In this article, we prove the well-posedness and stability of a one-dimensional thermo-porous-elastic system, considering a thermal coupling of the Green and Naghdi types III. In this scenario, we propose a new model where the temperature of the material directly affects the stress tensor of displacements and the equilibrated stress tensor on the volume fractions in the porous medium, thereby generalizing some existing results in the literature on the subject. Additionally, the exponential decay of energy is proven when the evolution equation corresponding to the dynamics of the elastic skeletal structure exhibits frictional-type damping.
Citation: Lito E. Bocanegra-Rodríguez, Yony R. Santaria Leuyacc, Paulo N. Seminario-Huertas. Exponential stability of a type III thermo-porous-elastic system from a new approach in its coupling[J]. AIMS Mathematics, 2024, 9(8): 22271-22286. doi: 10.3934/math.20241084
In this article, we prove the well-posedness and stability of a one-dimensional thermo-porous-elastic system, considering a thermal coupling of the Green and Naghdi types III. In this scenario, we propose a new model where the temperature of the material directly affects the stress tensor of displacements and the equilibrated stress tensor on the volume fractions in the porous medium, thereby generalizing some existing results in the literature on the subject. Additionally, the exponential decay of energy is proven when the evolution equation corresponding to the dynamics of the elastic skeletal structure exhibits frictional-type damping.
[1] | M. Afilal, A. Soufyane, General decay for a porous thermoelastic system with a memory, Appl. Anal., 98 (2019), 638–650. https://doi.org/10.1080/00036811.2017.1399363 doi: 10.1080/00036811.2017.1399363 |
[2] | S. C. Cowin, J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13 (1983), 125–147. https://doi.org/10.1007/BF00041230 doi: 10.1007/BF00041230 |
[3] | M. A. Goodman, S. C. Cowin, A continuum theory for granular materials, Arch. Rational Mech. Anal., 44 (1972), 249–266. https://doi.org/10.1007/BF00284326 doi: 10.1007/BF00284326 |
[4] | I. Lacheheb, S. A. Messaoudi, M. Zahri, Asymptotic stability of porous-elastic system with thermoelasticity of type III, Arab. J. Math., 10 (2021), 137–155 https://doi.org/10.1007/s40065-020-00305-x doi: 10.1007/s40065-020-00305-x |
[5] | A. Magaña, R. Quintanilla, On the time decay of solutions in porous-elasticity with quasi-static microvoids, J. Math. Anal. Appl., 331 (2007), 617–630. https://doi.org/10.1016/j.jmaa.2006.08.086 doi: 10.1016/j.jmaa.2006.08.086 |
[6] | S. A. Messaoudi, A. Fareh, General decay for a porous thermoelastic system with memory: the case of equal speeds, Nonlinear Anal. Theory, Meth. Appl., 74 (2011), 6895–6906. https://doi.org/10.1016/j.na.2011.07.012 doi: 10.1016/j.na.2011.07.012 |
[7] | S. A. Messaoudi, A. Fareh, General decay for a porous-thermoelastic system with memory: the case of nonequal speeds, Acta Math. Sci., 33 (2013), 23–40. https://doi.org/10.1016/S0252-9602(12)60192-1 doi: 10.1016/S0252-9602(12)60192-1 |
[8] | E. Molina, G. Cultrone, E. Sebastián, F. J. Alonso, L. Carrizo, J. Gisbert, et al., The pore system of sedimentary rocks as a key factor in the durability of building materials, Eng. Geol., 118 (2011), 110–121. https://doi.org/10.1016/j.enggeo.2011.01.008 doi: 10.1016/j.enggeo.2011.01.008 |
[9] | J. W. Nunziato, S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Ration. Mech. Anal., 72 (1979), 175–201. https://doi.org/10.1007/BF00249363 doi: 10.1007/BF00249363 |
[10] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Berlin: Springer Science & Business Media, 2012. https://doi.org/10.1007/978-1-4612-5561-1 |
[11] | M. L. Santos, A. D. S. Campelo, M. L. S. Oliveira, On porous-elastic systems with Fourier law, Appl. Anal., 98 (2019), 1181–1197. https://doi.org/10.1080/00036811.2017.1419197 doi: 10.1080/00036811.2017.1419197 |
[12] | M. L. Santos, A. D. S. Campelo, D. S. Almeida Junior, On the decay rates of porous elastic systems, J. Elasticity, 127 (2017), 79–101. https://doi.org/10.1007/s10659-016-9597-y doi: 10.1007/s10659-016-9597-y |
[13] | B. Said-Houari, S. A. Messaoudi, Decay property of regularity-loss type of solutions in elastic solids with voids, Appl. Anal., 92 (2013), 2487–2507. https://doi.org/10.1016/j.jmaa.2013.07.049 doi: 10.1016/j.jmaa.2013.07.049 |
[14] | Z. Şen, Practical and Applied Hydrogeology, Amsterdam: Elsevier, 2014. https://doi.org/10.1016/C2013-0-14020-2 |
[15] | P. D. Tennis, M. L. Leming, D. J. Akers, Pervious Concrete Pavements, Skokie, IL: Portland Cement Association, 2004. |
[16] | E. Thelen, W. C. Grover, A. J. Hoiberg, T. I. Haigh, Investigation of Porous Pavements for Urban Runoff Control, Water Pollution Control Research Series, Washington: U.S. Environmental Protection Agency, 1972. |
[17] | H. Yavuz, Effect of freeze–thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone, Bull. Eng. Geol. Environ., 70 (2011), 187–192. https://doi.org/10.1007/s10064-010-0302-2 doi: 10.1007/s10064-010-0302-2 |
[18] | X. Zhang, E. Zuazua, Decay of solutions of the system of thermoelasticity of type III, Commun. Contemp. Math., 5 (2003), 25–83. https://doi.org/10.1142/S0219199703000896 doi: 10.1142/S0219199703000896 |