Research article

Event-triggered anti-windup strategy for time-delay systems subject to saturating actuators

  • Received: 06 August 2024 Revised: 10 September 2024 Accepted: 18 September 2024 Published: 25 September 2024
  • MSC : 93C10, 93D15

  • This paper investigates the anti-windup synthesis problem for linear control systems subject to time-varying state delay and saturating actuators. To alleviate the redundant data transmission, the dynamic event-triggered mechanism is adopted. Moreover, to abate the inherent conservatism, novel delay-dependent sector conditions containing double integral terms are explored. Then, using augmented Lyapunov-Krasovskii functionals and several less conservative inequalities, delay-dependent anti-windup synthesis criteria are obtained in accordance with the feasibility of linear matrix inequalities. Subsequently, the optimization of the initial condition set is addressed. Finally, a simulation example illustrates the availability and technique advantages of the proposed results.

    Citation: Liping Luo, Yonggang Chen, Jishen Jia, Kaixin Zhao, Jinze Jia. Event-triggered anti-windup strategy for time-delay systems subject to saturating actuators[J]. AIMS Mathematics, 2024, 9(10): 27721-27738. doi: 10.3934/math.20241346

    Related Papers:

  • This paper investigates the anti-windup synthesis problem for linear control systems subject to time-varying state delay and saturating actuators. To alleviate the redundant data transmission, the dynamic event-triggered mechanism is adopted. Moreover, to abate the inherent conservatism, novel delay-dependent sector conditions containing double integral terms are explored. Then, using augmented Lyapunov-Krasovskii functionals and several less conservative inequalities, delay-dependent anti-windup synthesis criteria are obtained in accordance with the feasibility of linear matrix inequalities. Subsequently, the optimization of the initial condition set is addressed. Finally, a simulation example illustrates the availability and technique advantages of the proposed results.



    加载中


    [1] S. Tarbouriech, G. Garcia, J. M. G. Silva, I. Queinnec, Stability and stabilization of linear systems with saturating actuators, London: Springer-Verlag, 2011.
    [2] B. Zhou, Analysis and design of discrete-time linear systems with nested actuator saturations, Syst. Control Lett., 62 (2013), 871–879. http://dx.doi.org/10.1016/j.sysconle.2013.06.012 doi: 10.1016/j.sysconle.2013.06.012
    [3] Y. Chen, Z. Wang, B. Shen, Q. L. Han, Local stabilization for multiple input-delay systems subject to saturating actuators: The continuous-time case, IEEE Trans. Autom. Control, 67 (2022), 3090–3097. http://dx.doi.org/10.1109/TAC.2021.3092556 doi: 10.1109/TAC.2021.3092556
    [4] L. Ding, W. Sun, Predefined time fuzzy adaptive control of switched fractional-order nonlinear systems with input saturation, Int. J. Netw. Dyn. Intell., 2 (2023), 100019. http://dx.doi.org/10.53941/ijndi.2023.100019 doi: 10.53941/ijndi.2023.100019
    [5] E. S. Tognetti, T. M. Linhares, Local dynamic output feedback control of saturated discrete-time T-S fuzzy systems with partially measured premise variables, Int. J. Syst. Sci., 54 (2023), 2784–2798. http://dx.doi.org/10.1080/00207721.2023.2252548 doi: 10.1080/00207721.2023.2252548
    [6] Y. Y. Cao, Z. Lin, D. G. Ward, An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation, IEEE Trans. Autom. Control, 47 (2002), 140–145. http://dx.doi.org/10.1109/9.981734 doi: 10.1109/9.981734
    [7] J. M. G. Silva, S. Tarbouriech, Antiwindup design with guaranteed regions of stability: An LMI-based approach, IEEE Trans. Autom. Control, 50 (2005), 106–111. http://dx.doi.org/10.1109/TAC.2004.841128 doi: 10.1109/TAC.2004.841128
    [8] Y. Li, Z. Lin, A switching anti-windup design based on partitioning of the input space, Syst. Control Lett., 88 (2016), 39–46. http://dx.doi.org/10.1016/j.sysconle.2015.11.003 doi: 10.1016/j.sysconle.2015.11.003
    [9] Y. Chen, Z. Wang, S. Fei, Q. L. Han, Regional stabilization for discrete time-delay systems with actuator saturations via a delay-dependent polytopic approach, IEEE Trans. Autom. Control, 64 (2019), 1257–1264. http://dx.doi.org/10.1109/TAC.2018.2847903 doi: 10.1109/TAC.2018.2847903
    [10] Y. Chen, Z. Wang, Local stabilization for discrete-time systems with distributed state delay and fast-varying input delay under actuator saturations, IEEE Trans. Autom. Control, 66 (2021), 1337–1344. http://dx.doi.org/10.1109/TAC.2020.2991013 doi: 10.1109/TAC.2020.2991013
    [11] P. Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin. Inst., 352 (2015), 1378–1396. http://dx.doi.org/10.1016/j.jfranklin.2015.01.004 doi: 10.1016/j.jfranklin.2015.01.004
    [12] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. http://dx.doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [13] C. K. Zhang, Y. He, L. Jiang, M. Wu, Q. G. Wang, An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay, Automatica, 85 (2017), 481–485. http://dx.doi.org/10.1016/j.automatica.2017.07.056 doi: 10.1016/j.automatica.2017.07.056
    [14] C. K. Zhang, F. Long, Y. He, W. Yao, L. Jiang, M. Wu, A relaxed quadratic function negative-determination lemma and its application to time-delay systems, Automatica, 113 (2020), 108764. http://dx.doi.org/10.1016/j.automatica.2019.108764 doi: 10.1016/j.automatica.2019.108764
    [15] X. Yi, H. Yu, Z. Fang, L. Ma, Probability-guaranteed state estimation for nonlinear delayed systems under mixed attacks, Int. J. Syst. Sci., 54 (2023), 2059–2071. http://dx.doi.org/10.1080/00207721.2023.2216274 doi: 10.1080/00207721.2023.2216274
    [16] J. M. G. Silva, S. Tarbouriech, G. Garcia, Anti-windup design for time-delay systems subject to input saturation-an LMI-based approach, Eur. J. Control, 12 (2006), 622–634. http://dx.doi.org/10.3166/ejc.12.622-634 doi: 10.3166/ejc.12.622-634
    [17] Y. Chen, Y. Li, S. Fei, Anti-windup design for time-delay systems via generalized delay-dependent sector conditions, IET Control Theory Appl., 11 (2017), 1634–1641. http://dx.doi.org/10.1049/iet-cta.2016.0785 doi: 10.1049/iet-cta.2016.0785
    [18] F. A. Bender, J. M. G. Silva, S. Tarbouriech, Convex framework for the design of dynamic anti-windup for state-delayed systems, IET Control Theory Appl., 5 (2011), 1388–1396. http://dx.doi.org/10.1049/iet-cta.2010.0435 doi: 10.1049/iet-cta.2010.0435
    [19] Y. Chen, K. Ma, R. Dong, Dynamic anti-windup design for linear systems with time-varying state delay and input saturations, Int. J. Syst. Sci., 53 (2022), 2165–2179. http://dx.doi.org/10.1080/00207721.2022.2043483 doi: 10.1080/00207721.2022.2043483
    [20] O. Lamrabet, K. Naamane, E. H. Tissir, F. E. Haoussi, F. Tadeo, An input-output approach to anti-windup design for sampled-data systems with time-varying delay, Circuits Syst. Signal Process, 39 (2020), 4868–4889. http://dx.doi.org/10.1007/s00034-020-01414-w doi: 10.1007/s00034-020-01414-w
    [21] J. P. Hespanha, P. Naghshtabrizi, Y. Xu, A survey of recent results in networked control systems, Proc. IEEE, 95 (2007), 138–162. http://dx.doi.org/10.1109/JPROC.2006.887288 doi: 10.1109/JPROC.2006.887288
    [22] L. Zhang, H. Gao, O. Kaynak, Network-induced constraints in networked control systems-A survey, IEEE Trans. Ind. Inf., 9 (2013), 403–416. http://dx.doi.org/10.1109/TII.2012.2219540 doi: 10.1109/TII.2012.2219540
    [23] Y. A. Wang, B. Shen, L. Zou, Q. L. Han, A survey on recent advances in distributed filtering over sensor networks subject to communication constraints, Int. J. Netw. Dyn. Intell., 2 (2023), 100007. http://dx.doi.org/10.53941/ijndi0201007 doi: 10.53941/ijndi0201007
    [24] A. Girard, Dynamic triggering mechanisms for event-triggered control, IEEE Trans. Autom. Control, 60 (2015), 1992–1997. http://dx.doi.org/10.1109/TAC.2014.2366855 doi: 10.1109/TAC.2014.2366855
    [25] C. Peng, F. Li, A survey on recent advances in event-triggered communication and control, Inform. Sciences, 457–458 (2018), 113–125. http://dx.doi.org/10.1016/j.ins.2018.04.055 doi: 10.1016/j.ins.2018.04.055
    [26] F. Han, J. Liu, J. Li, J. Song, M. Wang, Y. Zhang, Consensus control for multi-rate multi-agent systems with fading measurements: The dynamic event-triggered case, Syst. Sci. Control Eng., 11 (2023), 2158959. http://dx.doi.org/10.1080/21642583.2022.2158959 doi: 10.1080/21642583.2022.2158959
    [27] Z. Gu, P. Shi, D. Yue, S. Yan, X. Xie, Memory-based continuous event-triggered control for networked T-S fuzzy systems against cyber attacks, IEEE Trans. Fuzzy Syst., 29 (2021), 3118–3129. http://dx.doi.org/10.1109/TFUZZ.2020.3012771 doi: 10.1109/TFUZZ.2020.3012771
    [28] Q. Li, Y. Chen, L. Ma, Predefined-time control of chaotic finance/economic system based on event-triggered mechanism, AIMS Math., 8 (2023), 8000–8017. http://dx.doi.org/10.3934/math.2023404 doi: 10.3934/math.2023404
    [29] S. Yan, M. Shen, S. K. Nguang, G. Zhang, L. Zhang, A distributed delay method for event-triggered control of T-S fuzzy networked systems with transmission delay, IEEE Trans. Fuzzy Syst., 27 (2019), 1963–1973. http://dx.doi.org/10.1109/TFUZZ.2019.2893179 doi: 10.1109/TFUZZ.2019.2893179
    [30] J. Yang, L. Ma, Y. Chen, X. Yi, $L_{2}$-$L_{\infty}$ state estimation for continuous stochastic delayed neural networks via memory event-triggering strategy, Int. J. Syst. Sci., 53 (2022), 2742–2757. http://dx.doi.org/10.1080/00207721.2022.2055192 doi: 10.1080/00207721.2022.2055192
    [31] A. Selivanov, E. Fridman, Event-triggered $H_{\infty}$ control: A switching approach, IEEE Trans. Autom. Control, 61 (2016), 3221–3226. http://dx.doi.org/10.1109/TAC.2015.2508286 doi: 10.1109/TAC.2015.2508286
    [32] C. de Souza, V. J. S. Leite, S. Tarbouriech, E. B. Castelan, Event-triggered policy for dynamic output stabilization of discrete-time LPV systems under input constraints, Syst. Control Lett., 153 (2021), 104950. http://dx.doi.org/10.1016/j.sysconle.2021.104950 doi: 10.1016/j.sysconle.2021.104950
    [33] L. G. Moreira, L. B. Groff, J. M. G. Silva, Event-triggered state-feedback control for continuous-time plants subject to input saturation, J. Control Autom. Elec. Syst., 27 (2016), 473–484. http://dx.doi.org/10.1007/s40313-016-0264-0 doi: 10.1007/s40313-016-0264-0
    [34] H. Li, X. Zhang, G. Feng, Event-triggered output feedback control of switched nonlinear systems with input saturation, IEEE Trans. Cybern., 51 (2021), 2319–2326. http://dx.doi.org/10.1109/TCYB.2020.2965142 doi: 10.1109/TCYB.2020.2965142
    [35] Q. Zhang, W. Sun, C. Qiao, Event-triggered stabilisation of switched nonlinear systems with actuator saturation: A Hamiltonian approach, Int. J. Syst. Sci., 54 (2023), 849–866. http://dx.doi.org/10.1080/00207721.2022.2147279 doi: 10.1080/00207721.2022.2147279
    [36] Y. Shui, L. Dong, Y. Zhang, C. Sun, Event-based adaptive fuzzy tracking control for nonlinear systems with input magnitude and rate saturations, Int. J. Syst. Sci., 54 (2023), 3045–3058. http://dx.doi.org/10.1080/00207721.2023.2268237 doi: 10.1080/00207721.2023.2268237
    [37] Z. Zuo, S. Guan, Y. Wang, H. Li, Dynamic event-triggered and self-triggered control for saturated systems with anti-windup compensation, J. Franklin Inst., 354 (2017), 7624–7642. http://dx.doi.org/10.1016/j.jfranklin.2017.09.006 doi: 10.1016/j.jfranklin.2017.09.006
    [38] G. A. Kiener, D. Lehmann, K. H. Johansson, Actuator saturation and anti-windup compensation in event-triggered control, Discrete Event Dyn. Syst., 24 (2014), 173–197. http://dx.doi.org/10.1007/s10626-012-0151-1 doi: 10.1007/s10626-012-0151-1
    [39] H. Li, H. Deng, M. Li, N. Zhang, Co-design of anti-windup compensator and a novel saturation-based dynamic event-triggered mechanism for asymmetric saturated system, Int. J. Control Autom. Syt., 22 (2024), 537–547. http://dx.doi.org/10.1007/s12555-022-0504-y doi: 10.1007/s12555-022-0504-y
    [40] Y. Wang, R. Zhao, Z. Zuo, et al., Event-triggered dynamic anti-windup augmentation for saturated systems, Int. J. Syst. Sci., 51 (2021), 196–216. http://dx.doi.org/10.1080/00207721.2020.1823519 doi: 10.1080/00207721.2020.1823519
    [41] J. Zhang, K. Xu, Q. Wang, Prescribed performance tracking control of time-delay nonlinear systems with output constraints, IEEE/CAA J. Autom. Sinica, 11 (2024), 1557–1565. http://dx.doi.org/10.1109/JAS.2023.123831 doi: 10.1109/JAS.2023.123831
    [42] J. Zhang, J. Ding, T. Chai, Fault-tolerant prescribed performance control of wheeled mobile robots: A wixed-Gain adaption approach, IEEE Trans. Autom. Control, 69 (2024), 5500–5507. http://dx.doi.org/10.1109/TAC.2024.3365726 doi: 10.1109/TAC.2024.3365726
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(383) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog