

2 sec?(w(e))eDyw(e)
2+tan(w(g))

|p(8)—1

A-Bp(e)|

2+tan(w(e))

2
A—_B (1 i é.2 sec (w(s))quw(a))

26 sec? (w (&) eDyw (&)

(A—-B)(2 +tan (w(g))) — 26Bsec? (w (&) eD,w ()

If at some € = g, w (&) attains its maximum value for example |w (gy)| = 1, then, by Lemma 2.1,

AIMS Mathematics

p(go) —1
A — Bp (&)

26 sec? (e”’) mw (&)

(A — B) (2 + tan (e'?)) — 20B sec? (e?) mw (&)

2m 0| 'sec2 (ei9)|
= A—B) 2+ tan (@) + 2m 0| B |sec? ()|

(3.14)
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Now, a direct, simple calculation gives us
‘t ( l.g)r _|sin(cos (0)) cosh (sin (6)) + i cos (cos (0)) sinh (sin (6)) 2
M 7 [cos (cos (8)) cosh (sin (8)) — i sin (cos (6)) sinh (sin (6))
cosh? (sin ()) — cos? (sin (6))
= 2 2. =1 (0) .
cos? (cos (0)) + cosh” (sin (6)) — 1

Since ¢; (—0) = ¢, (0), consider 6 € [0, 7]. Then

min {1 ©)) = ¢1 (5 ) = nh? (1),
max {¢; (0)} = ¢; (0) = ¢; () = tan® (1) .

Therefore,
tanh (1) < ‘tan (eie)‘ <tan(1). (3.15)

Now set (3.6) and (3.15) in Eq (3.14), and we get

2m |6 sec h* (1)
(A-=B) (2 +tan(1)) + 2m|o||B| sec2 (1)’

¢ (m) =

216/ (A — B) (2 + tan (1)) |B| sec 2 (1)
((A = B) (2 + tan (1)) + 2m 5| |B| sec? (1))*

¢’ (m) =

Clearly, one can observe that ¢ (m) is increasing in nature so its maximum value is obtained at m = 1,
thus

' p(gy) —1 . 28] sec h% (1)
A—-Bp(g))l  (A-B)(2+tan(1)) + 20| |B|sec? (1)
By (3.10), we have
' p(e) —1
A-Bp(g)l 7’
which contradicts (3.11), therefore |w (g)| < 1 and so the desired result is obtained. O
By taking 4 (&) = SDf“(i 5‘9), we deduce the following corollary.
Corollary 3.2. Let f € A. Suppose that
2
B P LEC
secZ (1)
A—-B)(2+tan(1
o> —A-Brtand) (3.16)
2 (sec h? (1) — |B| sec? (1))
If the following subordination holds:
D 1+A
1+5g( /() )Dq(g qf(g))< iy (3.17)
eD, (f (g) f(e) 1+ Be

then we have
eD,f (¢) - 2 + tan (&)

[ 2
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Theorem 3.3. Let h () € H (D) with h(0) = 1. Suppose that

— 2 2
o> —AZBern®F o g e Dy (3.18)

22 (Jsech2 (1)] - |Blsec 1]) B sec? (1) B

If the following subordination criteria are fulfilled:

eDyh (g) - 1+ Ae
(h(e))> 1+Be

then we have

he) < 2+ tan(s).
2
Proof. We define a function:
eD,h (g)
pEe)=1+96 -
(h ()

If there exists w(g) € H (D) such that

2 + tan (w (&))

h(e) = f’
then, we obtain that fooc? 5
sec(w\&))&E w (&
ple)=1+s (2tha(n 2) (8)4))2( )
and hence,
' plEe-1|_ 4se(c22+<::$2f§;,;; -
ATEPOL |4 B(1e e S
~ 45 sec? (w (g)) eDyw (&)
(A= B @+ tan () - B(45sec? (w () eDyw (9))|

If w (&) attains its maximum value at some point &€ = &j, which is |w (g9)| = 1 : w (&) = €, for some
0 € [—m, ], then, by Lemma 2.1,

goDyw (g9) = mw (gy), form>1.

Thus, we have

‘ p (&) —1
A — Bp (&)

46 sec? (eig) mw ()

(A — B) (2 + tan (¢))* — B (4 sec? (¢i) mw (&)
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4m || ‘sec2 (659)‘
(A~ B) 2+ an(e")) + 4m o] B |sec? (e?)|

i (3.19)

Applying (3.6) and (3.15) in Eq (3.19),

4m 8| sec h* (1)
(A= B)(2 + tan (1))> + 4m 5| |B| sec? (1)
46| (A = B) (2 + [tan (1)])* sec K2 (1)

2
((A — B)(2 + tan (1))? + 4m |6] | B| sec? (1))

¢ (m) =

= ¢’ (m) = >0,

Thus, the function ¢ (m) is increasing; hence, it has its maximum value at m = 1. Now, we have

' p(ey) —1 46| sec h* (1)
A—Bp(0)|l ~ (A= B)(2 +tan(1))* + 416]|B| sec (1)
By (3.18),

' p(&o) — 1

A-Bp(g)l
It is a contradiction to

(e) < 1+ As.

1+ Be
Therefore, |w (g)| < 1, and the required result is obtained. ]
&(Dyf)(@)

By taking h (¢) =

Gar  We deduce the following corollay.

Corollary 3.3. Let f € A. Suppose that

sec h? (1)
-1<B<——<AX<LI1
=P= sec2 (1) sash

(A= B)(2 +tan(1))*

0] = 4 (sec h? (1) — |B|sec% (1)) (3.20)
If the following holds:
? D
1+os| =L | p, £(Df) @ L lrds 3.21)
£(Dyf) () f (& 1+ Be
then, we have
€ (qu) (e) - 2 + tan (&)
(f (&) 2
Theorem 3.4. Let h(e) € H (D) with h(0) = 1. Suppose that
3
(A - B)(2 + |tan (€
6] > ( fan )’) Cfor—1<B< D (3.22)
23 (|sec? ()] - |B||sec? () sec? (1)
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If the following subordination holds:

&(Dh) () _l+ae

) 3.23
(h(¢e))® 1+ Be ( )

then,

he) < 2+t221n(s).

Proof. Suppose that
eD,h (g)

=1+ .
P =0 oy

Now if )
he) = + tan2(a) (8)),

then we can easily obtain
8eD,w (&) sec? (w (¢))

S 146
P = o @)

and so,

8eD,w(e) sec(w(e))
Q2+tan(w(e)))®

_ 8eD,w(e) sec?(w(e))
A-B (1 +0 (2+tan(w(e)))? )

86 sec? (w (&) eD,w (&)
(A - B)(2 +tan (w (£)))’ — 8Bd sec? (w (£)) eD,w (£)

‘p(s)—l
A-Bp(e)

If the function w achieves its maximum value, |w (&y)| = 1, at some point € = &, applying Lemma 2.1
gives us,

‘ p(go) — 1
A — Bp (&)

B 89 sec (w (g9)) mw (&)
B (A — B) (2 + tan (w (&)))* — 8B sec? (w (&0)) mw (&)
8mo ‘sec2 (eig)‘

>
(A= B) (2 + ltan (e?)])’ + 8m 5] |B] |sec? ()|

, (3.24)

Substituting (3.6) and (3.15) into Eq (3.24) , we have

8m || sec h? (1)
(A - B)(2+ tan (1))3 — 8m 0| | B| sec? (1)’

¢ (m) =

, 816/ (A — B) (2 + tan (1)) sec 42 (1)
¢ (m) = 5> 0.
((A — B)(2 + tan (1))® + 8m 0] | B sec? (1))
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It demonstrates that the function ¢ (m) is increasing. So, its maximum value is obtained at m = 1.
Thus,
89| ‘sec2 (ei")‘

‘ p (&) — 1
A=Bp (o)l ~ (A - B)(2 + |tan (e)])’ + 81]|Bl [sec? (e)|
and hence
p(e) —1
A-Bp(g)l —
By (3.23), a contradiction occurs. We must have |w ()| < 1, so we obtain the needed outcome. O
By taking A (¢) = Do) e deduce the following result.

(fe)*
Corollary 3.4. Let f € A. Suppose that

K (1
deper D,y
sec (1)

(A= B)(2 +tan(1))*

= . 3.25
0 = 23 (sec h> (1) — | Bl sec? (1)) (3.25)
If the following condition holds:
f@ Y (eDof(©)) 1+Ae
1+6 D , 3.26
¥ S(SDq(f(S)) \Fe ) T+Be (3:26)
then,
eD,f (&) - 2 +tan (&)
(f () 2
Theorem 3.5. Let h () € H (D) with h(0) = 1. Suppose that
(A - B) (2 + |tan (¢ ) )
6] > , fon )’ o —1sB< Dy (3.27)
n ( sec? (eza)| —|B| |8602 (elf))|) sec? (1)
If the following subordination is provided:
eD,h(e) 1+ Ae
, 3.28
(&) 1+ Be (3:28)
then, 5
h(g) < Ln(s).
2
Proof. Suppose
e =1+ 68th (&)
€)= .
P (7))’

Now consider
2 + tan (w (&))

h(e) = >

AIMS Mathematics Volume 9, Issue 10, 28421-28446
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We can easily obtain that
2"eD,w (&) sec? (w ()

=140 ,
p(©) 2 + tan (@ (2)))"
and hence,
2"eDyw(e) sec2(w(€))
‘ pE-1]_ Qrtan(@(@)”
A —Bp(e) _ 278D w(s) sec?(w(&))
A-B (1 +6 2+an(w@)) )
_ 2"5eD,w (€) sec? (w (€))
" [(A-B)(2 + tan(w (¢)))" — 2"BéeD,w (€) sec? (w (g)) '

If the function w accomplishes its maximum value, |w (gy)| = 1 , at some point € = &, then, utilizing
Lemma 2.1, we have

‘ p(g)—1

A - Bp (&0)

_ 2"6eD,w (€) sec? (w (€))

(A= B)(2 + tan (w (8)))" - 2"BéeD,w () sec? (w (¢))
2"md ‘sec2 (ei")‘

" (A-B) (2 + tan (&))" + 2"m 6] |B] |sec? (e)|

(3.29)

Now set (3.6) and (3.15) in (3.29), and we get

2"mo ‘sec2 (e”’)’
(A — B) (2 + |tan (¢9)|)" + 2"m |6 | B |se02 (ei9)|
n _ n 5
= ¢ (m) = 2" 16| (A — B) (2 + tan (1))" sec h* (1) >0
((4 = B) 2+ |tan ()" + 2"m |6]|B] [sec? (¢?)])

¢ (m) =

It demonstrates that ¢ (m) increases, achieving the maximum value at m = 1. Thus,

2"

sec? (eie)‘

" (A-B)(2 +tan (e®)))" + 2716 |B] |sec? (¢#)|’

’ p (&) —1
A — Bp (&)

and hence
p (&) —1

A - Bp (&)
which contradicts the assumption (3.28), so |w (¢)| < 1. We complete the proof. O

eD,f(e)
(fep" 2

Corollary 3.5. Let f € A. Suppose that

—_ 9

By taking h (¢) = we deduce the following corollary.

sec h? (1)
-1<B<x———<A<1
=e= sec2 (1) sash
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(A-B)(2 +tan(1))"

0= 27 (sec h? (1) — |B| sec? (1)) (3.30)
If the following is given:
fe \' .. (eD,f(&)\ 1+Ase
1+58(qu<f<s>>) Dq( @ )< T+ Be G0

then,
eD,f (¢) - 2 + tan (&)
(f (&) 2

%
tan

Remark 3.1. One can obtain new results for the class S;,, by taking the limit ¢ — 1~ in our results.

4. Coefficient estimates for class S;,, (¢)

Theorem 4.1. If f € S}, (q) is of the form (1.1), then

tan

1
ol <= O<qg<l),
q

1
<— (05 1),
Ifsl_zq(qH) 05<qg<1)

€4l < (0.41310 < g < 0.57708) .

2q(q*+q+1)
All these estimates are extreme for a function defined below:

eD,f (e) _ 2 +tan(e")
fle 2

1
1+§8”+--- n=1273). 4.1)

Proof. Suppose f € S;,, (¢9), and then there exists a Schwarz function w (¢) such that

tan

£(Duf)(©) 2+ tan(w(e)
f@ 2

where w (&) = I’; g: If p (¢) follows the form of (1.2), then

c1E+ C282 + C383 + C4¢"34 + -

w(e) = .
2+cie+ e+ 383 +euEt + -

Using this, one can easily find

2 + tan (w (&)) 1 1 1
f =1+ ZClS + (ZC2 - gc%)sz

IR U PR
126‘1 4C2C1 4C38
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1 1 1 1 1
+ (—Ec‘f + Zc?cz bl §c§ + Zc4) gt 4.2)
Then
gDy f (e) 2] .2
b LA | Dé —
7@ +qére + [q (g +1)&; qu] &
2
+ q(z q”]& ~q(g+2)6HE + 96 | &
n=0

+q|qE+ E - EE) G + (&6 - + 86 - &E)q
+Es 388 - 2606 -8 -8+ (4.3)
Comparing (4.2) and (4.3) , we obtain
1

= — 4.4
& 4q01, 4.4)
1 21,
_ _24 o, 45
SR TPERY (Cz 4q cl) )
1 1647 + 104 — 12g + 3\ , (44> +3q-2)
£ = - - o ———aatal. @46
49(1+q+q°) 484> (g + 1) 4g(g+1)
Applying (2.1) to (4.4), and we have
1
< —.
&a < 2

To find the bound of &3, apply (2.2) to (4.5) with 0.5 < g < 1, and we have

&3] < m

From Lemma 2.5,
B 164> + 10¢> — 12 + 3

484% (g + 1) ’

ag
and
(44 +39-2)
2q(g+ 1)

so the conditions 0 < @, < 1 and @, 2a; — 1) < a; < a, are satisfied for 0.41310 < g < 0.57708.
Applying Lemma 2.5, we get

ay =

<
il =< 2q(1+qg+¢%)

Corollary 4.1. If f € S, then

tan®
1
&2 < o
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€3] <

b

e

gl = 2

The above three bounds are sharp for the function defined below:

ef (€ _2+tan(e 1, B
T R (n=1,2,3). 4.7)

Theorem 4.2. If f € S;,_(q), then

tan

(1+q)§—1|}.

1
|§3 - /1§§| < —)max{l, 2

T 2q(g+1
The result is sharp for the function defined in (4.1), for n = 2.
Proof. From (4.4) and (4.5), we have

1 (a(l+g)+29g-1)
_ &2 = _ 2.2
s - 23] 4q(q+ 1|7 4q aa
Applying Lemma 2.3 to the preceding equation yields the desired outcome. O

Corollary 4.2. If f € S;_, then

tan?®

1 24 -1
|§3 - /l§§| < Z max {1, |T } .
The result is sharp for the function defined in (4.7) , for n = 2.

Theorem 4.3. If f € S, (q), then

tan

1
&l £ —— 14527 222 .
€263 — &4] < Y EYD (0.14527 < g <0 65)

The outcome is sharp for the function defined in (4.1), for n = 3.
Proof. From (4.4)—(4.6), we have

1 9-22¢g ; (1-5¢q)
— &l = - +c3).
|§263 — &al 1 +q+ )| 43¢ ci g et
Comparing with Lemma 2.5, we have
9-22 1 -
| = 4 and y = ( Sq),
48¢q 2q

and the conditions 0 < a; < 1 and @, 2a, — 1) < @1 < a, are satisfied for 0.14527 < g < 0.22265, so
Lemma 2.5 is valid to apply. Hence

1

6263 — &4l < m

O
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Corollary 4.3. If f € S;,,, then
1
6283 — &4l < 5
The result is sharp for the function defined in (4.7), for n = 3.
Theorem 4.4. Let f € S;,, (q) be given in the form (1.1), and then

1
le264 - & < (rar o) for q € (0.8382,1). (4.8)

q+)
Proof. From (4.4)—(4.6), we have
(I+¢q) e 1 2
163 —
16(1+g+)(1+g+¢+q°) 16(1+q+q) "
(q5+q4+8q3—5q2+10q—5) )
— CiC
641+ (1+q+@ (1 +q+P+q)
1 (qg +4q" + 14¢° — 40¢° + 11¢* — 1164° + 186¢> — 60g + 88)
1024 A+qP(1+q+¢ (1 +q+q*+q)

et -8 =

4
Cl .

Using Lemma 2.4 for ¢; = ¢, we have

(4 + 1297 + 38¢° + 324° + 43¢* — 148> + 20247 — 76 + 48) ,

B 1024(g+ 1 (P +g+ 1 (P +@ +q+1) ‘
(q5+q4+4q3—13q2+6q—5)

- 128(q+1)(q2+q+1)2(q3+q2+q+l)c

[(1+q+q2+q3)(4—c2)+(1+q)(1+cl+c]2)c2

|§2§4 - §%| =

2(4—C2)x

)(4_c2)x2

(1+¢q) . o
+32(1+61+q2)(1+q+q2+q3)(4 ¢)e(1-1f)e

64(1+q+) (1 +q++q%)

For ¢ € [0, 2], the simple calculation gives
2| (1+q)
a6 - 5] = R20+q+@P)(+q+¢+q)
(q8 +12q7 + 38¢° + 32¢° + 43¢* — 148¢° + 202¢*> — 764 + 48)
- 2(g+ D (@ +q+1)

C4

~ (q5+q4+4q32—13q2+6q—5)cz(4_cz)x
4@+ (¢+q+1)
(1+61+612+613)(4—c‘2)—f—(1+q)(1+q+c12)c2 N 2
_( 20+ +q+) (=)
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+(4—cz)c(1 - |x|2)s’,

where x and ¢ satisfy |x| < 1 and |0] < 1.
Next, we will find the maximum value of |§2§4 - §§| for c € [0, 2].
Case 1. When ¢ = 0, we have

|26 - &3] < g€ (0,1).

Case 2. When ¢ = 2, we get
1
4(1+q+q)
(¢° + 1297 + 38¢° + 32¢° + 43¢* — 148¢° + 202¢* — 764 + 48)

|a2a4 — a§| =

16(g+ 1)’ (1 +qg+¢@+¢3)
g€ (0,1).

1
4(1+q+q?)

Case 3. Assume c € (0,2). Then, by the above equation and the triangular inequality,

. 1+q)(4-c)c
6264 - &3] < 2 7
R2(+g+¢>)(1+q+q*+q%)

(qg +12q7 + 38¢° + 32¢° + 43¢* — 148¢> + 202¢* — 76q + 48)
- c
32(g+ D' (2 +g+1)(4-c?)

((]5+q4+4q3 — 13q2+6q—5)c
4+ D (P +q+1)
{(1 +q+q2+q3)(4—c2)+(1 +q)(1 +c]+c12)c2

3

2 LR
2+ (1 +q+4) ]x+(1 o))

By Lemma 2.6, we can write it as

(1 +q)(4—c2)c

Yy wrm s UG 2S00
where
(q8 + 129" +38¢° + 32¢° + 43¢* — 148> + 202¢*> — 76q + 48) ;
P=- R G+ D) (P +q+ D@ -) .
(-4° - ¢* - 4> + 134> - 69 + 5) c
¢- 4q+ 17 (@ +q+1)
and

((1+q+q2+q3)(4—c2)+(1+q)(1+q+q2)c2)

R=-
2¢(1+q)(1+qg+¢%
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Clearly, for all g € (0, 1) and ¢ € (0, 2), we have

(czq +4q% + 4) (q8 +12¢g7 +384° + MD)
64(4-c)(g+ D (P +q+1)

PR = >0,

where
MD = 32¢° + 43¢* — 1484° + 202¢* — 76q + 48.
Now we consider |Q| — 2 (1 — |R]). Let
0(c) = 8(q+ 17 (4" +g+1)cllol-2(1 - RD},
which implies
p(c) = 2(5 —2g+214* - ¢* —q5)02
—16(q+ 1’ (@ +g+1)c+32(¢ +1)(g+1).
Differentiating ¢ (c) twice, we have
¢ (c) = 4(5 -2q+21¢* - ¢* —qs)c— 16 (g + 1)2(q2 +qg+ l),
¢ () =4(5-29+21 -¢' =) >0 g€ (0.1).
This shows that ¢’ (c) is an increasing function and

max¢’ () = ¢ (2) = ~8° — 24* — 43¢’
+104g" — 64 +24 <0 g€ (0.8382,1).

It follows that
¢’ (c) <0,c€(0,2), g€ (0.8382,1).

Hence, ¢ (c) is a decreasing function and

ming (c) = ¢ (2) = -8¢° — 84" - 32¢°
+1044> —48¢g+40>0 g€ (0,1).

This implies |Q] — 2 (1 — |R|) > 0, and then by Lemma 2.6,

o« ol
PRI RA+g+ U+ g+ P+ P)

(Pl + 101+ IR]) = h(c),
where
Mc* + N =256 (¢* + 1) (g + 1)*

h(c)=- 5 > ; o
1024(g+ 1Y (> +q+ 1) (1 +qg+qg>+q%)

By differentiating, we have

1

W (0) = 30,2 2 2 3
1024 (g+ 1)’ (@?+qg+ 1) (1 +qg+q*+ )

(Mc3 + Nc),
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where

M = —(-¢" - 204" - 624° — 724" + 53" + 3724° — 90q” + 124q — 8) < 0
for g € (0.0669,1),

and
N =-— (32q7 +1604¢° + 416¢° + 644" — 3844° + 64q — 96) <0 forgq € (0.8382,1),

which implies
W (c) <O.

We conclude that the function 4 (¢) is a decreasing function and

h(c) <h(0) = ————.
(c) < h(0) i)

From all of the above discussion, we conclude that

&HE - & < ————, for ¢ €(0.8382,1).
b Els ey
i
5. Sufficiency criteria for class S}, (¢)
Theorem 5.1. A function f € S;,, (¢) if and only if
1 He? - Ge
- 0, 5.1
O i |7 ©-1)
where
G =2 +tan(e"”), H = tan(e”), orG =H = 1. (5.2)

Proof. If a function f € S, (¢), then f is analytic in D, and hence é f(e) # 0 forall £in D* = D — {0}.
Thus, we have the Eq (5.1) for G = H = 1.
Now, by using (1.9) along with the principle of subordination, there exists a Schwarz function w such
that
e(Dif)@ _ an@e)
[ 2

Taking into consideration w () = €, for 0 < § < 2, then the above expression becomes

P (Dq f ) (&) tan (eie)
o (Dof) @) - (22D £ ) 2 0. (5.4)
2
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Now, by using the relations

E E
f@):f@j*l_gzmda%Dﬂ)@):f@hnl_gﬂl_qQ,
the Eq (5.4) becomes
P 2 + tan(e’) P
f(g)*(l—s)u—qe)‘( > )(f(g)*l—g)io'

After some simple calculations, we get

((2 + tan (eig)) ge* — tan (ei") s)
f(‘s)*( 20 -1 - o) ] * 0

2

1 He? — Ge
Ts(f(s)* -2 —qs))

where H and G are given in (5.2), and thus the the necessary condition holds.

Conversely, assume that the condition in (5.1) satisfies, then é f(e) # 0, for all e € D. Let K(¢) =
6(1}"8 (s), which is regular in © and K(0) = 1.

Also, assume that f(e) =1 + tanz(g), and from (5.3), f(0D) N K(e) = 0.

Therefore, the connected component C— f(9D) containing the domain K(¢) is connected as well. Given
the univalence of “K” and the supposition that f(0) = K(0) = 1, it is evident that K < f, indicating

that f € S, (q). O

tan

6. Conclusions

In conclusion, leveraging the framework of g-calculus, we have introduced a novel class of g-starlike
functions associated with the eight-shaped image domain, offering new insights into their geometric
behavior. Our research successfully established results in differential subordination and derived sharp
inequalities for the first three unknown coefficients of the Taylor series. Additionally, we provided
precise solutions to the Fekete-Szegd problem and second-order Hankel determinants for this newly
defined class, with the broader implications demonstrated through a series of corollaries.

The scope of these findings extends beyond the specific class of functions examined. Our
methodology offers a flexible foundation for analyzing other image domains and subclasses within
geometric function theory. This opens avenues for future work that could explore more general
families of functions, potentially leading to new results in related areas, such as higher-order Hankel
determinants, multi-variable quantum calculus, and further applications of g-differential operators.
The results enhance the current understanding of g-starlike functions and provide a robust platform
for future investigations into the more profound applications of quantum calculus in geometric and
analytic function theory.
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