Research article

Time-delayed control of a nonlinear self-excited structure driven by simultaneous primary and 1:1 internal resonance: analytical and numerical investigation

  • Received: 24 July 2024 Revised: 03 September 2024 Accepted: 13 September 2024 Published: 24 September 2024
  • MSC : 34A34, 34C15, 34C23, 34C25, 34D20, 34E13, 37N15, 70B05, 70K05, 70K40, 70K42, 70K50

  • Main objective of this research to eliminate the resonant vibrations and stabilize the unstable motion of a self-excited structure through the implementation of an innovative active control strategy. The control strategy coupling the self-excited structure with a second-order filter, which feedback gain $ \lambda $ and control gain $ \beta $, as well as a first-order filter, which feedback gain $ \delta $ and control gain $ \gamma $. The coupling of the second-order filter to establish an energy bridge between the structure and the filter to pump out the structure's vibration energy to the filter. In contrast, the primary purpose of coupling the first-order filter to stabilize the closed loop by adjusting the damping of the system using the control keys $ \delta $ and $ \gamma $. Accordingly, the mathematical model of the proposed control system formulated, incorporating the closed-loop time delay $ \tau $. An analytical solution for the system model obtained, and a nonlinear algebraic system for the steady-state dynamics of the controlled structure extracted. The system's bifurcation characteristics analyzed in the form of stability charts and response curves. Additionally, the system's full response simulated numerically. Findings the high performance of the introduced controller in eliminating the structure's resonant vibrations and stabilizing non-resonant unstable motion. In addition, analytical and numerical investigations revealed that the frequency band within which the second-order filter can absorb the structure's resonant oscillation relies on the algebraic product of $ \beta $ and $ \lambda $. Furthermore, it was found that the equivalent damping of the system depends on the algebraic product of $ \gamma $ and $ \delta $, which can be employed to stabilize the negatively damped self-excited systems. Finally, it reported that although the loop delay can potentially degrade vibration control performance, the time-delay stability margin is nonlinearly proportional to the product of $ \gamma $ and $ \delta $. This finding that increasing the value of $ \gamma \times \delta $ can compensate for the adverse effects of loop delay on both system stability and vibration suppression efficiency.

    Citation: Nasser. A. Saeed, Amal Ashour, Lei Hou, Jan Awrejcewicz, Faisal Z. Duraihem. Time-delayed control of a nonlinear self-excited structure driven by simultaneous primary and 1:1 internal resonance: analytical and numerical investigation[J]. AIMS Mathematics, 2024, 9(10): 27627-27663. doi: 10.3934/math.20241342

    Related Papers:

  • Main objective of this research to eliminate the resonant vibrations and stabilize the unstable motion of a self-excited structure through the implementation of an innovative active control strategy. The control strategy coupling the self-excited structure with a second-order filter, which feedback gain $ \lambda $ and control gain $ \beta $, as well as a first-order filter, which feedback gain $ \delta $ and control gain $ \gamma $. The coupling of the second-order filter to establish an energy bridge between the structure and the filter to pump out the structure's vibration energy to the filter. In contrast, the primary purpose of coupling the first-order filter to stabilize the closed loop by adjusting the damping of the system using the control keys $ \delta $ and $ \gamma $. Accordingly, the mathematical model of the proposed control system formulated, incorporating the closed-loop time delay $ \tau $. An analytical solution for the system model obtained, and a nonlinear algebraic system for the steady-state dynamics of the controlled structure extracted. The system's bifurcation characteristics analyzed in the form of stability charts and response curves. Additionally, the system's full response simulated numerically. Findings the high performance of the introduced controller in eliminating the structure's resonant vibrations and stabilizing non-resonant unstable motion. In addition, analytical and numerical investigations revealed that the frequency band within which the second-order filter can absorb the structure's resonant oscillation relies on the algebraic product of $ \beta $ and $ \lambda $. Furthermore, it was found that the equivalent damping of the system depends on the algebraic product of $ \gamma $ and $ \delta $, which can be employed to stabilize the negatively damped self-excited systems. Finally, it reported that although the loop delay can potentially degrade vibration control performance, the time-delay stability margin is nonlinearly proportional to the product of $ \gamma $ and $ \delta $. This finding that increasing the value of $ \gamma \times \delta $ can compensate for the adverse effects of loop delay on both system stability and vibration suppression efficiency.



    加载中


    [1] A. Abadi, Nonlinear dynamics of self-excitation in autoparametric systems, Ph.D. Thesis, University of Utrecht, 2003.
    [2] S. H. Strogatz, Nonlinear dynamics and chaos, CRC Press, Broken Sound Parkway, NW, Boca Raton, USA, 2018.
    [3] J. Warminski, Nonlinear dynamics of self-, parametric, and externally excited oscillator with time delay: van der Pol versus Rayleigh models, Nonlinear Dynam., 99 (2020), 35–56. https://doi.org/10.1007/s11071-019-05076-5 doi: 10.1007/s11071-019-05076-5
    [4] A. Tondl, T. Ruijgrok, F. Verhulst, R. Nabergoj, Autoparametric resonance in mechanical systems, Cambridge University Press, New York, 2000.
    [5] S. S. Oueini, A. H. Nayfeh, Single-mode control of a cantilever beam under principal parametric excitation, J. Sound Vib., 224 (1999), 33–47.
    [6] J. Li, R. Y. Shen, H. X. Hua, Cubic velocity feedback control of high-amplitude vibration of a nonlinear plant to a primary resonance excitation, Shock Vib., 14 (2007), 235782. https://doi.org/10.1155/2007/235782 doi: 10.1155/2007/235782
    [7] B. Pratiher, Vibration control of a transversely excited cantilever beam with tip mass, Arch. Appl. Mech., 82 (2012), 31–42.
    [8] C. X. Liu, Y. Yan, W. Q. Wang, Primary and secondary resonance analyses of a cantilever beam carrying an intermediate lumped mass with time-delay feedback, Nonlinear Dynam., 97 (2019), 1175–1195. https://doi.org/10.1007/s11071-019-05039-w doi: 10.1007/s11071-019-05039-w
    [9] N. A. Saeed, G. M. Moatimid, F. M. F. Elsabaa, Y. Y. Ellabban, Time-delayed control to suppress a nonlinear system vibration utilizing the multiple scales homotopy approach, Arch. Appl. Mech., 91 (2021), 1193–1215. https://doi.org/10.1007/s00419-020-01818-9. doi: 10.1007/s00419-020-01818-9
    [10] J. X. Li, Y. Yan, W. Q. Wang, Secondary resonance of a cantilever beam with concentrated mass under time delay feedback control, Appl. Math. Model., 135 (2024), 131–148. https://doi.org/10.1016/j.apm.2024.06.039 doi: 10.1016/j.apm.2024.06.039
    [11] J. Peng, Y. N. Li, L. X. Li, S. Lenci, H. X. Sun, Time-delay feedback control of a suspended cable driven by subharmonic and superharmonic resonance, Chaos Soliton. Fract., 181 (2024), 114646. https://doi.org/10.1016/j.chaos.2024.114646 doi: 10.1016/j.chaos.2024.114646
    [12] N. A. Saeed, S. I. El-Bendary, M. Sayed, M. S. Mohamed, S. K. Elagan, On the oscillatory behaviours and rub-impact forces of a horizontally supported asymmetric rotor system under position-velocity feedback controller, Lat. Am. J. Solids Stru., 18 (2021), e349. https://doi.org/10.1590/1679-78256410 doi: 10.1590/1679-78256410
    [13] N. A. Saeed, G. M. Moatimid, F. M. Elsabaa, Y. Y. Ellabban, M. A. El-Meligy, M. Sharaf, Time-delayed nonlinear feedback controllers to suppress the principal parameter excitation, IEEE Access, 8 (2020), 226151–226166. https://doi.org/10.1109/ACCESS.2020.3044998 doi: 10.1109/ACCESS.2020.3044998
    [14] I. M. Díaz, E. Pereira, P. Reynolds, Integral resonant control scheme for cancelling human-induced vibrations in light-weight pedestrian structures, Struct. Control Hlth., 19 (2012), 55–69. https://doi.org/10.1002/stc.423 doi: 10.1002/stc.423
    [15] A. Al-Mamun, E. Keikha, C. S. Bhatia, T. H. Lee, Integral resonant control for suppression of resonance in piezoelectric micro-actuator used in precision servomechanism, Mechatronics, 23 (2013), 1–9. https://doi.org/10.1016/j.mechatronics.2012.10.001 doi: 10.1016/j.mechatronics.2012.10.001
    [16] N. A. Saeed, S. M. El-Shourbagy, M. Kamel, K. R. Raslan, M. K. Aboudaif, Nonlinear dynamics and static bifurcations control of the 12-pole magnetic bearings system utilizing the integral resonant control strategy, J. Low Freq. Noise V. A., 41 (2022), 1532–1560. https://doi.org/10.1177/14613484221104818 doi: 10.1177/14613484221104818
    [17] J. D. J. MacLean, S. A. Sumeet, A modified linear integral resonant controller for suppressing jump phenomenon and hysteresis in micro-cantilever beam structures, J. Sound Vib., 480 (2022), 115365. https://doi.org/10.1016/j.jsv.2020.115365 doi: 10.1016/j.jsv.2020.115365
    [18] N. A. Saeed, G. M. Moatimid, F. M. Elsabaa, Y. Y. Ellabban, S. K. Elagan, M. S. Mohamed, Time-delayed nonlinear integral resonant controller to eliminate the nonlinear oscillations of a parametrically excited system, IEEE Access, 9 (2021), 74836–74854. https://doi.org/10.1109/ACCESS.2021.3081397 doi: 10.1109/ACCESS.2021.3081397
    [19] N. A. Saeed, M. S. Mohamed, S. K. Elagan, J. Awrejcewicz, Integral resonant controller to suppress the nonlinear oscillations of a two-degree-of-freedom rotor active magnetic bearing system, Processes, 10 (2022), 271. https://doi.org/10.3390/pr10020271 doi: 10.3390/pr10020271
    [20] N. A. Saeed, E. Mahrous, E. A. Nasr, J. Awrejcewicz, Nonlinear dynamics and motion bifurcations of the rotor active magnetic bearings system with a new control scheme and rub-impact force, Symmetry, 13 (2021), 1502. https://doi.org/10.3390/sym13081502 doi: 10.3390/sym13081502
    [21] L. Jun, Positive position feedback control for high amplitude vibration of a flexible beam to a principal resonance excitation, Shock Vib., 17 (2010), 286736. https://doi.org/10.3233/SAV-2010-0506 doi: 10.3233/SAV-2010-0506
    [22] C. Shin, C. Hong, W. B. Jeong, Active vibration control of clamped beams using positive position feedback controllers with moment pair, J. Mech. Sci. Technol., 26 (2012), 731–740. https://doi.org/10.1007/s12206-011-1233-y doi: 10.1007/s12206-011-1233-y
    [23] M. Eissa, M. Kamel, N. A. Saeed, W. A. El-Ganaini, H. A. El-Gohary, Time-delayed positive-position and velocity feedback controller to suppress the lateral vibrations in nonlinear Jeffcott-rotor system, Menoufia J. Elect. Eng. Res., 27 (2018), 261–278. https://doi.org/10.21608/mjeer.2018.64548 doi: 10.21608/mjeer.2018.64548
    [24] G. Zhao, A. Paknejad, G. Raze, A. Deraemaeker, G. Kerschen, C. Collette, Nonlinear positive position feedback control for mitigation of nonlinear vibrations, Mech. Syst. Signal Pr., 132 (2019), 457–470. https://doi.org/10.1016/j.ymssp.2019.07.005 doi: 10.1016/j.ymssp.2019.07.005
    [25] N. A. Saeed, E. M. Awwad, T. Abdelhamid, M. A. El-Meligy, M. Sharaf, Adaptive versus conventional positive position feedback controller to suppress a nonlinear system vibrations, Symmetry, 13 (2021), 255. https://doi.org/10.3390/sym13020255 doi: 10.3390/sym13020255
    [26] S. M. Dhobale, S. Chatterjee, Efficacy of a class of resonant nonlinear controllers of fractional-order for adaptive vibration control—Analysis, simulations and experiments, Control Eng. Pract., 143 (2024), 105788. https://doi.org/10.1016/j.conengprac.2023.105788 doi: 10.1016/j.conengprac.2023.105788
    [27] A. Nayfeh, D. Mook, L. Marshall, Non-linear coupling of pitch and roll modes in ship motion, J. Hydronautics, 7 (1973), 145–152. https://doi.org/10.2514/3.62949 doi: 10.2514/3.62949
    [28] P. F. Pai, B. Wen, A. S. Naser, M. J. Schulz, Structural vibration control using PZT patches and non-linear phenomena, J. Sound Vib., 215 (1998), 273–296. https://doi.org/10.1006/jsvi.1998.1612 doi: 10.1006/jsvi.1998.1612
    [29] J. Li, H. X. Hua, R. Y. Shen, Saturation-based active absorber for a non-linear plant to a principal external excitation, Mech. Syst. Signal Pr., 21 (2007), 1489–1498. https://doi.org/10.1016/j.ymssp.2006.03.001 doi: 10.1016/j.ymssp.2006.03.001
    [30] A. A. El-Badawy, T. N. N. El-Deen, Quadratic nonlinear control of a self-excited oscillator, J. Vib. Control, 13 (2007), 403–414. https://doi.org/10.1177/1077546307076283 doi: 10.1177/1077546307076283
    [31] J. Li, X. B. Li, H. X. Hua, Active nonlinear saturation-based control for suppressing the free vibration of a self-excited plant, Commun. Nonlinear Sci., 15 (2010), 1071–1079. https://doi.org/10.1016/j.cnsns.2009.05.028 doi: 10.1016/j.cnsns.2009.05.028
    [32] J. Warminski, M. P. Cartmell, A. Mitura, M. Bochenski, Active vibration control of a nonlinear beam with self-and external excitations, Shock Vib., 20 (2013), 792795. https://doi.org/10.3233/SAV-130821 doi: 10.3233/SAV-130821
    [33] F. Kenmogne, M. Ouagni, H. Simo, A. Kammogne, B. Bayiha, M. Wokwenmendam, et al., Effects of time delay on the dynamical behavior of nonlinear beam on elastic foundation under periodic loadings: Chaotic detection and it control, Results Phys., 35 (2022), 105305.
    [34] F. Kenmogne, P. Noah, E. Dongmo, F. Ebanda, B. Bayiha, M. Ouagni, et al., Effects of time delay on the dynamics of nonlinear beam on elastic foundation under Harmonic moving load: Chaotic detection and its control, J. Vib. Eng. Tech., 10 (2022), 2327–2346.
    [35] F. Kenmogne, M. Wokwenmendam, H. Simo, A. Adile, P. Noah, M. Barka, et al., Effects of damping on the dynamics of an electromechanical system consisting of mechanical network of discontinuous coupled system oscillators with irrational nonlinearities: Application to sand sieves, Chaos Soliton. Fract., 156 (2022), 111805.
    [36] F. Kenmogne, S. Noubissie, G. Ndombou, E. Tebue, A. Sonna, D. Yemélé, Dynamics of two models of driven extended jerk oscillators: Chaotic pulse generations and application in engineering, Chaos Soliton. Fract., 152 (2021), 111291.
    [37] A. Sarkar, J. Mondal, S. Chatterjee, Controlling self-excited vibration using positive position feedback with time-delay, J. Braz. Soc. Mech. Sci. Eng., 42 (2020), 464. https://doi.org/10.1007/s40430-020-02544-7 doi: 10.1007/s40430-020-02544-7
    [38] N. A. Saeed, J. Awrejcewicz, M. A Alkashif, M. S. Mohamed, 2D and 3D visualization for the static bifurcations and nonlinear oscillations of a self-excited system with time-delayed controller, Symmetry, 14 (2022), 621. https://doi.org/10.3390/sym14030621 doi: 10.3390/sym14030621
    [39] J. Mondal, S. Chatterjee, Controlling self-excited vibration of a nonlinear beam by nonlinear resonant velocity feedback with time-delay, Int. J. Nonlin. Mech., 131 (2021), 103684. https://doi.org/10.1016/j.ijnonlinmec.2021.103684 doi: 10.1016/j.ijnonlinmec.2021.103684
    [40] A. Sarkar, J. Mondal, S. Chatterjee, Controlling self-excited vibration using acceleration feedback with time-delay, Int. J. Dynam. Control, 7 (2019), 1521–1531. https://doi.org/10.1007/s40435-019-00577-y doi: 10.1007/s40435-019-00577-y
    [41] A. Nayfeh, Nonlinear interactions, analytical, computational and experimental methods, Appl. Mech. Rev., 2000. https://doi.org/10.1115/1.1383674 doi: 10.1115/1.1383674
    [42] A. Nayfeh, D. Mook, Nonlinear oscillations, Wiley, New York, 1979.
    [43] J. J. E. Slotine, W. Li, Applied non-linear control, Prentice Hall, Englewood Cliffs, 1991.
    [44] N. A. Saeed, M. S. Mohamed, S. K. Elagan, Periodic, quasi-periodic, and chaotic motions to diagnose a crack on a horizontally supported nonlinear rotor system, Symmetry, 12 (2020), 2059. https://doi.org/10.3390/sym12122059 doi: 10.3390/sym12122059
    [45] K. H. Sun, X. Liu, C. X. Zhu, The 0-1 test algorithm for chaos and its applications, Chin. Phys. B, 19 (2010), 110510. Available from: https://iopscience.iop.org/article/10.1088/1674-1056/19/11/110510.
    [46] L. F. Shampine, S. Thompson, Solving DDEs in MATLAB, Appl. Numer. Math., 37 (2001), 441–458.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(377) PDF downloads(37) Cited by(0)

Article outline

Figures and Tables

Figures(25)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog